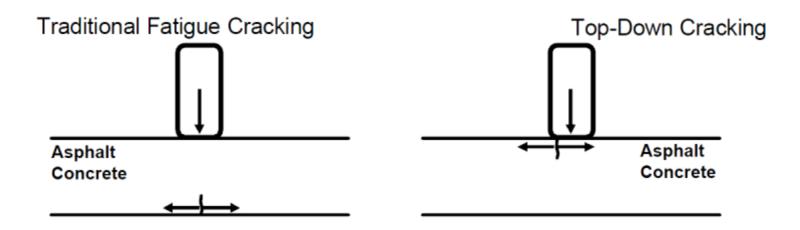


AF2903 Road Construction and Maintenance

Royal Institute of Technology, Stockholm

Top-Down Fatigue Cracking Initiation & Propagation

Yared Hailegiorgis Dinegdae

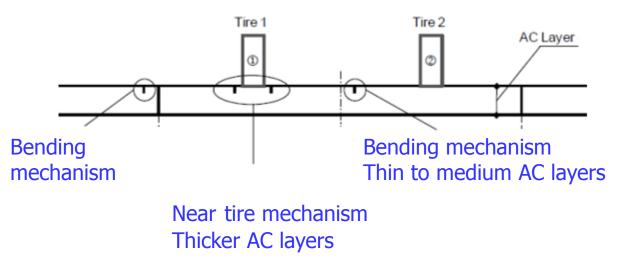

PhD Student in Highway and Railway Engineering Department of Transportation Science

Top-Down Fatigue Cracking

- Top-down fatigue cracking (cracking that initiates at the surface and propagates downwards) has been recognized recently as a major pavement distress
- This cracking phenomena have been observed in many parts of the world and can not be explained by traditional fatigue mechanisms

• We need a model to predict top-down fatigue cracking : Initiation & Propagation

Field core



Field section

Top Down Fatigue Cracking Prediction

Crack initiation

- Bending mechanism (bending induced surface tension away from the tire)
- Near tire mechanism (shear induced tension at the tire edge)

Crack propagation

- The presence of cracks: redistribution and intensification of stresses
- Presence of stiffness gradients
 - Temperature variations with in the AC layer
 - Non-uniform aging with in the AC mixture

Unified Predictive System

- **Crack initiation** (Viscoelastic continuum damage (VECD) model)
 - Predict damage zone effects and Identify the time and location of crack initiation
 - Incorporates material property sub-models (aging, healing, failure criteria, viscoelasticity, thermal stress....)
 - Finite element based
- **Crack propagation (**HMA-fracture mechanics (HMA-FM) model)
 - Account effect of macro cracks and predict propagation of crack over time
 - Incorporates material property sub-models (aging, healing, failure criteria, thermal stress..)

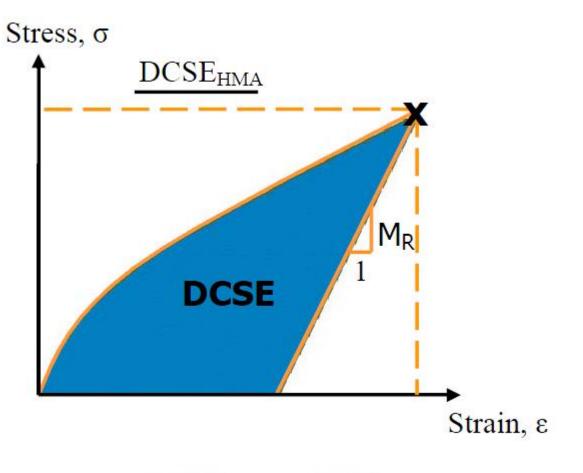
Note! Much significant development is needed before implementation into MEPDG to predict top down cracking

Top-Down Fatigue Cracking Design based on Energy Ratio (First Generation)

University of Florida (2006), Report No. 0003932

Top-Down Fatigue Cracking Design based on Energy Ratio

- Fracture mechanics based M-E design method
- Optimize the AC thickness against top-down fatigue cracking

