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Weinberg's Laws of Progress in Theoretical Physics
From: "Asymptotic Realms of Physics" (ed. by Guth, Huang, Jaffe, MIT Press, 1983)

First Law: "The conservation of Information” (You will get nowhere
by churning equations)

Second Law: "Do not trust arguments based on the lowest order of
perturbation theory”

Third Law: "You may use any degrees of freedom you like to describe
a physical system, but if you use the wrong ones, you'll be sorry!"

Patient: Doctor, doctor, it hurts when | do this!
Doctor: Then don't do that.



Nuclear Landscape
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Theoretical methods to solve the nuclear
many-body problem across the nuclear
landscape.
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The general Hamiltonian corresponding to the motion of the A=N+Z nucleons
in a nucleus is

A
H= g
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Atomic nucleus is a many-body system with great complexity. Although Quantum mechanics
still governs its behavior, the forces are complicated and cannot, in fact, be written down
explicitly in full detail. One has to rely on the construction of nuclear models



Different model views

Independent particle model

In the previous sessions we have considered the nucleus as a conglomerate of neutrons and
protons moving freely in a central potential but satisfying the Pauli principle. It is the basis of
any microscopic nuclear models.

Collective model

In the other extreme we have the collective model, where the individual nucleons form a
compact entity. The Collective Model emphasizes the coherent behavior of all of the
nucleons. Among the kinds of collective motion that can occur in nuclei are rotations or
vibrations that involve the entire nucleus. A common feature of systems that have rotational
spectra is the existence of a “deformation”, by which is implied a feature of anisotropy

that makes it possible to specify an orientation of the system as a whole.

Deformed single-particle model



Single-particle states in 133Sn: Doubly magic nature of 132Sn

Counts

Paul Cottle, Nature 465, 430-431 (2010)
K. L. Jones et al., Nature 465, 454-457 (2010)
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Variety of nuclear collective motions

The single-particle shell model can not properly describe the excited states of nuclei. The
excitation spectra of nuclei show characteristic of collective motions,

**Rotations;
*»*Surface vibrations (quadrupole, octupole, hexadecupole, ...);
s Fission (large-amplitude collective motion);

**Giant resonances (proton-neutron displacements,monopole, dipole, quadrupole, ...)
*»*Scissors mode (proton-neutron angular displacement)

**Pygmy resonance (n-rich nuclei, vibration of neutron halo / skin with respect to the core)

In this course we will concentrate on simple descriptions of nuclear rotation.



Planet Earth is triaxial

The Earth's equator is an ellipse rather than a circle



Types of Multipole Deformatiions

eroundstate

The monopole mode A=0
1 00 A
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The associated excitation is the so-called breathing mode of the nucleus. A large amount of
energy is needed for the compression of nuclear matter and this mode is far too high in energy.

The dipole mode

Dipole deformations, to lowest order, do not correspond to a deformation of the nucleus but
rather to a shift of the center of mass, i.e. a translation of the nucleus, and should be
disregarded for nuclear excitations since translational shifts are spurious.
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The center of mass of nucleus with “dipole deformation”

For the sphere
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The quadrupole mode A =2

The most important nuclear shapes and collective low energy excitations of atomic nuclei.

)

Pl
g
¢

Spherical Prolate

Obolat
e

The octupole mode A =3

The principal asymmetric modes of the nucleus associated with negative-parity bands.

The hexadecupole mode i = 4



A prolate spheroid (American football) is a spheroid in which the p&lar axis is greater than
the equatorial diameter. The volume of a prolate spheroid is}y — Z 42} where b is the
polar radius, and a is the equatorial radius. 3

An oblate spheroid (pancake) is a rotationally symmetric ellipsoid having a polar axis
shorter than the diameter of the equatorial radius.

