
Slides by Jim Dowling

Systems Issues in P2P

P2P in practice

•Many existing P2P protocols are elegant in theory
but ugly in practice

•Why is Kademlia widely deployed on the open
Internet, but not Chord? [d]

Node Heterogeneity

Systems Issues in P2P

•Today we will concentrate on three different systems
issues that are important in building real-world P2P
systems

1. Node heterogeneity

2. Overcoming limited direct connectivity on the
Internet

- Network Address Translation Gateways and Firewalls

3. Secure gossiping protocols

Gossiping in Distributed Systems

•“Gossiping is the endless process of randomly
choosing two members and subsequently letting
these two exchange Information”
[Kermarrec/Van Steen, Gossiping in distributed
systems]

Scale-Free Networks [Barabasi]

•New nodes preferentially create links to those nodes
with a higher number of links (positive feedback).

•Symmetry breaking from a random network.

- Nodes now can use information encoded in the topology to
send search requests to hubs.

Random Topology Scale-Free Topology

Preferential

Attachment

Algorithm

Hetrogeneity

•Real-World P2P systems for the open Internet are
heterogeneous

- Peer resources (Bandwidth, CPU, Memory)

- Peer session-time

•Use Peers with better “characteristics” to provide
services to other peers in the system

All Peers are not Created Equal

•Peers have heterogeneity with respect to:

- Available Bandwidth

- Average Session Time

- Open IP address (vs. NAT-bound)

- Latency

- CPU/Memory

Peer Heterogeneity and Power Laws

•What type of heterogeneity is found in peers over

different characteristics, such as bandwidth, session-

time, etc?

•Measurements of P2P systems showed all sorts of
power-law like relationships

 log-log scale

Lots of cities with a small population

Small number of cities with high population

Power Law Example

normalization constant

(probabilities over all x must sum to 1)

power law exponent

FYI: Zipf and Pareto are similar to the power law distribution

 αCxxXPr

 xαCxX lnlnPr

Power Laws

A power law distribution satisfies:

Log-Log cumulative distribution function (CDF) is
exactly linear:

Plot of the download speeds of 54,845 peers over 2 week period

Poulse et al., “The Bittorrent P2P File-sharing System: Measurements and Analysis”, IPTPS '06

Bittorrent Download Speed Distribution

Log-Log plot of the uptime distribution of the 53,833 peers

Poulse et al., “The Bittorrent P2P File-sharing System: Measurements and Analysis”, IPTPS '06

Bittorrent, Heavy-Tailed, for Session Time

Sen and Wang, Analyzing peer-to-peer traffic across large networks, IEEE/ACM TON, 2004

Peer Bandwidth Distribution

• FastTrack: 33% IP addresses have mean downstream b/w 56Kbps or
less; 50% have mean upstream b/w 56Kbps or less

• Direct Connect: 20% IP addresses have mean downstream b/w 56Kbps or
less; 33% have mean upstream b/w 56Kbps or less

Super-peer session times in Skype

(Loglog plot of the Cumulative Distribution Function)

Guha et al., “An Experimental Study of the Skype Peer-to-Peer VoIP System”

Super-Peers in Skype:
session Times are heavy-tailed

Spare Bandwidth/CPU; Open IP Address; etc

Super-Peer Definition

•Super-peers have high utility relative to non super-
peers, where higher utility peers are “better” at
providing super-peer service(s).

- Measured peer utility can be used to rank peers to enable
the best peers to be promoted to super-peers.

Super-Peer P2P Networks

•Exploit heterogeneity in P2P Networks by using
higher utility peers to provide services

•Super-Peers provide redundant instances of System
Services giving a P2P system:

- Scalability

- Load balancing

- Fail-over

- Robust to node failures, message loss

Ordinary Peers

(are clients)

Super-Peers

(both servers

and clients)

Super-Peer Architecture

Services provided by Super-Peers

•File Indexing/Retrieval

- Fast-Track, Kazaa, E-Donkey

•Voice Over IP (VoIP)

- Skype uses super-peers to setup and route calls

•Framework for building Super-Peer Systems

- Sun’s JXTA framework

Super-Peer (SP) Design Issues

•Ordinary peer to super-peer connections

•Intra-super-peer overlay network

•Super-peer promotion

Ordinary Peer to SP Connections

•Redundancy / Performance

- =1 active SP connection per ordinary peer

• Suitable for TCP traffic

- >1 active SP connection per ordinary peer

• Requires session management for P2P routing

•Fairness allocating Ordinary Peers to SPs

- Don’t overuse the SP’s resources

Intra-Super-Peer Overlay Network

•Random Overlay Network
• Random walk and gossiping or flooding

•DHT Overlay Network
• Good for Identifier-based Routing

•Gradient Overlay Network
• Good for SP discovery using gradient search

•Hierarchical : Skype, low latency but less robust.

