
Chapter 9

Nuclear pairing

The possibility of pairing in atomic nuclei was first studied by Bohr, Mottelson and Pines
and by Belyaev only one year after the publication of the theory of superconductivity by
Bardeen, Cooper and Schrieer (BCS) [3]. Meanwhile, Bogoliubov developed a microscopic
theory of superfluidity and superconductivity and explored its consequences for nuclear
matter. In 1959, Migdal speculated that the interior of neutron stars might be supefluid.

9.1 Pairing gaps: odd-even binding energy differ-

ences

The basic hallmarks of pair condensates are the odd-even staggering in binding energies,
the gap in the excitation spectrum of even systems, and the compressed quasiparticle
spectrum in odd systems. To examine odd-even staggering, it is convenient to define the
even and odd neutron pairing gaps with the convention

∆
(3)
o,Z(N) =

1

2
(Eb(Z,N + 1)− 2Eb(Z,N) + Eb(Z,N − 1)), for N odd, (9.1)

∆
(3)
e,Z(N) = −1

2
(Eb(Z,N + 1)− 2Eb(Z,N) + Eb(Z,N − 1)), for N even. (9.2)

where N and Z are the neutron and proton numbers and Eb is the binding energy of the
nucleus. The proton pairing gaps are defined in a similar way. With the above definition,
the gaps are positive for normal pairing.

One can also see a systematic trend in the gap values as a function of N , namely the
gaps get smaller in heavier nuclei. I will also come back to this behaviour in the theory
discussion. Another feature of the odd-N gap systematics is the occurance of dips at
particular values of N . In fact the dips occur adjacent to the well-known magic numbers
N = 28, 50, 82 and 126. In addition there is a dip adjacent to N = 14, which corresponds
to n = 2 in the magic number sequence 1

3
(n+ 1)(n2 + 2n+ 6).

The systematics of the even-N gaps shown in the lower panel is similar with respect to
the following: average values, the fluctuations at each N , and the smooth trend downward
with increasing N . However, the magic number anomolies are now very striking spikes
that occur exactly at the magic numbers. Also, the average values in lighter nuclei appear
to be larger for the even-N gaps than for the odd-N . I will also come back to this feature
in the theory section.

The corresponding systematics of proton gaps is shown in Fig. 2. The same qualitative
features are present here as well, but the magic number effects are less pronounced. I do
not know of any explanation of this difference between neutron and proton pairing.

The table below gives some fits to the pairing gap systematics. Shown are the fitted
values of the gap parameterizations and the rms errors of the fits, in units of MeV. The
simplest model is a constant gap, ∆(3) = C, shown on the line labeled C. One sees that
a typical gap size is 1 MeV, and typical fluctuations about that are smaller by a factor
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Figure 9.1: Upper panels: odd-N pairing gaps. Lower panels: even-N pairing gaps.
Typically, the odd-N nuclei are less bound than the average of their even-N neighbors by
about 1 MeV. However, one sees that there can be about a factor of two scatter around
the average value at a given N .
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Figure 9.2: Upper panels: odd-Z pairing gaps. Lower panels: even-Z pairing gaps.
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∆(3) protons protons neutrons neutrons
o/e odd even odd even

data set 418 407 443 442
C 0.96± 0.28 1.64± 0.46 1.04± 0.31 1.32± 0.42

c/A1/2 12/A1/2 ± 0.25 12/A1/2 ± 0.28
c1/A+ c2 24/A+ 0.82± 0.27 41/A+ 0.94± 0.31

of 3. Beyond that, there are differences between protons and neutrons and between the
odd and the even gaps. The even gaps are somewhat larger and have somewhat larger
fluctuations, which is to be expected in view of the shell effects exhibited in Fig. 1. The
odd proton gap is smaller than the odd neutron gaps which might be expected from the
repulsive Coulomb contribution to the pairing interaction. There is also a mean-field
contribution of the Coulomb that has opposite signs for even and odd protons. Indeed
the even proton gaps are actually larger than their neutron counterparts.

For the next lines in the table, I come back to the broad trend in Fig. 1, a systematic
decrease in gaps with increasing mass number. It is conventional to describe this with
a fractional power dependence, ∆(3) = c/A1/2. This decreases the rms errors somewhat,
but there is no theoretical basis for the fractional power of A. In the last line I show the
result of a two-parameter fit to the functional form ∆(3) = c1/A+c2. This functional form
is more justified by theoretical considerations, as will be discussed in the theory section
below.

Basic spectral properties

The other strong signatures of pairing are in excitation spectra. In the simple BCS theory,
the lowest excited states in an even system requires breaking two pairs giving an excitation
energy

Eex ≈ 2∆BCS. (9.3)

On the other hand, in the odd particle number system, the quasiparticle level density
diverges at the Fermi energy. This contrasting behavior is very obvious in the nuclear
spectrum. As an example, the isotope chain at proton magic number Z = 50 (the element
Sn) has been a favorite for exhibiting and studying pairing effects. Figure 9.3 shows the
low-lying spectra of odd-N members of the chain. One can see that there are several
levels within one MeV of the ground state. The spins and parities of the levels (not
shown) correspond very well with the single-particle orbitals near the neutron Fermi level.
However, the spectrum is very compressed with respect to orbital energies calculated with
a shell model potential well. In contrast, the even members of the chain have no excited
states at all within the excitation energy range displayed in the Figure.