O

http://en.wikipedia.org/wiki/Prolate spheroid
http://en.wikipedia.org/wiki/Oblate_spheroid

minor axis

How are they related to the spherical amplitudes a2u



Hill-Wheeler coordinates
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<* Consider the nuclear shapes in the principal axis system (x',y',z'), i.e.

calculate the cartesian components as a function of 7y for fixed [3:

e \F F
o, = a, = +|——pPcosy

Ol'x.x. = (612 ao) \/—/D)COS(}/ - —)
I _an

ay'y'—\/; peos(y - =)

5 2k
O, = —Peos(y ==27) k=123 for x.y.3
JU

ag = [ cosy ag = 3 sin -y

or



Y=0°
| Moa-collectvo oblis A <>The nucleus is said to be prolate when
two of the principal axes (x,y) are of the
| same length while the third axis (z) is
{ Collective prolate |Onger.
Y =-30°

<>If the third axis is shorter than the
two equal principal axes, the nucleus is
said to have an oblate shape.

<>y=0° and y=60° correspond to prolate
R o
Y =-60 and oblate shapes respectively.
Collective oblate Completely triaxial shapes have y=30°

¥y =-120°

Non—collective prolate



Single-particle energy scheme as a function of deformation parameters.

What are they?
Superheavy nuclei may also be “deformed”.
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Prolate shapes are coloured red—orange,

S. Cwiok et al., Nature (London) 433, 705 (2005). oblate shapes are blue—green, and
spherical shapes are light yellow.




Description of the quadrupole deformation

Thus, the quadrupole deformation may be described either in a laboratory-fixed reference
frame through the spherical tensor a, , or, alternatively, by giving the deformation of the
nucleus with respect to the principal axis frame using the parameters (a, ,a,) or (beta,gamma)
and the Euler angles indicating the instantaneous orientation of the body-fixed frame.

Energy (MeV)




As known from classical mechanics, the degrees of freedom of a rigid rotor are the three Euler
angles, which describe the orientation of the body-fixed axes in space. A classical rotor can
rotate about any of its axis.

The energy of a classical rotor can be described by

— 17,
E = 1Ju2

where J is the moment of inertia. Classically the angular momentum is given by.

[ = Jw
For the expression for the energy
112

E=37



Collective rotation

Rotation is a collective mode of excitation of a deformed nucleus found in different regions of
the nuclear chart. This feature allows for the possibility to excite the nucleus by gaining
rotational energy around an axis defined to be perpendicular to the symmetry axis.

A spherical nucleus has no rotational excitations at all !
In quantum mechanics the case is different. If the nucleus has rotational symmetries and no

internal structure. For example, a spherical nucleus cannot rotate, because any rotation leaves
the surface invariant and thus by definition does not change the quantum-mechanical state
(and energy). This in turn implies that only a deformed nucleus can be said to be rotating.

A nucleus with axial symmetry cannot rotate around the axis of symmetry!
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In fact

Nuclei are not always
spherical!

A prolate deformed nucleus

In a molecule, as in a solid body, the deformation reflects the highly anisotropic mass
distribution, as viewed from the intrinsic coordinate frame defined by the equilibrium
positions of the nuclei. In the nucleus, the rotational degrees of freedom are associated
with the deformations in the nuclear equilibriun
structure.

molecule



In the quantum mechanical limit the squared angular momentum observable has the
form

J2=rI(I+1)

The Hamiltonian is

1.416

1.077

where | is the spin is of the state and J is the static moment of inertia.
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Quantum quadrupole axial rotor: "8Hf

o Let us look into the lowest energy excitations in 17/8Hf
Spin/parity /™ | 0T | 2% 4+ 6" 8+

Energy E [keV] | O | 93.2 ] 306.6 | 632.2 | 1058.6

Ejr | Eye 0.00 | 1.00 | 3.29 | 6.78 | 11.36

o If we compare with the prediction of the rotor model we see a pretty
good agreement (and small deviations to be discussed later).