Super-Peer Promotion

•Peer Utility is Service Dependent:

- What level of “utility” is required for a peer to become a
super-peer?

•Options:

- 1. Promote all peers whose utility exceeds a well-known
utility level (uses local knowledge)

- 2. Promote the top 'X' percent of peers with highest utility
(requires global knowledge)

Random Topology Super-Peer Topology

SP Promotion

Algorithm

Super-Peer Promotion Decision Problem

•Local Decision > Centralised Decision

•Session-start or Runtime > Bootstrap Time

•Fairness to Super-Peers vs. System
Availability

Guha et al., “An Experimental Study of the Skype Peer-to-Peer VoIP System”

Super-Peer Promotion in Skype

•If the peer has an open IP address, and its

measured available bandwidth exceeds a

threshold, it is promoted to be a super-peer.

•At peer bootstrap-time, Skype runs the
Simple Traversal of UDP through NATs
(STUN) protocol between the Peer and a
Server

Overcoming Limited Direct Connectivity in IP

Direct Connectivity on the Internet

•Naive assumption: any node can establish a direct
connection to any other node on the Internet.

•For any given P2P system, roughly 80-90% of the
time this is not true!

•NATs and firewalls get in the way!

•It’s getting both better (UPnP) and worse
(decreasing number of available IP addresses) atm.

•IPV6 will not make this problem just go away.

NAT Devices

• NAT devices differ in many
application-observable aspects.

• NAT port mappings,

• Traffic filtering,

• NAT binding timeouts,

• ICMP handling,

• Queuing,

• Hair pinning,

• Buffer sizes

IETF NAT Behavioral Requirements standards not adopted yet by

manufacturers.

Inter
net

78.229.32.1 192.168.1.1

192.168.1.121

192.168.1.54

NAT Type Classification

•BEHAVE RFC [1] defines NAT
behaviour as a set of policies:

-Port Allocation

-Port Mapping

-Port Filtering

-NAT Binding Timeout

OLD NAT MODEL
Symmetric
Port-Restricted
Partial-Cone
Full-Cone

Internet

Firewall
Cluster

PCBroadband
router (NAT)

NAT Port Allocation Policy

192.168.1.12:4983 134.22.81.12:8888 121.85.141.13:6543 184.121.54.83:1234

:4983 :56000 :54832

56000 +∆

Preservation Contiguity Random

192.168.1.12:4983

Source IP:port NAT Port Destination IP:port

134.229.81.12:8888 4983
Preservation

NAT with Public IP = 124.29.31.1

192.168.1.12:4983 121.85.141.13:6543 56000
Contiguity

192.168.1.12:4983 184.121.54.83:1234 54832
Random

Port Allocation Policy

Port Mapping Policy

192.168.1.12:4983

Source IP:port NAT Port Destination IP:port

134.22.81.12:8888 13545

192.168.1.12:4983 134.22.81.12:6543 45352

192.168.1.12:4983 184.121.54.8:1234 6957

Port Dependent Mapping

(Random)

Source IP:port NAT Port Destination IP:port

192.168.1.12:4983

134.22.81.12:8888
134.22.81.12:6543

56000

192.168.1.12:4983 184.121.54.8:1234 56001

Host Dependent Mapping

(Contiguity)

Source IP:port NAT Port Destination IP:port

192.168.1.12:4983

134.22.81.12:8888
134.22.81.12:6543
184.121.54.8:1234

4983
Endpoint Independent Mapping

(Preservation)

NAT Port Filtering Policy

EI =Endpoint Independent; HD=Host Dependent; PD=Port Dependent

192.168.1.12:4983

Source IP:port NAT Port Destination IP:port

134.229.81.12:8888 4983

Port Filtering Policy

134.229.81.12:8888

HD PD EI Incoming Packet

Y Y Y

134.229.81.12:7856 Y N Y

85.185.241.13:6543 N N Y

192.168.1.12:4983

134.22.81.12:8888

85.185.241.13:6543

134.22.81.12:7856

Relaying

• Relaying of P2P traffic requires that a node behind a NAT has a valid
port mapping in its NAT for a Server. This can be achieved using an
open TCP connection or heartbeating over UDP.

