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This presenta5on closely follows parts of chapter 6 in  
Ring & Schuck “The nuclear many‐body problem”. 
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Introduc5on to pairing 

•  In solid‐state physics: A pair of electrons in metal with 
opposite spins and momentums close to Fermi surface 
interact with each other and make a pair. They have 
energy lower than Fermi surface which indicates that 
they are bound. 

•  BCS: Bardeen‐Cooper‐Schrieffer:  microscopic model 
describes superconduc5vity (Nobel prize 1972) 

•  In nuclear physics: A pair of nucleons with total spin IZ=0 
(mi,‐mi). This is a short range (large spa5al overlap) 
nucleon‐nucleons interac5on. 



Experimental observa5ons  

•  Experimental observa5ons that require short range 
interac5on in the model : 

–  The energy gap 
–  The level density 

•  Higher level density in low‐lying excita5on energies than found 
experimental values 

–  Odd‐even mass effect 
– Moment of iner5a 

•  Lowering of the moment of iner5a compared to rigid body value  

–  The low‐lying 2+ in even nuclei 
•  Vibrate with low frequency :quadrupole oscilla5ons 
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The energy gap due to pairing 



Introduc5on to pairing 

•  To explain these phenomena we need to take 
into the account short range nucleon‐nucleon 
interac5on.  

•  The most effec5ve pairing coupling is  I=0 

•  No exact solu5on, it is an approxima5on by 
varia5onal principle 



Many‐body system 

A many‐body system is described by following Hamiltonian in 
 second‐quan5za5on form (par5cle‐number representa5on):  
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H = tk1k2ak1
+ ak2 +

1
2k1k2

∑ vk1k2k3k4
k1k2k3k4 <>0
∑ ak1

+ ak2
+ ak4 ak3

tk1k2 ≡ 1: k1 t1 1: k2 ; vk1k2k3k4 ≡ 1: k1;2 : k2 v(1,2)1: k3;2 : k4

First term: one body operator in second‐quan5za5on 
Second term: two body operator in second‐quan5za5on 
V=matrix elements of the nucleon‐nucleon interac5on 
Ki are single‐par5cle states and run over all available stats 
Sums do not run on par5cles but on the infinite set of one‐
body states 



BCS model‐ BCS state 

In BCS model we speculate that ground state should be built up from 
pair crea5on operators a+ka+‐k 

This is the approximated solu5on: 
Trial wave func5on for even‐even  
nuclei  

K are the single par5cle levels 
Vk

2  and Uk
2represent the probability that a certain pair state 

Is or is not occupied.  
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An example is a spherical basis 
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k = nljm ,

Conjugate state : k = nlj −m m > 0
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BCS model‐ BCS state 
Example: For Hartree‐Fock states we would have: 
vk=1 and uk=0 below Fermi level 
vk=0 and uk=1 above Fermi level 
However in BCS model states over Fermi level can be occupied 
(energe5cally favored) 

uk and vk are varia5onal parameters. We determine them in a way that 
the corresponding state has minimum energy. 
Normaliza5on of BCS state: 

We require: 
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BCS model 
Great disadvantage: Par5cle number is not conserved in BCS! BCS state is 
the superposi5on of different number of pairs.  

This is fit to the interpreta5on of vk 
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Par5cle number uncertainty 
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BCS model 

Hence, we need to restrict the varia5on by a supplementary condi5on. 
We define a parameter λ in the Hamiltonian to keep the expecta5on value 
of par5cle number to the desired par5cle number.  

We call this Lagrange mul5plier λ as Fermi energy or chemical energy,  
since it describes the energy varia5on in the system by changing the  
par5cle number.  

We add a term –λN to Hamiltonian: 
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BCS model‐Pure pairing force 

Single‐par5cle part   Residual interac5on ac5ng only on pairs of 
 nucleons 

In this model we assume a constant matrix elements – G (pure pairing 
 force):  € 
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Hamiltonian has a the form: 
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BCS model‐ Pure pairing force 
Lets consider the Hamiltonian  
with the varia5onal condi5on  
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 The expecta5on value:  
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BCS model‐ Pure pairing force 

vk determines the BCS wave func5on completely, we can express uk in terms of 
vk by the normaliza5on condi5on  
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BCS model 
We get for BCS equa5ons the following: 

The occupa5on probability in non interac5ng and 
In the interac5ng case (assume we know Δ): 

Insert this into defini5on of gap we can get this 
itera5ve equa5on.  

Gap equa5on: 
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Results of BCS model 

•  In the special case of a single j‐shell: all εk are 
equals so all vk2 ’s are equals. From the par5cle‐
number condi5on we get  

•  The gap has a parabolic dependence on the 
number of par5cle in the shell. It is zero for 
empty or filled shells. For N=Ω:    
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Ω  is the number of pairs 



Thanks! 


