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Today s lecture

e Glover McFarlane loop shaping
— Robustifying controller "around” nominal design
— A design example

e Simplification of control laws
— Balanced truncation

Course book chapters 10.5 and 3.6
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Robustification of control laws

Three-step design:

1. Perform initial (e.g. lead-lag)
design focusing on performance

2. A second step augments controller
to create a robust design

3. Actual controller combines initial
design and robustifying controller.
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A robust stabilization problem

Write shaped plant Gs(s) = Wa(s)G(s)Wi(s) as
G(s) = M(s) "t N(s)
Find a controller that stabilizes
Gs(s) = (M(s) + Anr(s)) " (N(s) + An(s))

for all uncertainties satisfying

[AM(s) ANn(s)[[oc < €

General perturbation
— could imply additional unstable poles and NMP zeros
— Tend to make limited changes to loop gain around cross-over
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Co-prime factorization

Fact: Any transfer matrix can be co-prime factorized
G(s) = M(s)"*N(s)

where the transfer matrices M and N are stable and co-prime.
The coprime factorization is not unique.

A coprime factorization is normalized if N, M satisfy

M(S)M(=s)' + N(s)N(=s)!' =1

Normalized coprime factorizations are unique
(up to a multiplication with a unitary matrix)
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Co-prime factorization cont d

Example: The system

—1 2
sy = EDE+)
(s —3)(s+4)
has a coprime factorization given by
s—3 s—1
M — N p—
(9)=""15 N =

but it is not normalized. Another factorization is

=)y =D+
82—|—]€18—|—]€2’ _82—|—]€18—|—]€2

M(s) =

This one is normalized for the appropriate values of k,, k,
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Robust stabilization: solution

Consider a state-space representation of the shaped plant
r = Ax + Bu, y=~0C«x

1. Solve the Riccati equations
AZ +zAT —zc'cz+ BB =0
ATX + XA - XBBTX +CTCc =0

2. Let \,,be the maximum eigenvalue of XZ, a« > 1 and introduce
1
y=a(l+1x)"?, R=1-—{+ZX)
Y

L=B'X, K=R1'zC"

3. Then, the following controller stabilizes all plants with e <~

d
££=A:E—I—Bu—|—K(y—C’:E), u= —LZI
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A link to LQG

Note that the LQG-optimal controller for the criterion

/t T Oy + ult)Tu(t) di

=0
with v1 acting on the input and Ry =1, Re =1, Rio =0 is

d
u(t) = —Li(t), %iz(t) = AZ(t) + Bu(t) + K(y(t) — Cz(t))
where
L =DBTS ATS + 84— SBBTS +CTC =0
K =R t'pPCT AP + PAT — PCTCP+BTB =0

Same as Glover-McFarlane, apart from the R-matrix.
- when a —+ o0, R — I and the two coincide.
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Example

The DC motor

G(s) — 20

s(s+1)
has state-space representation

jzzlg _()1]at—l—[20()]u, y=[1 0|z

The Riccati equations have solutions

|

0.32 0.05 ,_[54 146
0.05 0.15]° — |14.6 93.5

And XZ has eigenvalues 4.32 and 0.12.
Letting a =1, we find y =254, L=[1 027, K = [27 102

EL2520 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se



Example

Robustifying lead-lag controller from Lecture 4

_  6.702s*+50.47s3 + 95.1552 + 51.525 + 2.134
Y7 s5412.935% +62.1653 + 143.252 + 80.13s + 3.655

v=2.0;

Bode Diagram

~__ beforers @ = iiiiio

S afterrs oo
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Example: effect on S
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before RS after RS
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Example: a quick lead-lag design

Aim: controller with good disturbance rejection, cross-over around 10 rad/s.

|
G, 200 1
G =
I 10s + 1(0.05s + 1)2
G ——O——z 100

Gy

T 10s+1

F, |

Since z=(1+GF,)'G,4, we should aim for F ~ G1Gg.