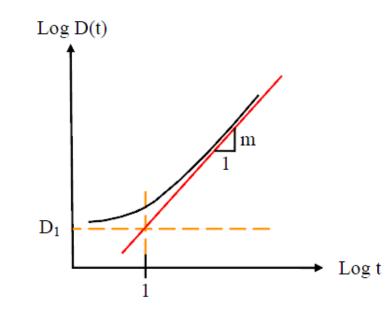

Key features

- Damage equal to the accumulated dissipated creep strain energy (*DCSE_{min}*)
- Damage threshold $(DCSE_{lim})$ independent of loading or loading history
- Damage under the cracking threshold is fully healable
- Macro Crack will initiate if accumulated *DCSE_{min}* exceeds *DCSE_{lim}*
- Consider only load induced stresses
- Structure and mixture for "averaged" environmental conditions

Dissipated Creep Strain Energy (DCSE)

• Defines a fracture damage threshold

 $DCSE_{HMA} = AREA$


Energy Ratio (ER)

 A dimensionless parameter which compares mixture DCSE threshold to that of accumulated load induced DCSE

 $ER = \frac{DCSE_{\lim}}{DCSE_{\min}}$

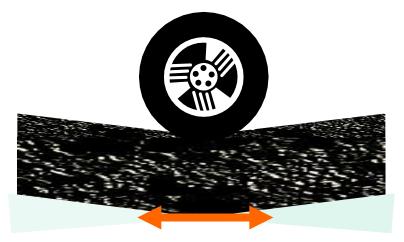
• Mixture properties are needed to determine DCSE_{lim}

 $DCSE_{lim} = c_f * S_t \frac{mD_1}{10^{3(1-m)}}$

 S_t tensile strength at the surface of the AC layer

 $D(t) = D_0 + D_1 * t^m$,

 $c_f = 6.9 \times 10^7$


 D_1 and m are creep parameters

• Structural and mixture properties are needed to determine DCSE_{min}

 $DCSE_{\min} = m^{2.98} * D_1 / f(S_t, \sigma_{\max})$

 $f(S_t, \sigma_{max}) = 0.0299 * \sigma_{max}^{-3.10} * (6.36-S_t) + 2.46 * 10^{-8}$

 σ_{max} , tensile stress

Design and Analysis

Input data


- Gradation ($ho_{3/4},
 ho_{3/8}$, ho_4 , ho_{200})
- Volumetric (V_a, V_{beff})
- Rheological property (A, VTS)
- Traffic volume(*ESALS*) & loading
- Reliability (**R**)
- Climate (*maa*t)
- Design life (*months*)
- Reference temperature

Output data

- Material properties at a given depth (Viscosity, AC stiffness, tensile strength & creep parameters
- Optimized AC thickness

Flow Chart

KTH

Binder Aging Model

- Based on Global Aging Model (GAM) at a reference temperature of 10C (50F)
- Predicts binder viscosity at a given depth and time

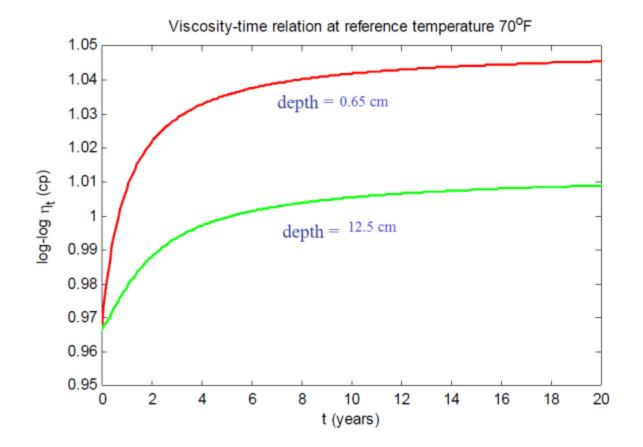
Binder viscosity at mix or laydown condition

 $\log \log (\eta) = A + VTS \times \log (T_R)$

Aged binder viscosity at surface

$$\log \log (\eta_{aged}) = F_{AV} \times \frac{\log \log (\eta_{t=0}) + A_f t}{1 + B_f t}$$

A & VTS: Regression constants T_R : Temperature in Rankine scale T_R =459.67+ T_F (Fahrenheit)


 $F_{AV} = 1$ $A_f \& B_f$: filed aging parameters t: time in months

Aged binder viscosity at a given depth and time

 $\eta_{t,z} = \frac{\eta_t (4+E) - E(\eta_{t=0})(1-4z)}{4(1+E \cdot z)} \qquad \qquad E = 23.82 \exp(-0.0308 \cdot Maat)$

Binder Aging Model

• Predicted viscosity at a reference temperature of 21C (70F)