Let us look now look at the global systematics for excitations in the even-even nuclei.
The estimate in Eq. (9.3) is too naive because there can be collective excitations within
the gap, as is well-known from early days of BCS theory [?]. For example, there are
longitudinal sound modes in an uncharged superfluid fermionic liquid. These have a
phonon spectrum allowing frequencies within the quasiparticle gap. One might expect
that such modes would be absent in finite systems when the size of the system is small
compared to the coherence length of the pairing field. In fact the situation for nuclear
excitations is much more complicated. However, just for presenting the systematics, we
use the right-hand side of Eq. (9.3) to scale the excitation energies, taking the ratio
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Figure 9.3: Energy levels of odd-N Sn isotopes
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Figure 9.4: Energy gap in the excitation spectrum of even-even nuclei, scaled to 2∆(3).
See text for details.

E2/2∆, where E2 is the excitation energy and ∆ is the smaller of ∆
(3)
eZ and ∆

(3)
eN .

The scaled excitation energies of the first excited states in even-even are shown in Fig.
9.4. With only a few exceptions these states have angular momentum and parity quantum
numbers Jπ = 2+ and can be considered to be collective quadrupolar excitations of the
ground state. All of the ratios are smaller than one, with most in the range 0.1-0.5. The
very small excitations in the mass ranges A = 160−180 and 220−250 correpond to nuclei
with static quadrupole deformations.

The physics underlying these excitations is the softness of a typical nucleus with respect
to quadrupolar deformations. On a qualitative level, the collectivity is similar to the
phonon collectivity in the infinite Fermi gas. A quantitative measure of the collectivity is
the sum-rule fraction contained in the excitation, using the energy-weighted sum rule for
some density operator. For the phonon case, the sum rule fraction approaches 100% when
the frequency of the collective mode is small compared to the gap [?]. The collectivity
in the nuclear quadrupole excitations is quite different. The sum rule fraction carried by
the lowest 2+ excitation is more or less constant over the entire range of nuclear masses,
but it only about 10% of the total (for isoscalar quadrupole transitions.

Turning to odd-A spectrao, some systematics related to the level density are shown in
Fig. ??. The average excitation energy of the first excited state is plotted for each odd
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mass number A, averaging over even values of Z. For comparison, the solid line is the
expected spacing in the Fermi gas formula for the single-particle level density,

dns
dE

= V
mkF
2π2

≈ A

100
MeV. (9.4)

The subscript s on Ns indicates that only one spin projection is counted, and kF is the
Fermi momentum. V is the volume of the nucleus, which is (roughly) proportional to the
number of nucleons A. One can see from the Figure that a typical spacing is a factor of
10 smaller than that given by the Fermi gas formula. Clearly interaction effects are at
work to increase the level density near the ground state.

Mean-field theory has made enormous strides in nuclear physics; the self-consistent
mean field theory based on the Hartree-Fock-Bogoliubov approximation and using semi-
phenomenological energy functionals is now the tool of choice for the global description
of nuclear structure. It is not my intention to review this subject since it is well covered
elsewhere in this volume.

Neverless, there are number of aspects of nuclear pairing that can be can rather easily
understood using only the more qualitative aspects of pairing theory. Besides the pairing
gaps and the effect on level densities, there are important consequences for two-nucleon
transfer reactions and on dynamic properties such as radioactive decay modes. This
section presents an overview of some of these aspects.

Mean-field considerations

BCS pairing is not the only source of odd-even staggering in binding energies. As is
well-known in the physics of finite electronic systems, the Kramers degeneracy of single-
particle orbitals gives rise to an odd-even effect. In a fixed potential well, the pair-wise
filling of the orbitals makes to a contribution to ∆

(3)
e that varies with system size as the

single particle level spacing, ∆
(3)
e ∼ A−1. In addition, the diagonal matrix elements of

the two-body interaction in the Hartree-Fock orbitals also contribute to the odd-even
staggering, both in ∆

(3)
o and in ∆

(3)
e [?]. In the nuclear context, the volume occupied by

the orbitals is (approximately) proportional to the mass number A, so this interaction
contribution also varies as A−1.

The last line of the Table shows a fit to the neutron pairing gaps including an A−1

term in the parameterization. It does almost as well as the phenomenological A1/2 form.
Note also that the coefficient of A−1 is larger for the even gaps than the odd ones. This
is just what is to be expected from the contribution of the two-fold degenerate orbital
energies.

