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Today’ s lecture

e Glover McFarlane loop shaping
- Robustifying controller "around” nominal design
- A design example

e Simplification of control laws
- Balanced truncation

Course book chapters 10.5 and 3.6

EL2520 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se

Robustification of control laws

Three-step design:
1. Perform initial (e.g. lead-lag)

design focusing on performance —>| W, |—'| G |—-| W, l—'

2. A second step augments controller _’| W |_'| ° |_'| W2 |__’
to create a robust design
Ker
3. Actual controller combines initial G

design and robustifying controller.
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A robust stabilization problem

Write shaped plant G4(s) = Wa(s)G(s)W1(s) as
Gs(s) = M(s)"'N(s)
Find a controller that stabilizes
Gs(s) = (M(s) + An(s))TH(N(s) + An(s))

for all uncertainties satisfying

1AM(s) An(s)]lo <€

General perturbation
- could imply additional unstable poles and NMP zeros
- Tend to make limited changes to loop gain around cross-over
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Co-prime factorization

Fact: Any transfer matrix can be co-prime factorized
G(s) = M(s)"IN(s)

where the transfer matrices M and N are stable and co-prime.
The coprime factorization is not unique.

A coprime factorization is normalized if N, M satisfy
M@s)M(=8)T + N(s)N(=s)T =1

Normalized coprime factorizations are unique
(up to a multiplication with a unitary matrix)
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Co-prime factorization cont’ d

Example: The system

(s=1)(s+2)
G(s)=+—F—"F7——=
)= 3619
has a coprime factorization given by
s—3 s—1
M(s)="——., N(s)=
() =25, N ="

but it is not normalized. Another factorization is
-3 4 -1 2
32+k15—|—k2 82+k18+k2

This one is normalized for the appropriate values of k;, k,
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Robust stabilization: solution
Consider a state-space representation of the shaped plant
= Az + Bu, y=Czx

1. Solve the Riccati equations
AZ 4+ ZAT —zcTCcZ 4+ BBT =0
ATX + XA—XBB"X+CTC =0

2. Let )\, be the maximum eigenvalue of XZ,« > 1and introduce

1
y=a(l+1)"?, R=1-—SI+2X)
ol
L=BT'X, K=R1zc"
3. Then, the following controller stabilizes all plants with ¢ < v~
d
EE=A£+Bu+K(y—C£), u=—LZ%
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1

A link to LQG

Note that the LQG-optimal controller for the criterion
[ w050 +uo) ute) as
t=0

with vy acting on the input and R, =1, Ry =1, R12 =0 is

u(t) = —La(t), %f(t) = Ai(t) + Bu(t) + K(y(t) — C%(t))

where
L=BTS ATS +SA—-SBBTS+CTC =0
K =R tpCt AP+ PAT — pcTcP+ BB =0

Same as Glover-McFarlane, apart from the R-matrix.
- when a — oo, R — I and the two coincide.
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Example

The DC motor

sy = 20

s(s+1)

has state-space representation

. 0 0 20

T = [1 _1:|m+ {O]u, y= [1 O]z
The Riccati equations have solutions

= {0.32 0.05} 7= [5.4 14.6}

0.05 0.15 146 935

And XZ has eigenvalues 4.32 and 0.12.
Letting e =1, we find y =254, L=[1 027], K = [27 102]
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Example

Robustifying lead-lag controller from Lecture 4

—o0: P 6.702s% 4 50.475% + 95.15s2 + 51.525 + 2.134
TEET YT 5 1 12.935% + 62.1653 + 143.252 + 80.13s + 3.655

Bode Diagram

before rs

2180 " T 2
10 10 10 10 10
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Example: effect on S

before RS atter s
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Example: effecton T

before RS afterRs
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Example: a quick

lead-lag design

Aim: controller with good disturbance rejection, cross-over around 10 rad/s.

d

G
L

Since z=(1+GF,)'Gy, we should aim for

Crude design: F,(s) = G’l(O)Gd(O)HTa
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G 200 1
T 10s+1(0.05s 4 1)2
Gy= 100
10s+ 1
F~ G1Gy.