AC Stiffness Aging Model

• Based on binder aging model and predicts AC stiffness at a give time & depth

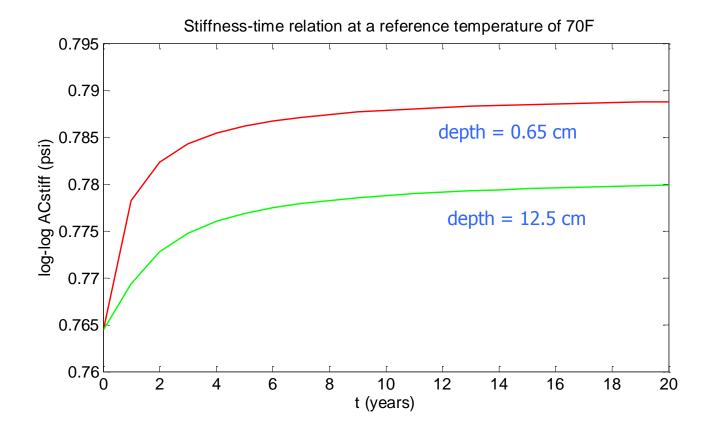
$$\log \left| E^* \right|_0^{\infty} = \delta + \frac{\alpha}{1 + \exp\left(\beta + \gamma \log t_r\right)}$$

 δ , α , β , γ are fitting parameters.

$$t_r = 0.1$$
s, time of loading

$$\begin{split} \delta &= 2.718879 + 0.079524 \times p_{200} - 0.007294 \times (p_{200})^2 + 0.002085 \times \rho_4 \\ &\quad -0.01293 \times V_a + 0.08541 \frac{V_{be}}{V_{be} + V_a} \end{split}$$

$$\begin{split} \alpha &= 3.559267 - 0.005451 \times \rho_4 + 0.020711 \times \rho_{3/8} - 0.000351 \times (\rho_{3/8})^2 \\ &+ 0.00532 \times \rho_{3/4} \end{split}$$


$$\beta = -0.513574 - 0.355353 \times \log(\eta_r)$$

 $\gamma = 0.37217$

AC Stiffness Aging Model

• Predicted AC stiffness at a reference temperature of 21C (70F)

Tensile Strength Aging Model

- Predicts AC tensile strength at a given depth and time
- Based on the stiffness aging model at a loading time of 1800s

Tensile strength (MPa)

$$S_{t} = \sum_{n=0}^{5} a_{n} \cdot (\log S_{f})^{n}$$
AC stiffness (psi)


• Regression constant (a_n)

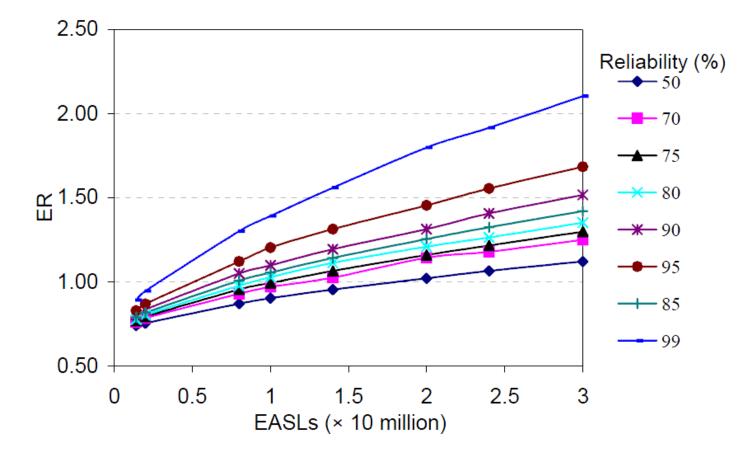
$$a_0 = 284.01, \quad a_1 = -330.02, \quad a_2 = 151.02, \quad a_3 = -34.03, \\ a_4 = 3.7786, \quad a_5 = -0.1652$$

Tensile Strength Aging Model

• Tensile strength should be calculated near AC surface at 0.65 cm (0.25 inch)

Creep Parameters (m, D_1) aging model

- Gradation, volumetric and binder property of the mix are required
- Creep parameters should be calculated near AC surface 0.65 cm (0.25 inch)


$$\log(D_0) = -\delta - \alpha - \log \lambda_r, \quad \log(D_0 + D_1) = -\delta - \frac{\alpha}{1 + e^{\beta}} - \log \lambda_r \qquad \lambda_r = 0.4$$

$$m_0 = \alpha \gamma \times \frac{\exp (\beta + 3\gamma)}{\left[1 + \exp (\beta + 3\gamma)\right]^2} \qquad m = m_0 + \frac{\kappa}{\log \log \eta} \qquad k = 0.408$$