Another mean field effect can be interpreted by Eq. (5,6) below, exhibiting the depen-
dence of the pairing gap on the single-particle level densities. In general, level densities
at the Fermi level are higher in spherical nuclei than in deformed nuclei because of the
spherical shell degeneracy. Thus, one expects larger pairing gaps in spherical nuclei than
in deformed. Even more dramatic is the shell quenching seen in the odd-N gaps in Fig.
1. The Fermi level in the spherical nuclei showing quenched gaps turns out to be in the
p1/2 or s1/2 shell, which have low degeneracy. Thus, the occurance of the shell quenching
is only partly due to the adjacent magic number.
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Strength of the pairing interaction

The BCS theory gives the following formula for the gap parameter [?],

∆BCS = (Emax − Emin) exp(−1/g) (9.5)

where

g = −Gdns
dE

. (9.6)

Here the prefactor of the exponential is the window of single-particle energies for orbitals
participating in the pairing and G is the strength of the pairing interaction. Eq. (6) defines
the dimensionless quantity g that characterizes the strength of the pairing condensate.

In present-day theory, the qualitative formula Eq. (9.5) is superceded by detailed
calculations of the orbitals and the pairing interaction, based on Hartree-Fock (HF) mean-
field theory or Hartree-Fock-Bogoliubov (HFB) theory. This permits the treatment of
the interaction by a two-nucleon potential and replacing of a generic level density by
computed single-particle level spectra. However, there are significant uncertainties about
both these aspects, and the pairing interaction is often parameterized in a simple way. As
an example, I show results of a global study of pairing systematics that used the Skyrme
energy functional for the mean field and a contact interaction for the pairing [?]. The odd-
N pairing gaps were calculated for two strengths of the pairing interaction, giving average
gaps shown as the filled circles in Fig. ??. In the HFB calculations, the energy window
was taken to be Emax − Emin = 100 MeV. Using this value in Eq. 9.5, the calculated
average gap at V0/V

sd
0 = 1 is reproduced for g = 0.20. Noting that g depending linearly

on the pairing strength, Eq. 9.5 gives the dashed line as a function of V0. One sees that
there is a very strong dependence of the gap on the pairing strength which is reproduced
by the simple theory of Eq. 9.5.

Origin of the pairing interaction

It is no surprise that conditions for pairing are satisfied in nuclei. The nuclear interaction
between identical nucleons is strongly attractive in the spin-zero channel, almost to the
degree to form a two-neutron bound state. While this explains the origin at a qualita-
tive level, the many-body aspects of the nuclear interaction make it difficult to derive a
quantitative theory starting from basic interactions. The progress one has made so far
is reviewed in other chapters of this book, so I won’t go into detail here. But just for
perspective, I mention some of the major issues.

I first recall problems with the mean-field interaction to use at the Hartree-Fock
level. Most obviously, the effective interaction between nucleons in the nuclear medium
is strongly modified by the Pauli principle. The Pauli principle suppresses correlations
between nucleons and that in turn make the effective interaction less attractive. Beyond
that, it seems unavoidable to introduce three-body interactions in a self-consistent mean-
field theory. These interactions have two origins. The first is the three-nucleon interaction
arising from sub-nucleon degrees of freedom. It has been convincingly demonstrated that
such interactions are needed to reproduce binding energies of light nuclei and to calculated
the bulk properties of nuclear matter. Besides this more fundamental three-body interac-
tion, there may an induced interaction associated with the short-ranged correlations and
their suppression in the many-body environment. In the popular parameterization of the
effective interaction for use in mean-field theory, the three-body interaction energy has
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the same order of magitude as the two-body interaction energy. It would thus seem to be
a great oversimplication to ignore the three-body effects in the pairing interaction.

The last issue is the role of the induced interaction associated with low-frequency
excitations. We have seen that the nucleus is rather soft to surface deformations. the
virtual excitation of these modes would contribute to the pairing in exactly the same way
that phonon provide an attractive pairing interaction for the electrons in a superconductor.
It may well have the same importance as the two-particle interaction. Note that if low-
frequency phonons were dominant, the energy scale in Eq. (5) would be greatly reduced.

The dynamic properties of an extended fermionic system depend crucially on the
presence of a pairing condensate, changing it from a highly viscous fluid to a superfluid.
The effects in nuclei are not quite as dramatic as in extended systems because the pairing
coherence length in nuclei exceeds the size of the nucleus. Nevertheless, the presence of a
highly deformable surface in nuclei requires that pairing be treated in a dynamical way.

The most clearly documented dynamic influence of pairing is its effect on the moment
of inertia of deformed nuclei. Without pairing, the rotational spectrum of a deformed
fermionic droplet is believed to follow the spectrum of a rigid rotor,

EJ =
~2

2I
J(J + 1). (9.7)

Here ~J is the angular momentum and the moment of inertia I would be close to the
rigid value

I ≈ 2

3
Am〈r2〉 ≈ 2

5
A5/3mr2

0. (9.8)

If the pairing were strong enough to make the coherence length small compared to the
size of the system, the system would be a superfluid having irrotational flow and a corre-
sponding inertial dynamics. What is somewhat surprising is that the weak pairing that
is characteristic of nuclei still has a strong effect on the inertia.


