The BCS Model

This presentation closely follows parts of chapter 6 in
Ring & Schuck “The nuclear many-body problem”.
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Introduction to pairing

* In solid-state physics: A pair of electrons in metal with
opposite spins and momentums close to Fermi surface
interact with each other and make a pair. They have
energy lower than Fermi surface which indicates that
they are bound.

* BCS: Bardeen-Cooper-Schrieffer: microscopic model
describes superconductivity (Nobel prize 1972)

* In nuclear physics: A pair of nucleons with total spin I,=0
(m.,-m.). This is a short range (large spatial overlap)
nucleon-nucleons interaction.



Experimental observations

* Experimental observations that require short range
interaction in the model :

— The energy gap
— The level density

* Higher level density in low-lying excitation energies than found
experimental values

— Odd-even mass effect My > M, +M,.,
’ 2

— Moment of inertia

* Lowering of the moment of inertia compared to rigid body value

— The low-lying 2*in even nuclei

* Vibrate with low frequency :quadrupole oscillations



The energy gap due to pairing
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Figure 6.1. [Excitation spectra of the ,,Sn isotopes.




Introduction to pairing

* To explain these phenomena we need to take

into the account short range nucleon-nucleon
interaction.

* The most effective pairing coupling is =0

* No exact solution, it is an approximation by
variational principle



Many-body system

A many-body system is described by following Hamiltonian in
second-quantization form (particle-number representation):

1
H = E fa, +— E ra;
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First term: one body operator in second-quantization
Second term: two body operator in second-quantization
V=matrix elements of the nucleon-nucleon interaction

K. are single-particle states and run over all available stats
Sums do not run on particles but on the infinite set of one-

body states



BCS model- BCS state

In BCS model we speculate that ground state should be built up from
pair creation operators a*,a*

This is the approximated solution: ‘BCS> = H(uk + Vkalja];) -)
Trial wave function for even-even k>0
) N
nuclei \HF> e _>
a=1

K are the single particle levels
V.2 and U %represent the probability that a certain pair state{k,_k}
Is or is not occupied.

k) = |nljm),

An example is a spherical basis Conjugate state : ‘l€> = ‘Fll] - m> m >0



BCS model- BCS state

Example: For Hartree-Fock states we would have:
v,=1 and u,=0 below Fermi level

v,=0 and u,=1 above Fermi level
However in BCS model states over Fermi level can be occupied

(energetically favored)

u, and v, are variational parameters. We determine them in a way that

the corresponding state has minimum energy.
Normalization of BCS state:

(BCS|BCS) = <0‘1—[ u, + vkalgaknuk, +V,a,a;

We require:




BCS model

Great disadvantage: Particle number is not conserved in BCS! BCS state is
the superposition of different number of pairs.
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This is fit to the interpretation of v,

Particle number uncertainty  (AN)” = (BCS|N?BCS)- N* = 42 v,

k>0



BCS model

Hence, we need to restrict the variation by a supplementary condition.
We define a parameter A in the Hamiltonian to keep the expectation value
of particle number to the desired particle number.

We add a term —AN to Hamiltonian: IA{’ — IA{ _ )\']A\]

We call this Lagrange multiplier A as Fermi energy or chemical energy,
since it describes the energy variation in the system by changing the
particle number.



BCS model-Pure pairing force

Hamiltonian has a the form:

Eekakak+ E<k k‘ ‘k k>akak a.a,

k>0 kk'>0
Single-particle part Vi Residual interaction acting only on pairs of
nucleons

In this model we assume a constant matrix elements — G (pure pairing
force):

+
H = Eekakak —Gzaka a:.a

k>0 kk'>0



BCS model- Pure pairing force

Lets consider the Hamiltonian — W t ot
. .. . H = €Ay Ay G a; akak a
with the variational condition =0 w0

H =H-JN
(BCS|H - AN|BCS) = Bcs\z( Maja, - GE *.a_.a,|BCS)

The expectation value:
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BCS model- Pure pairing force

v, determines the BCS wave function completely, we can express u, in terms of
v, by the normalization condition

8(BCS|H'|BCS) =0,
(a L ou 3 )< -
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BCS model

0 2
. . g =¢ -A-— G-v
We get for BCS equations the following: ko Tk N
often neglected

2e U Uy + A(vf - uz‘

S

The occupation probability in non interacting and
In the interacting case (assume we know A): 0.8 L

Insert this into definition of gap we can get this

A =

Gap equation: 2 5o v/ er + A?

iterative equation. G Z A . .




Results of BCS model

* In the special case of a single j-shell: all g, _are
equals so all v,?’s are equals. From the particle-
number condition we get

<BCS\N\BCS> =2y v =N=v, = %,uk = J1- %
k>0

reorfife-d

* The gap has a parabolic dependence on the
number of particle in the shell. It is zero for
empty or filled shells. For N=Q: N=G- O

Q is the number of pairs



Thanks!