Energy Ratio Optimum (ER_{opt})

- ER=1 is a reference point, energy ratio lower than 1 leads to weaker pavement
- Higher traffic and higher reliability requires a higher energy ratio

Energy Ratio optimum = f(ESALS, Reliability)

Based on filed calibration

$\mathsf{ER}_{\mathsf{opt}}$

Reliability (%)	$ER_{opt} = f(x: ESALs in 10 millions)$			
	<i>x</i> <0.14	$0.14 \le x \le 0.8$	$x \ge 0.8$	
50	$\text{ER}_{\text{opt}} = 0.112 x + 0.65$	$\text{ER}_{\text{opt}} = 0.311 \ x + 0.62$	$\text{ER}_{\text{opt}} = 0.114 \ x + 0.78$	
70	$\text{ER}_{\text{opt}} = 0.162 \ x + 0.65$	$ER_{opt} = 0.388 x + 0.62$	$\text{ER}_{\text{opt}} = 0.146 \ x + 0.81$	
75	$\text{ER}_{\text{opt}} = 0.192 \ x + 0.65$	$ER_{opt} = 0.423 x + 0.62$	$\text{ER}_{\text{opt}} = 0.156 \ x + 0.83$	
80	$\text{ER}_{\text{opt}} = 0.214 \ x + 0.65$	$\text{ER}_{\text{opt}} = 0.4545 \ x + 0.62$	$\text{ER}_{\text{opt}} = 0.170 \ x + 0.84$	
85	$\text{ER}_{\text{opt}} = 0.241 \ x + 0.65$	$\text{ER}_{\text{opt}} = 0.491 \ x + 0.62$	$\text{ER}_{\text{opt}} = 0.187 \ x + 0.86$	
90	$\text{ER}_{\text{opt}} = 0.276 x + 0.65$	$ER_{opt} = 0.546 x + 0.61$	$\text{ER}_{\text{opt}} = 0.212 \ x + 0.88$	
95	$\text{ER}_{\text{opt}} = 0.329 x + 0.65$	$ER_{opt} = 0.640 x + 0.61$	$\text{ER}_{\text{opt}} = 0.256 \ x + 0.92$	
99	$\text{ER}_{\text{opt}} = 0.454 x + 0.65$	$\text{ER}_{\text{opt}} = 0.876 x + 0.60$	$\text{ER}_{\text{opt}} = 0.365 \ x + 1.01$	

Pavement Thickness Design

- Performed based on the amount of damage at the end of the pavement life and the damage criterion
- Dissipated creep strain energy minimum

 $DCSE_{\min} = m^{2.98} * D_1 / f(S_t, \sigma_{\max})$

• Dissipated creep strain energy limit

$$DCSE_f = c_f * S_t \frac{mD_1}{10^{3(1-m)}}$$

• Energy ratio

$$ER = \frac{DCSE_{\text{lim}}}{DCSE_{\text{min}}}$$

Optimum thickness

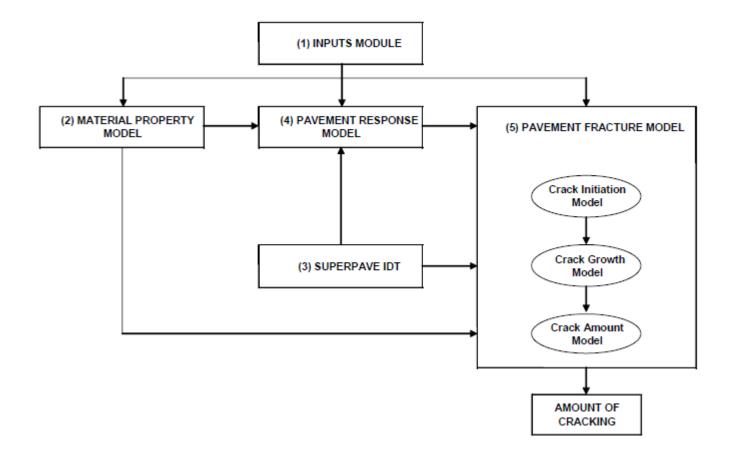
$$ER_{opt} \approx ER$$

Simplified Cracking Performance Prediction Model

(Second Generation)