• When node A wants to communicate with node B, it send a message to
the Server that routes the message to B via its existing connection to B.

1. Send Msg to B

4. Receive Msg from B
2. Receive Msg from A

Server

B A

3. Send response to A.

Node-A Node-B
NAT-1 NAT-2

global network

server

NAT Hole Punching Strategies

•Connection reversal

- From public node to a private node

•Simple Hole-Punching

- Endpoint-Independent filtering
and/or mapping required

•Port-prediction using Preservation

•Port-prediction using Contiguity

lower

chance

of success

Data Transfer over direct connection

NAT Hole Punching Protocols

Hole-Punching using NAT Combinations

• It is the combination of NAT types of 2 nodes that is
important when connecting two nodes behind NATs.

• In the example below, two nodes connect using ‘Port-
prediction using Preservation’.

HD Mapping, Preservation, PD Filter PD Mapping, Random, PD Filter

1. Bind port X and

 Connect(B, Policy)

3. Send msg to random port

 at B’s NAT IP using port X

2. Connect(A’s NAT IP on port X) 2. Response: B’s NAT IP

Server

B A

4. Connect sent to port X on A’s

 NAT IP

To Relay or Hole-Punch P2P Traffic?

Management and
control traffic

Application-level

Data transfer

Requirement Reliable,

Low latency

High throughput
(large data volume)

Mechanism Relay Hole-punch

Challenges Fairly distribute
traffic over
relay-nodes

Improve success rate.
Reduce connection
latency.

36

Existing P2P NAT Infrastructures

STUN

Servers

TURN

Servers

Rendezvous

Servers

P2P Network
P2P systems require additional
addressing/routing support to enable
communication with private nodes!

NAT Type
Indentification

Message
Relaying

Hole-Punching
for UDP

Stateless
2 Public IPs

Stateful
High B/W

Stateful
Low Latency

Distributed NAT Infrastructure [Usurp]

SON of Public Nodes

•Addressing/Routing,

•STUN,

•TURN,

•Rendezvous services

P2P Network

Public Nodes have an Open IP
address or support the UPnP

IGD profile.

Private Nodes are behind
NATs/firewalls and become

clients of public nodes.

Enabling NAT Traversal by Configuration

•Explicit port forwarding in home routers

- Requires sophisticated users

•UPnP Internet Gateway Device (IGD)

- Devices that support UPnP IGD can act as public nodes

•Teredo IPV6 Tunneling

http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx

http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx
http://blogs.msdn.com/b/ncl/archive/2009/07/27/end-to-end-connectivity-with-nat-traversal-.aspx

Congestion Control for P2P Systems

Congestion Control in P2P systems

•TCP has very low NAT-traversal success rates in
real-world P2P systems (compared to UDP)

- NAT-traversal techniques such as STUNT are not widely
deployed.

- UDP enables the utilization of more peers upload
bandwidth.

•P2P systems based on UDP have to consider
congestion control in sending/receiving data over
the network.

•Congestion control algorithms have to consider
inefficiency and congestion collapse

- “self-interest” vs. “social welfare”

TCP Congestion Control Behavior

•Congestion control:

- decrease sending rate when
loss detected, increase when
no loss

•Routers

- discard packets (tail-drop)
when congestion occurs

•TCP is slow to ramp up even if
spare bandwidth is huge (slow
start)

- Increases by 1 segment/RTT

- Can do better on modern
networks

TCP runs at end-hosts

congested router drops packets

Generic TCP Behavior

• Increase congestion window
size by one segment (1500
bytes) per RTT

•Halve CWD size on detection of
loss, CWD < CWD /2

• If there is a timeout due to
missed ACKs reset the CWD size
to 1, CWD < 1

•Relationship between network
throughput and loss is shown on
the right.

