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jj coupling scheme

We have also seen that one can choose another coupling scheme, in which the two
particles carry total angular momentum J = 3, + 3, with projection M = m, +m,,
such that |j, — j,| £ J < j, + j, and —J < M < J. This is called coupled-scheme.
In this scheme the two-particle wave function reads,

U,(pg, IM;7y7y) = N [R,,(rl)Rq(rz) [[Yz,,(fl)xl/z] P AGYS jq] I

= Ryr)Ry(r) | [¥;, ()], WP, | | )
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The quantum numbers associated to this wave function are {n,n,l,l,j,j,J M }.
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(1214pdg; IM)a = N ((1205; IM) — (=197 (12]5gip; IM)) - (4.9)

If j, = j,, then (=1)#"% = —1 and
(12|55; M), = N (1 + (-=1)”)(12|53; JM) (4.10) .

J must be even and N = 1/2 (since (j; Mlj;f; JM) = 1). Otherwise N = 1//2.

As a consequence of the generalized Pauli principle a symmetric space-spin wave
function must be combined with an antisymmetric isospin function or.vice versa.
In both cases the complete wave function is antisymmetric under the mterchange of
all coordinates of the two particles. This leads to the general statement that one ob-
tains allowed two-particle states 1(4Y* )7 only for

J+ T=odd
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- la®b)p = —= (|a1 ® by) + |a; ® by))  bosons; symmetric !

a®@br = —(la; ® by) — |ay ®by))  fermions; anti — symmetric
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<-Convenient to describe processes in which particles are created and annihilated;
<>Convenient to describe interactions.
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Examples of one and two-particle

operators
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One-body operator in second quantization

One-body operators depend upon one radial coordinate r only. In second quan-
tization a one-body operator M can be written as,

M = (p|M|g)cc,

pq

where p and ¢ run over all single-particle states (particle- as well as hole-states).



Occupation Number Formalism




To proof that this is correct we will evaluate the matrix element of M between two
single-particle states, i. e. (A+1)-states of the form |i) = c||0) for which n; = 0.
The final result of this calculation sould be that we get the matrix element itself
again.

We then evaluate

(i M]5) =(0le:Mc}|0) = Y (plM]q) (Oleicieqe|0)

Pq

= (P M|g)(0] cich coct + cict e, [0)
Pq

A (1)
=Y (p|M]|q) [(1 = 1:)0ip(1 = 15)0; + (1 — n“')‘sijn”dp"]

=(1 = n:)(1 = ny) (3| M5) + (1 = n:)8; Y my(p| M|p)

and we see that with n; = n; = 0 we get the matrix element we needed, i. e.
(i|M|5), but that there is also another contribution which appears only when 7 = j.
This corresponds to the sum of the mean values of M over all hole states. It is
the interaction of the particles in the A-nucleon core among themselves, leaving the
particle in the (A+1)-nucleus untouched. This term is called ” core polarization”.



The antisymmetrized two-particle states are,

i) = clc}|0) = a(ij] = (0l(cle})" = (Oleje: (7.41)
and the matrix element is,
o(i5| Mkl)o =Y " (aB|M|y6)(0lc;c: : clchese, : clcf|0) (7.42)
afvyé

Since the mean value of operators in normal form vanishes, the terms that survive contain
only contractions. They are,

CiCi el c}),c Cy chf [c,c}; cjc:g — cz-c:',’, cch ] [c,ycL 0503 — c7c2‘ ctsc;fc ] (7.43)
which give,
o(id| M|kl)o =Y (| M |y8) [(1 — n;)0ia(1 —n;)dj8 — (1 —ni)dis(1 — "j)5ja]
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X [(1 — nk)5k7(1 — Tl.[)(sw — (1 w— nk)éka(l — n[)éh]
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(7.44)
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The matrix element antisymmetrized to the right only becomes,
(ji| M|kl), = (il M [|kl) — |Ik)] = (35| M [|k) — |kD)] = — (5] M|kl),
and Eq. (3) becomes,

a(zJ|M|kl>a (1 —n:)(1 —n)(1 —n)(1 — i), (3.7|M|kl>a

The Hamiltonian becomes,

H= z(alTlﬁ)c'c,g+ Z(aﬁ[VhJ)c'cscac..
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Even-even nuclei have J = 0 ground states. Goppert-Mayer (1950)
showed that the J = 0 coupling of two nucleons in a single j-shell
is energetically favored for a short-ranged, attractive nucleon-nucleon
force. This is due to the large overlap of single-particle orbitals with
+m angular momentum projection.

1
|J=0,M =0) = 7 (4,4, m, —m|00)al al |-).



Simple interpretation:

S

| |

I=0 pair I # 0 pair

The spatial overlap is the largest for the /=0 pair.