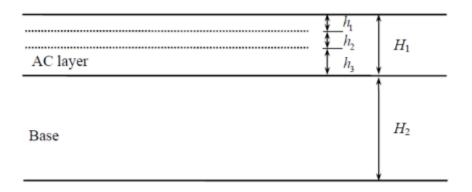
NCHRP Project 1-42A (2010)

Simplified Cracking Performance Prediction Model


- Uses a simplified fracture energy based approach to predict crack initiation instead of the viscoelastic continuum damage model (VECD)
- Damage zones are not considered
- Fracture mechanics model to predict crack propagation

Key elements

- A critical condition concept that accurately capture field observations
- Material property sub-models that account aging of near surface mixture properties
 - Increase in stiffness (stiffening)
 - Reduction in fracture energy (embrittlemnt)
 - Reduction in healing potential
- Thermal response model to predict transverse thermal stresses
- Pavement fracture model that predict crack growth with time


• The overall framework of the integrated simplified system

Material Property Sub-Model

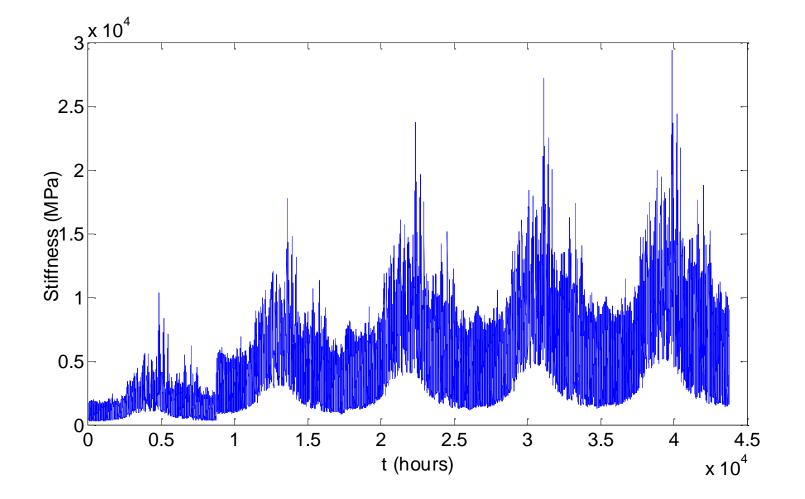
• Predict material properties

Subgrade

Sub-model	Sub-model component	Input requirement	
Material property model	AC stiffness aging model	- Basic mixture characteristics	
		(gradation, binder type, mix volumetrics)	
		- Temperature, loading time, and aging time	
	AC tensile strength aging model	- Stiffness (from AC stiffness aging model)	
		- Material coefficients a _n	
	Fracture energy limit aging model	- Stiffness (from AC stiffness aging model)	
		- Initial fracture energy	
		- Aging parameter k ₁ (to be determined in calibration)	
	Healing model	- Stiffness (from AC stiffness aging model)	
		- Initial fracture energy	
		- Critical stiffnesses.	

AC-Stiffness Aging Model

- Based on binder aging model & dynamic modulus model (at loading time of $t_r = 0.1$ s)
- Considers stiffness gradient due to temperature & aging by dividing the AC layer into sub-layers


$$|E^*|_t = |E^*|_0 \frac{\log \eta_t}{\log \eta_0} \qquad \qquad \eta_{t,z} = \frac{\eta_t (4+E) - E(\eta_{t=0})(1-4z)}{4(1+E\cdot z)}$$

$$\log \left| E^* \right|_0^{\infty} = \delta + \frac{\alpha}{1 + \exp\left(\beta + \gamma \log t_r\right)}$$

$$\delta$$
, α , β , γ are fitting parameters.

Predicted Stiffness (five years)

Inputs for AC Stiffness Aging Model

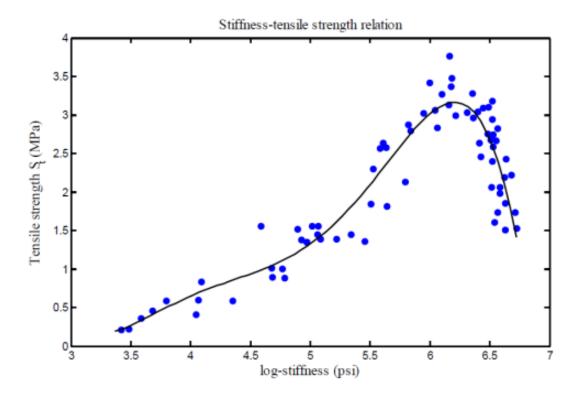
Mix gradation

- $\rho_{3/4}$ Percent weight retained on 19mm (3/4 inch)sieve
- $\rho_{3/8}$ Percent weight retained on 9.5 mm (3/8 inch) sieve
- P_4 Percent weight retained on 4.75 mm (3/8 inch) sieve
- P_{200} Percent weight passing 0.75 mm sieve

