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Linear quadratic control 
Allows to compute the controller Fy(s) that minimizes 
 
 
for given (positive definite) weight matrices Q1 and Q2. 
 
Easy to influence control energy/transient performance trade-off 
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Linear quadratic control 

Disadvantage of linear-quadratic control: 
–  Robustness and frequency-domain properties only indirectly 

Challenge: framework developed for stochastic disturbances 
 
 
 

–  Need to review stochastic disturbance models 
–  Have to skip some details  

(continuous-time stochastic processes technically tricky) 
 

Relation to H1 control will be explored in next lecture. 
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Learning aims 

After this lecture, you should be able to 
•  model disturbances in terms of their spectra 
•  use spectral factorization to re-write disturbances as filtered white noise 
•  compute the LQG-optimal controller (observer/controller gains) 
•  describe how the LQG weights qualitatively affect the time responses 

Material: course book 5.1-5.4 + 9.1-9.3 + 9.A  
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State space description of multivariable linear system 

 

 

 

where 

• x(t) is called the state vector, 

• systems on state-space form often written as (A,B,C,D) 

 

Transfer matrix computed as 

State-space form 
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Controllability 

The state    is controllable if, given x(0)=0, there exists u(t) 
such that x(t)=    for some t<1. 
 
The system is controllable if all     are controllable. 
 
The controllability matrix 
 
 
•  Controllable states    can be written as                      for some α2 Rmn 
•  System is controllable if S(A,B) has full rank  

(i.e., for each x there exists α such that x=S(A,B)α) 
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Observability 

The state          is unobservable if               and u(t)=0 for t>0 
implies that y(t)=0 for t¸ 0. 
The system is observable if no states are unobservable  
 
The observability matrix 
 
 
 
 
 
•  Unobservable states    are solutions to  
•  System is observable if O(A,C) has full rank  

(i.e., only           solves                      ) 
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Modifying dynamics via state feedback 

Open loop system 
 
 
 
can be controlled using state feedback u(t)=-Lx(t) è 
 
 
 
Q: can we choose L so that A-BL gets arbitrary eigenvalues? 
A: if and only if the system is controllable. 
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Observers 

The state vector of the system 
 
 
 
can be estimated using an observer 
 
 
 
 
 
Q: can we choose K so  A-KC gets arbitrary eigenvalues? 
A: if and only if system is observable 
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Control objective concerns only outputs z of system, i.e., controllability 
and observability of all states may not be so important. 

 

Exception: must be able to control and observe unstable modes! 

 

A system (A,B) is stabilizable if there is L so that A-BL is stable 

 

A system (A,C) is detectable if there is K so that A-KC is stable  

 

Stabilizability and detectability   
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Today’s lecture 

•  Recap: State-space represenation, state feedback and observers 
•  Review: Modeling disturbances as filtered white noise 
•  Linear quadratic Gaussian (LQG) control 
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Disturbances 

Disturbances model a wide range of phenomena that are not 
easily described in more detail, e.g. 

–  load variations, measurement noise, process variations, … 
 
 
 
 
 
 
 

 
Important to model 

–  Size, frequency content and correlations between disturbances. 
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Signal sizes 

So far in the course, we have used the 2-norm 
 
 
 
If the integral does not converge, we can use 
 
 
 
 
A crude measure “size” (disregards frequency content of signal) 
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More informative measure 

How are z(t) related to z(t-τ)? One measure is 
 
 
 
For ergodic stochastic processes, we have 
 
 
(i.e., the covariance function of the signal) 
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Vector valued signals 

For vector-valued z, coupling between zi and zj can be described by 
 
 
 
Can be combined into matrix 
 
 
 
For ergodic stochastic processes, we get 
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Signal spectra 

Translating the signal measure to the frequency domain  
 
 
	


          is called the spectrum of z.  
 
Interpretation 
•               measures the energy content of zi at frequency 
•                                     measures coupling of zi and zj at frequency  	

•                                                        implies that zi and zj are uncorrelated 
 
A signal with      constant for all     is called white noise,  
(in this case, we call      the covariance matrix of z) 
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Examples: signals and spectra 
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Disturbances as filtered white noise 

Fact (spectral factorization): any spectrum         which is 
rational in       , can be represented as white noise filtered through a 
stable non-minimum phase linear system. 
 