Spin/parity I™ | 0T | 2T | 47 6" 8+

Energy E 0 | 65 | 205 | 4285 | 721

Eix [ Ex+ 0.00 | 1.00 | 3.33 | 7.00 | 12.00




The Nobel Prize in Physics 1975
Aage N. Bohr, Ben R. Mottelson, James Rainwater

The Nobel Prize in Physics 1975
Nobel Prize Award Ceremony
Aage N. Bohr

Ben R. Mottelson

James Rainwater

R A "
Aage Niels Bohr Ben Roy Mottelson Leo James Rainwater

The Nobel Prize in Physics 1975 was awarded jointly to Aage Niels Bohr, Ben
Roy Mottelson and Leo James Rainwater “for the discovery of the connection
between collective motion and particle motion in atomic nuclei and the

development of the theory of the structure of the atomic nucleus based on this
connection”.

http://www.nobelprize.org/nobel_prizes/physics/laureates/1975/



From classical mechanics it is known that three angles are needed to define the position
of a rigid body with fixed center of mass. These are called Euler angles. The energy of the
rotating rigid body, with the center of mass fixed at the center of coordinates, is

where Jz- 1s the 2’ component of the moment of inertia and J» is the corresponding
angular momentum component.

We will assume that the rigid body has cylindrical symmetry along the z’ axis.
Therefore the component J,. of the angular momentum, which is usually denoted
by the letter K, is conserved. This symmetry also implies that J,» = J,,. We will
use the symbol J to denote this moment of inertia.



Angular momentum quantum numbers describing rotational motion in three dimensions.

The z axis belongs to a coordinate system fixed in the laboratory, while the 3 axis is part of a
body-fixed coordinate system

Quantum mechanically the component J; = K is conserved. One has the total angular
momentum is J = |, since it is a constant of the motion. Jz = M is a constant of the motion.

If the system possesses axial symmetry, The projection on the symmetry axis is also a
constant of the motion, J; = K.
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The Hamiltonian )
T

H=—

27

In guantum mechanics there is no rotation along the symmetry axis, therefore

H: J3/+J§/ _ J2_J3/
27 27

The eigenvalues corresponding to this Hamiltonian are

J(J+1)— K?
27

E(J,K) = K2



Dirk (0, 6,9) = (0¢p| IMK)
which are called ”d-functions”. They satisfy the eigenvalue equations,

J2D}; (0,6, ) = B2J(J + 1) Di1 (6, 6,),
J. Dy (6,6, ) = RMDiyic(0, 6, 0),
Jz’DMK(Ov ¢7 SO) — hKDMK (9’ ¢’ SO)

By assuming cylindrical symmetry, we have
(0op|IMK) = c (DAJJK + (—I)JD}\IJ_K)

where c is a constant

The lowest lying of these bands is the one corresponding to K =0,

J+1)

J(
E(J.0) = h?
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The deformed single-particle model

In above description, we consider the rotational motion of the system as a whole
and neglected the internal motion with respect to the body-fixed coordinate frame.

The starting point for the description of the intrinsic degrees of freedom in
deformed nuclei is the analysis of one-particle motion in non-spherical potentials.

In the following we discuss the deformed single-particle potential and the associated
one-particle quantum states

The generalization of the phenomenological shell model to deformed nuclear
shapes was first given by S. G. Nilsson in 1955, so this version is often referred to
the Nilsson model.



Reading

The Nilsson Model and Sven Gosta Nilsson
Ben Mottelson, Phys. Scr. T125 (2006)

http://iopscience.iop.org/1402-4896/2006/T125/E02/pdf/physscr6_t125 e02.pdf

‘Another impressive indication of the validity of the independent particle model is the immense
success of the Nilsson scheme. We all know the famous level scheme and the popularity of his

paper—I am sure this is the one paper which one finds on the desk of every nuclear physicist. ’

The numerical diagonalization of the matrices involved (up to dimensions 7 x 7) required that
Sven Gosta travel to Stockholm in order to exploit the power of the BESK computer (at that time
the largest available for scientific computation in Sweden).

Dimension we can handle today
1010)(1 010




The physics behind

Rotation axis
rotational ‘

frequency (0< X 5

Many Unpaired Nucleons
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=--K---= Nilsson quantum numbers

The projection, K is the intrinsic single particle spin of the band-head state.



Reminder: 3D isotropic harmonic oscillator

One-dimensional harmonic oscillator

A2 ¢
: P 1 222 - e
H=— 4+ -mwz”, = —th—.
om T2 T P Dz
3D isotropic harmonic oscillator
1
V(r) = §#w27‘2,

The Hamiltonian can be written as

2, pld, p2
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B =(nt3)hw n=n,+n +n,



The anisotropic harmonic oscillator

The Harmonic Oscillator potential can be generalized so as to be applicable to the deformed case.