“Pairing Correlation”
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**Pairing interaction conserves seniority

-2(2j+1)g,, J=0
0, J=0

<j2‘]MJ “,}pairing j2]MJ> = {




(i) Odd-even effect: mass of an odd-even nucleus is larger than the mean of
adjacent two even-even nuclear masses — shows up in S and S for all
nuclei.
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Figure 5.3: Distribution of nuclei with respect to deformation indicator R,,. Taken from
GF Bertsch, arXiv:1203.5529.

(v) Moment of inertia: extracted from level spacing in rotational bands
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deviates about a factor of two from the rigid rotor values.
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9.1 Pairing gaps: odd-even binding energy differ-
ences

The basic hallmarks of pair condensates are the odd-even staggering in binding energies,
the gap in the excitation spectrum of even systems, and the compressed quasiparticle
spectrum in odd systems. To examine odd-even staggering, it is convenient to define the
even and odd neutron pairing gaps with the convention

ABL(N) = %(EI,(Z,N +1) = 2B,(Z,N) + Ey(Z,N — 1)), for Nodd,  (9.1)

Af:a%(N) = —%(Eb(Z,N +1) — 2E,(Z,N) + Ey(Z,N — 1)), for N even. (9.2)

where N and Z are the neutron and proton numbers and Ej is the binding energy of the
nucleus. The proton pairing gaps are defined in a similar way. With the above definition,
the gaps are positive for normal pairing.
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Figure 9.1: Upper panels: odd-N pairing gaps. Lower panels: even-N pairing gaps.
Typically, the odd-N nuclei are less bound than the average of their even-N neighbors by
about 1 MeV. However, one sees that there can be about a factor of two scatter around

the average value at a given N.
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Figure 9.2: Upper panels: odd-Z pairing gaps. Lower panels: even-Z pairing gaps.



The seniority model
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The seniority model provides a simple model for pairing phenomena.
System: N fermions in a single j-shell.

Hamiltonian:
H=-G ¥ ala a_ .y
m,m'>0
- —GS+S_
where

S,=Yalal, and S_= (S’+)f.

m
m>0



Rewrite Hamiltonian as

~

H=-G(S-5-5+5)

in terms of total quasi-spin

and total z-component of quasi spin

So= ¥ 8" = l(N - Q).
m>0 2
Here, 2 = j+ 1/2 is the maximal number of pairs for a single j-shell.

The eigenvalues S of total quasi-spin are

1 1 1
=—-IN-Qf,...,=Q—1, Q.
S 2| eees 2 "2
Thus, the energies of the seniority model are
1 1

E(S,N)=—-G|S(S+1)— Z(N - Q)2+§(N - Q).



Alternatively, one uses the seniority quantum number s = {2 — 25

E(s,N)=—§[ 2 95(Q+1) +2N(Q +1) — N7

Note:

e s counts number of unpaired nucleons.

e ground state has minimal seniority s = 0 (or maximal quasi spin

S =Q/2)
e for fixed IV, excitations depend only on seniority quantum number

e E(N,s=2)— E(N,s=0)=GQ

Two-particle spectrum of pure pairing force: J = 0 ground state is
separated from degenerate J = 2,4,6,...,25 — 1 levels.



emi-magic nuclei T ——
_—

A

V=a+bt1-t2+GP0,

Binding energies of ground states in ;" . 1 1
configuration E(] ) =Cn+—n(n-Da+|—n /3
2 2
MeV I I I I I I [ I I I I [ I I [ I |

MeV
12

12

10

4
1 ] ] 1 ] 1 ] |
A=4l 42 43 44 45 46 47 48 49 5 Z= 2l 22 23 24 25 26 27 28 29

Neutron separation energies from Ca Proton separation energies from N=28
isotopes isotones

| lgel | |

10

8

I Y

g e e s e

(S)

|. Talmi, Simple models of complex nuclei (Harwood, Chur, Switzerland, 1993)
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USp(10) irreps in the j=9/2 shell
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D. J. Rowe, M. J. Carvalho, and J. Repka, Rev. Mod. Phys. 84, 712 (2012).
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Energy levels of 0y, , protons in A=30 isotones ‘.
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Gonservation of seniority

A 6 A~V e — \
j=11/2:1020v, — 3519y, — 637v, +4403v, —

j=13/2:1615v, — 4275v, —1456v, + 3196v, — 5145y, — 4225y, =0

j=15/2 1330V, — 2835V, — 1807V, + 612Vj
+3150V;o + 3175V), — 3625V, = 0,

and

77805V, — 169470V, — 85527V — 4743 V3
+222768V,o + 168025V, — 208858V 4 = 0.
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