Mix volumetric

- V_a Percent air void content by volume
- V_{be} Effective asphalt content, by percent

Mix rheological property (Binder type – PG)


- A & VTS Regression constants
- PG =67-22: A=10.6316 VTS =-3.548
- PG=76-22: A=9.715 VTS =-3.208

Tensile Strength Aging Model

• Based on AC- stiffness aging model (at a loading time of 1800s)

$$S_t = \sum_{n=0}^{5} a_n \cdot (\log S_f)^n$$
 Unit: $S_f(\text{psi}), S_t(\text{MPa})$

Fracture Energy Limit Aging Model

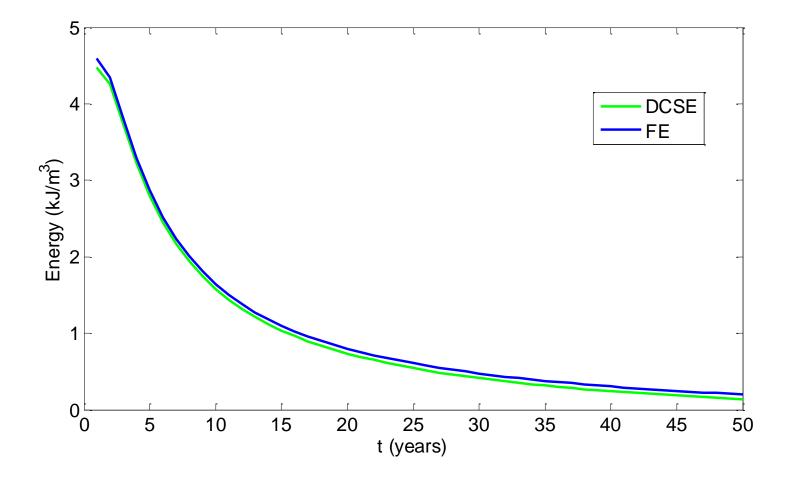
• Fracture energy limit decreases with age and reach some minimum value of $(FE_{min}) = 0.2 \text{kJ}/m^3$ at the 50th year

C(A) C

$$FE_{f}(t) = FE_{i} - (FE_{i} - FE_{\min}) \cdot [S_{n}(t)]^{k1} \qquad S_{n}(t) = \frac{S(t) - S_{0}}{S_{\max} - S_{0}}$$

Normalized stiffness at AC layer

 FE_i and k_1 can be determined from IDT test in the lab


 DCSE limit aging function is developed based on FE limit aging model AC stiffness

$$DCSE_{f}(t,z) = FE_{f}(t,z) - [S_{t}(t,z)]^{2} / [2 \cdot S(t,z)]$$

Tensile

strength

Fracture Energy Limit Aging Model

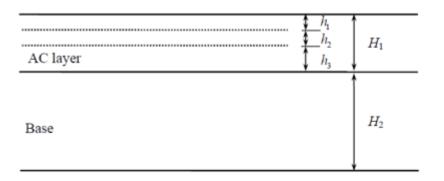
FE = DCSE + EE (Elastic Energy)

Healing Model

- All damage does not cause crack some will heal
- Composed of three components
 - Maximum healing potential aging model