, tune a to get desired cross-over
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Loop gains for rough design
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Low frequency gain, cross over ok, but poor phase margins.
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Glover-Mc

Farlane

Rather than tweaking the lead-lag, we simply apply Glover-McFarlane

- optimization returns v = 2.33,
100

and total controller order 5 (why?)
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Much improved stability margins!
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Disturbance responses

Response in z to step in d for nominal and robustified lead-lag

5 2 25 3
Time (sec)
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Glover-McFarlane — MIMO recipe

1. Rearrange control inputs so that G close to diagonal (via RGA)
2. Choose W, to be a constant scaling matrix
3. Choose W,(s) to be a diagonal matrix and adjust the

elements so that the singular values get desired shape

w<wps: 7(S(iw)) < Wgl(iw) = a(L) > Wg(iw)
w>wpr: (T(w)) < Wrl(iw) = (L) < Wpl(iw)

(cf. loop shaping lecture)
Use decoupling only if necessary

4. Perform robust stabilization. If vm, >4, go back and modify W,(s)
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Today’ s lecture

e Glover McFarlane loop shaping

- Robustifying controller “around” nominal design
e A design example
e Simplification of control laws
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Controller “on paper”...

Digital implementation

...and as real implementation

Digital | u
toAnalog [ 7] € Z
i -~
Control Analog

<] ¢
Algorithm to Digital

"""Oc'fiél-k )

[Two key steps:

Simplification: reduce number of controller states
Discretization: continuous-time - discrete-time control law (see book!)
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Controller simplification

LQG, H_ and Glover-McFarlane designs give high-order controllers

Often interesting to reduce order (number of states) of controller
e Easier implementation
e Smaller computational delay

but need to ensure that simplified controller is “similar” to original design
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State-space realizations

Linear system
= Ax + Bu
y=Cx+ Du

Can be represented in many ways (observable canonical form,
controllable canonical form, ...) via change of variables

=Tz
Gives
((t) =Ti =TAz +TBu=TAT ¢ + TBu
y=CT Y+ Du

Balanced realizations: allow to quantify the relative importance of each
state in describing the input-output behavior of the system
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The Controllability Gramian

Measures how states are influenced by impulse input

u(t) = 6(t), 2(0) = 0= a(t) =B
oo oo T
Sy :/ z(t)xT dt :/ eMBBTeM tat
0 0
Note: matrix exponential

1 1
eM=I+M+§M2+§M3+...
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Gramian under change-of-coordinates

Express the Gramian in new variables:
u(t) = 6(t), C(0) = Tx(0) = 0= ((t) = ™7 B

Exploiting the properties of the matrix exponential,

_ +2
TAT ' [ 4T AT 4 GTAT ' TAT™ 4. =TeMT!
So

S = / C()CT (b dt = / TAT T BBTTTTAT gt =
0 0

=T5,T

Fact: Can pick T so that the Gramian is diagonal
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The Observability Gramian

Measures how different states contribute to output energy
u(t) =0, z(0) = zo = y(t) = Cettay

The observability gramian
/ y(t)Ty(t) dt = 2F [/ AT CeM dt | wg = 2 Opg
0 0

Change of coordinates gives

Oc=1""0,T77"
Fact: can pick T so that both observability and controllability
gramians for new variables are equal and diagonal.

O¢ =S¢ =¥ = diag(o1,...,04)
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Balanced truncation

Idea: states with small Hankel singular values (o;) have small
influence on input-output behaviour, could be eliminated

Partition transformed state-vector into one part with large ;s (to keep)
and one part with small 0;’s (to eliminate).

G [An AR G By
HE BRI

y= [Cl C’z] Eﬂ + Du

Balanced truncation: remove all parts associated with Co.
Balanced residualization: set Cz(t) =0, and eliminate (-components.
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Balanced truncation error bounds

Fact: Let G" be the reduced system, obtained by keeping m
states and eliminating the n-m remaining. Then

n
Om+1 < ”G_Gr”oo <2 Z g5

=m+1

Learn more in our graduate course "Introduction to model reduction”
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Balanced truncation

1. Compute balanced realization, including T and Gramian X

2. Plot Hankel singular values (diagonal elements of ¥ ). Eliminate
states with very small values (compare error bound)

Example. Robustified lead-lag for DC-motor is of order eight.
Its Hankel singular values are

[oo 1.0122 0.5296 0.1479 0.0029 0.0000 0.0000 0.0000}

so a fifth order controller seems (and is) appropriate!
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Summary

e Glover McFarlane loop shaping

- Robustifying controller “around” nominal design
e A design example
e Simplification of control laws

- Balanced truncation
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