The principal idea is to make the oscillator constants different in the different
spatial directions:

h? 1
H ef — __A —171 (.Uzllf‘z w‘Q' 2 LU‘? :2
def 2m T 2 i yY~ W )

The condition of incompressibility of nuclear matter requires that the volume of
the ellipsoid should be the same as that of the sphere and this imposes a condition on
the oscillator frequencies:



If we assume that the nuclear z-axis (3-axis) is different from the extension along the x- and
y-axes, we may write the single-particle Hamiltonian in the form

The anisotropy corresponds to the difference introduced between w; and
;. It 1s convenient to introduce an elongation parameter ¢ (Nilsson, 1955):

= wy(¢) (1 - %e)

W) = wole) (1 -+ %8)

where wg(e) is weakly e-dependent, enough to conserve the nuclear volume
(see below). The distortion parameter ¢ is obtained as ¢ = (w; — w;)/wyg. It
is defined so that ¢ > 0 and ¢ < 0 correspond to so-called prolate and oblate
shapes, respectively.

3(5\"



For the spheroidal potential, the motion separates into independent oscillations along the 3
axis and in the (12) plane

1 1
Emwi(:cQ -+ y2) -+ Emwng

1
= Emwgrz — mw%,@ r°Yo0(6)
The energy is
e(nyn, )=(ny+ Hhwy+(n, + 1w,

where n, = n,+ n, 1s the number of quanta in the oscillations perpendicular
to the symmetry axis.



The Nilsson model

Deformed HO potential with Is and |2 corrections

H = i (02 622+ a2)+M[a)_2L(x2+y2)+cuzzzz]—Cz’-s

AV oy? = 0z2 2

(2= (),

As mentioned in last section, the I? term lifts the degeneracy within each major oscillator shell
in such a manner as to favor the states with large /.

The term <I2> is a constant for each oscillator shell chosen so that the average energy
difference between shells is not affected by the |2 term.

Py =iN(N+3)



The axial symmetry of the nuclear potential imply that the parity and the projection of the
total angular momentum along the symmetry axis, {} ,are constants of the motion for the
one-particle states.

One may classify the levels according to the cylindrical quantum numbers.

§2™[Nn,m]

where the projection of total angular momentum €2, and the parity = are good
quantum numbers while N, n; and m are only approximate and may be determined
for a given level only by looking at its behavior near the spherical state

A




In the spherical case each j state is (2j+1)-fold degenerate. This degeneracy
is removed by the perturbation k' to first order as

(N¢sjQleh' |N¢sjQ) = —sMcoO < >

*Each spherical level labeled by N(l;) at
£=0, is split into (2j+1)/2 levels with

1 3 ,
Q= 5,15,...,1]. §3,3.
=
L
e The remaining degeneracy means that
each level can accommodate two 3.25¢
nucleons.
¢ Orbits with lower Q2 are shifted
downwards for €>0 (prolate) and
3.2

upwards for <0 (oblate).
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Lowest part of the level diagram

(Nilsson diagram) for the
deformed shell model.
The single-particle energies are *°
plotted as functions of -',
deformation [3, and are given in
units of Awy. as| ——— ”e 1z

i - . " o2 -
The quantum numbers 2 * for ﬂ/ = o -
the individual levels and /;, 20l © \
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Figure 4. Nilezon diagram for protone or neutrons, Z or N =50 (¢, = 0).
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As for the three dimensional potential well the Nilsson model predicts that shells and shell gaps
are modied by the deformation.

The main achievement of the Nilsson model is correct explanation of ground state spins and

parities of a large number of nuclei, as well its ability to be expanded into a model for rotation
of deformed odd-mass nuclei
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FIG. 3. Nilsson diagram in the v (sd-1f7/,-2p3/,) configura-
tion space calculated using universal Woods-Saxon potential
[26,27]. (a), (b) Odd-neutron occupation in the ground states
of 3*Mg and 3'Mg, respectively.

http://www.sciencedaily.com/releases/2011/02/110202143800.htm
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