Crude design: Fy(s) = G_l(O)Gd(O)S e

, tune a to get desired cross-over
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Loop gains for rough design
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Low frequency gain, cross over ok, but poor phase margins.
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Glover-McFarlane

Rather than tweaking the lead-lag, we simply apply Glover-McFarlane
— optimization returns v = 2.33, and total controller order 5 (why?)
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Much improved stability margins!
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Disturbance responses

Response in z to step in d for nominal and robustified lead-lag
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N

Glover-McFarlane — MIMO recipe

. Rearrange control inputs so that G close to diagonal (via RGA)
. Choose W, to be a constant scaling matrix
. Choose W,(s) to be a diagonal matrix and adjust the

elements so that the singular values get desired shape

w<wps: 7(S(w)) < Wgl(iw) = a(L) > We(iw)
w>wprp: F(T(>w)) < Wit(iw) = (L) < Wit(iw)

(cf. loop shaping lecture)
Use decoupling only if necessary

. Perform robust stabilization. If v, > 4, go back and modify W,(s)
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Today s lecture

e Glover McFarlane loop shaping

— Robustifying controller "around” nominal design
e A design example
e Simplification of control laws
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Digital implementation

Controller “on paper”... ...and as real implementation

Y

w
> u l Digital u
r > F —( )} > G - z z
’ A/ : to Analog G
Y \
n C[F<—n
r Control | Analog |
-F. < Algorithm to Digital
y

h

Y

Two key steps:
e Simplification: reduce number of controller states
e Discretization: continuous-time - discrete-time control law (see book!)
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Controller simplification

LQG, H__ and Glover-McFarlane designs give high-order controllers

Often interesting to reduce order (number of states) of controller
e Easier implementation
e Smaller computational delay

but need to ensure that simplified controller is “similar” to original design
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State-space realizations

Linear system

= Az + Bu
y=Cz+ Du

Can be represented in many ways (observable canonical form,
controllable canonical form, ...) via change of variables

(=Tx
Gives
((t)=Ti=TAx+TBu=TAT ¢+ TBu
y=CT '+ Du

Balanced realizations: allow to quantify the relative importance of each
state in describing the input-output behavior of the system
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The Controllability Gramian

Measures how states are influenced by impulse input
u(t) = 6(t), z(0) = 0= z(t) = e*'B
oo oo T
Sy :/ r(t)x! dt :/ e "'BBTet tdt
0 0

Note: matrix exponential

1 1
eM:I+M+§M2+§M3+...
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Gramian under change-of-coordinates

Express the Gramian in new variables:
u(t) = 6(t), C(0)=Tz(0)=0=((t) =TT B

Exploiting the properties of the matrix exponential,

_ +2
eTAT ™t — 1 4 T AT + ETAT_lTAT_l 4. _ TeAtT—1
So

S = / C)CT(t) dt = / eTAT trBBTTTTAT 't gy —
0 0

=1TS5,T

Fact: Can pick T so that the Gramian is diagonal
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The Observability Gramian

Measures how different states contribute to output energy
u(t) =0, 2(0) = zo = y(t) = Ceag
The observability gramian
/ y(t) y(t) dt = xf [/ e 1 CT Cet dt| 2o = r3 O,x0
0 0
Change of coordinates gives
OC = T_TOmT_l

Fact: can pick T so that both observability and controllability
gramians for new variables are equal and diagonal.
OC — SC =) = diag(al, .. .,O'n)
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Balanced truncation

Idea: states with small Hankel singular values (o;) have small
influence on input-output behaviour, could be eliminated

Partition transformed state-vector into one part with large o; s (to keep)
and one part with small ;s (to eliminate).

¢ A Al |G B1
o)=L an) e+ ()

y=[C1 Cs] [g] + Du

Balanced truncation: remove all parts associated with (o.
Balanced residualization: set(2(¢) = 0, and eliminate (5 -components.
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Balanced truncation error bounds

Fact: Let G" be the reduced system, obtained by keeping m
states and eliminating the n-m remaining. Then

Om+1 S HG_ GTHOO S 2 Z oF)

1=m-+1

Learn more in our graduate course “Introduction to model reduction”
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Balanced truncation

1. Compute balanced realization, including T and Gramian X

2. Plot Hankel singular values (diagonal elements of ). Eliminate
states with very small values (compare error bound)

Example. Robustified lead-lag for DC-motor is of order eight.
Its Hankel singular values are

[oo 1.0122 0.5296 0.1479 0.0029 0.0000 0.0000 0.0000}

so a fifth order controller seems (and is) appropriate!
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Summary

e Glover McFarlane loop shaping

— Robustifying controller "around” nominal design
e A design example
e Simplification of control laws

— Balanced truncation
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