 $h_{ym}(t) = 1 - [S_n(t)]^{FE_i/1.67}$

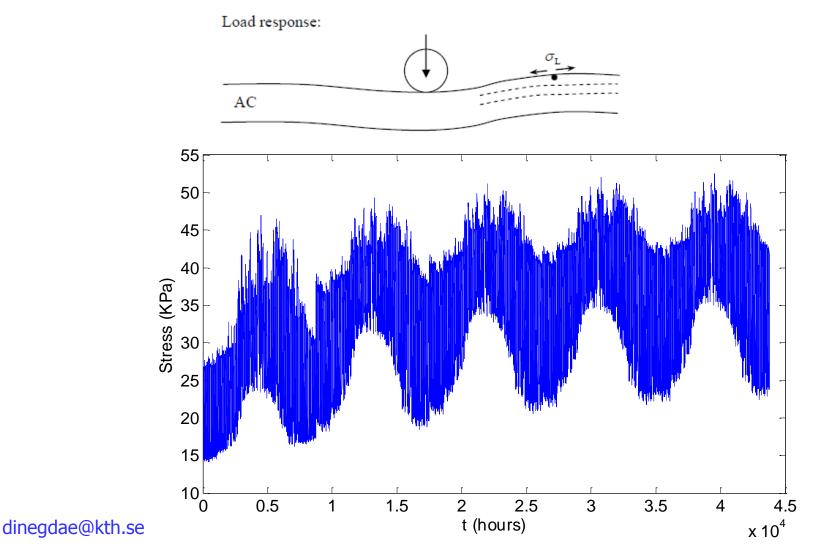
• Daily based healing criterion to estimate the daily recovered damage


$$DCSE_{d_remain} = DCSE_{d_induced} \cdot (1 - h_{dn})$$

• Yearly based healing criterion to estimate continuous healing

$$DCSE_{y_remain} = DCSE_{y_induced} \cdot (1 - h_{yn})$$

Pavement Response Sub-Model


Subgrade

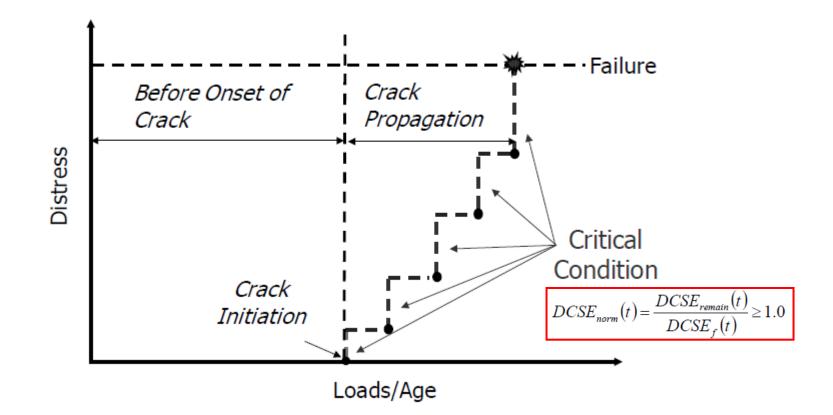
Sub-model	Sub-model component	Input requirement
Pavement response model	Load response model	 Structural properties of each layer (thickness, modulus, and Poison's ratio) Stiffness (from AC stiffness aging model) Equivalent single axle load
	Thermal response model	- Structural property of AC layer (thickness) - Relaxation modulus master curve parameters: E_i , λ_i , η_v - Temperature and thermal contraction coefficient

Load Response Model

Predict maximum surface tensile stress due to a circular load using a 3D linear elastic analysis (LEA)

Thermal Response Model

- Predict thermally induced transverse stress
- Maximum of 10psi (68.9KPa) as it can not exceed the friction limit for typical HMA & base materials



Thermal response:

Crack Initiation Model

- Developed on the basis of a threshold concept
- Predicts location and time of crack initiation

Load Associate Damage

Load induced stress

$$DCSE_L / cycle = \int_0^{0.1} \sigma_{AVE} \sin(10\pi t) \dot{\varepsilon}_{p\max} \sin(10\pi t) dt$$

Creep strain rate

 $\mathcal{E}_{p\max} = m^* D_1^* (1000)^{(m-1)}$

• Gradation, volumetric and binder property of the mix are required to calculate creep parameters (m, D1)

$$\log (D_0) = -\delta - \alpha - \log \lambda_r, \quad \log (D_0 + D_1) = -\delta - \frac{\alpha}{1 + e^{\beta}} - \log \lambda_r$$
$$m_0 = \alpha \gamma \times \frac{\exp (\beta + 3\gamma)}{[1 + \exp (\beta + 3\gamma)]^2} \qquad m = m_0 + \frac{\kappa}{\log \log \eta}$$

Thermal Associated Damage

$$DCSE_{T} / \Delta t = \left[\sigma(t) - \sigma(t - \Delta t)\right] \cdot \left[\varepsilon_{cr}(t) - \varepsilon_{cr}(t - \Delta t)\right] / 2$$