 
 
 
 
 
 
 
 
 
(see course book Theorem 5.1 for a precise statement) 
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State-space model with distubances 

 

 
If disturbances w1 and w2 are not white, but have spectra 
that can be obtained via wi = Givi where vi is white noise, then 
we can re-write system as 
 
 
 
 
Note:    is x augmented with the states from G1, G2; 
            are A, B,… augmented with state-space descriptions of Gi  
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Today’s lecture 

•  Recap: State-space represenation, state feedback and observers 
•  Recap: Modeling disturbances as filtered white noise 
•  Linear quadratic Gaussian (LQG) control 
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Linear quadratic Gaussian control 
Model: linear system with white noise 
 
 
 
 
where v1, v2 are white noise with 
 
 
 
Objective: minimize effect of v on z, punish control cost 
 
 
 
LQG: Linear system, Quadratic cost, Gaussian noise 
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Solution structure 

Optimal solution satisfies separation principle, composed of 
 
•  Optimal linear state feedback (Linear-quadratic regulator) 
•  Optimal observer (Kalman filter) 

 
y 

G 

Kalman 
filter 

x ̂

L 
u 
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Optimal solution 

State feedback 
 
 
where S is the solution to the algebraic Riccati equation 
 
 
Kalman filter 
 
 
where  K=(PCT+NR12)R2

-1 and P is the solution to 
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Example: LQR for scalar system 

Scalar linear system 
 
with cost 
 
 
Riccati equation 
 
has solutions 
 
so the optimal feedback law is 



7 

EL2520 Control Theory and Practice                                              Mikael Johansson mikaelj@ee.kth.se 

Example: LQR for scalar system 

Closed loop system 
 
 
 
Note: if system is unstable (a>0), then  
•  if control is expensive            then the minimum control input to 

stabilize the plant is obtained with the input u=-2|a|x, which moves 
the unstable pole to its mirror image –a  

•  if control is cheap (           ), the closed loop bandwidth is roughly  
 
 

⇢ ! 0
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Scalar linear system 
 
 
with covariances E{v1

2}=R1, E{v2
2}=R2, E{v1v2}=0. 

 
Riccati equation 
 
gives 
 
and estimation error dynamics 
 
 
 
Interpretation: measurements discarded if too noisy. 

Example: Scalar system Kalman filter 
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The Servo Problem 

Preferred way: augment system with reference model 
 
 
 
where the reference model states are measurable, and use 
 
 
 
However, when r is assumed to be constant the solution is 
 
 
where Lref is determined so that static gain of closed-loop 
(rzàz) equals the identity matrix 
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LQG and loop shaping 

LQG: simple to trade-off response-time vs. control effort 
–  but what about sensitivity and robustness? 

These aspects can be accounted for using the noise models 
–  Sensitivity function: transfer matrix wuàz 
–  Complementary: transfer matrix nàz 

Example: S forced to be small at low frequencies by letting 
(some component of) w1 affect the output of the system, and  
let w1 have large energy at low frequencies, 
 
 
(delta small, strictly positive, to ensure stabilizability) 
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LQG Control: pros and cons 

Pros: 
•  Simple to trade off response time vs. control effort 
•  Applies to multivariable systems 

Cons: 
•  Often hard to see connection between weight matrices 

Q1, Q2, R1, R2 and desired system properties (e.g. sensitivity, 
robustness, etc) 

•  In practice, iterative process in which Q1 and Q2 are adjusted until 
closed loop system behaves as desired 

•  Poor robustness properties in general 
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Summary 

•  State-space theory recap: 
–  Controllability, observability, stabilizability, detectability 
–  State feedback and observers 

•  Modeling disturbances as white noise 
–  Mean, covariance, spectrum 
–  Spectral factorization: disturbances as filtered white noise 

•  Linear-quadratic controller 
–  Kalman-filter + state feedback 
–  Obtained by solving Riccati equations 
–  Focuses on time-responses 
–  Loop shaping and robustness less direct 