 $\mathcal{E}_{CT} = m^* D_1^* (1000)^{(m-1)} * 3600$

• Gradation, volumetric and binder property of the mix are required to calculate creep parameters (m, D1)

$$\log(D_0) = -\delta - \alpha - \log \lambda_r, \quad \log(D_0 + D_1) = -\delta - \frac{\alpha}{1 + e^{\beta}} - \log \lambda_r$$

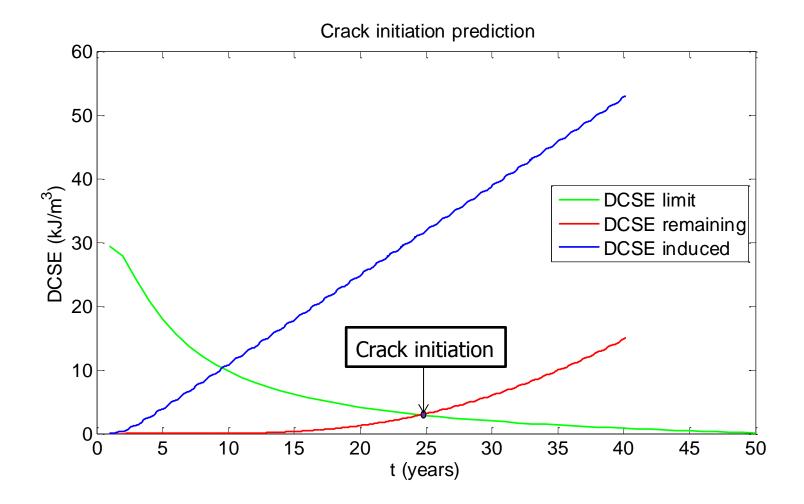
$$m_{0} = \alpha \gamma \times \frac{\exp (\beta + 3\gamma)}{\left[1 + \exp (\beta + 3\gamma)\right]^{2}} \qquad \qquad m = m_{0} + \frac{\kappa}{\log \log \eta}$$

Crack Initiation Model

• Dissipated Creep strain Energy Limit (DCSE_{lim})

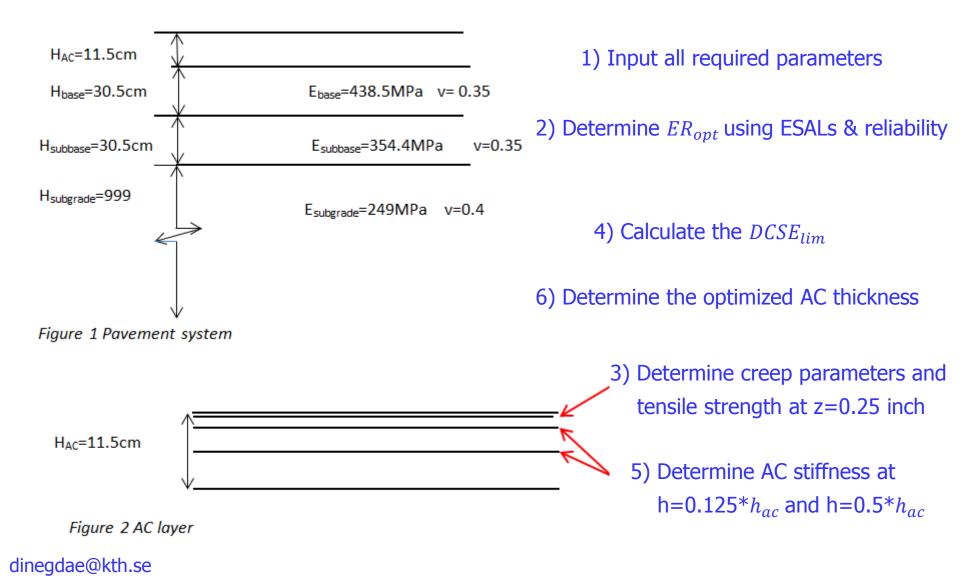
$$DCSE_{f}(t,z) = FE_{f}(t,z) - [S_{t}(t,z)]^{2} / [2 \cdot S(t,z)]$$

• Dissipated Creep strain Energy remaining after healing (DCSE_{remain})


 $DCSE_{remain}(\Delta t) = (1 - h_{dn}) \cdot \left[n \cdot (DCSE_L / cycle) + DCSE_T(\Delta t) \right]$

n is number of load cycles in Δt

Crack initiation


$$DCSE_{norm}(t) = \frac{DCSE_{remain}(t)}{DCSE_{f}(t)} \ge 1.0$$

• To optimize a given pavement AC thickness against top down cracking

END

Questions