TCP
window

size

time (rtt)

CWD/2

CWD

loss occurs

LEDBAT

•When UDP is used to build P2P systems, you need to
implement your own congestion control algorithm.

•LEDBAT is a congestion control algorithm that uses
delay-based congestion control (not loss-based as in
TCP) to control amount of traffic sent over a link

- If the packet delay over a link exceeds a threshold value
(default 100ms), then decrease sending rate

•LEDBAT ‘backs off’ to TCP

- It should not cause a congestion collapse of the Internet!

- It can parasitically use your bandwidth and back-off when
you want to use TCP applications.

Secure Gossiping

How secure are gossiping algorithms?

•How can they be exploited by malicious nodes
(attackers)? [d]

•Example:
For peer-sampling services (PSS), can the sampling
process can be biased toward a specific group of
nodes instead of being random?

•What about P2P systems that have quality-of-service
(QoS) requirements – e.g., media streaming that is
vulnerable to QoS fluctuations?

- Proactive rather than reactive solutions.

Dummy’s guide to attack gossip systems

•Write your own gossip-based client for
the protocol you wish to attack.

•Decide on the number f of attackers: store a well-
known list of your other attackers

•Run the standard gossip protocol with the following
exceptions:

- remove restrictions on the size of your partial view;

- the message sent to a receiver R is populated with
malicious descriptors based on a specific attack strategy;

- the timestamps of malicious descriptors are manipulated in
order to postpone their dropping as late as possible.

How big does ‘f’ have to be to attack? [Jesi]

For this

PSS, the

view size

is 20. Even

with ‘f’

lower than

20, we can

pollute the

system.

Adversary Attacks in Gossip-Based Systems

•An attacker may want to bias samples

- Isolate nodes, bias statistics, become a hub, etc

•Attacks

- discard specific node descriptors

- replay msgs to avoid discarding of node descriptors

- corrupt messages by modifying their node descriptors

- forge bogus node descriptors to pollute the network with

- bias node selection to attack individual nodes

- flooding attack sends messages faster than gossip rate

•Faulty nodes may also be treated as an attack

- Byzantine failures are possible

4

9

Push Drowning [Brahms]

A

D

B C

M

M

M

M

M

E

Eclipse attack [Brahms]

A

C

E

M

D

Attack users

one at a time to

‘eclipse’ them.
B

Pull Deterioration [Brahms]

A B M1 M2

C D M3 M4

E F M5 M6

M3 E M7 M8

50% faulty ids in views 75% faulty ids in views

Denial of Service Attack

•Denial of service (DoS) attacks involve flooding a
node with gossip requests, so that the node does not
have enough available resources to handle valid
gossip requests

•[DRUM] prevents DoS attacks using two main
techniques:

- bound the amount of resources allocated to each gossip
operation and

- direct these operations to random ports

Byzantine-resilient gossip

•Live-streaming gossip-based protocol.

•Synchronous network model

- Clocks synchronized within Δ seconds of each other

- Nodes communicate over point-to-point unreliable links

•Limits each IP address to at most one identity

- Mitigate Sybil attacks

•Nodes are either Byzantine or Altruistic or Rational
(BAR Gossip)

- Altruistic nodes follow the protocol regardless of costs

- Rational nodes follow a strategy that maximizes their utility

- Byzantine nodes behave arbitrarily

•Nodes have public/private certificates.

BAR Gossip

•Every node has a full static view (not a partial view)

•BAR-Gossip is a sequence of T + Δ-long rounds

- T is a time interval sufficient to complete the message
exchanges

•Nodes periodically execute 2 gossip protocols:

- initiate balanced exchange of non-expired updates with a
randomly selected neighbour

- initiate optimistic push of non-expired updates with a
randomly selected neighbour

•Signed messages that are internally inconsistent
with the protocol amount to proofs of misbehavior

- Those nodes are evicted from the system

BAR Gossip

•Nodes exchanges 3 pieces of information:

•History exchange

- A node learns about the updates the other node holds

•Update exchange

- Each node copies a subset of these updates into a briefcase
that is sent, encrypted, to the other node

•Key exchange

- where the parties swap the keys needed to access the
updates in the briefcases

•History exchange and update exchange use TCP.
Key exchange uses UDP.

Balanced Exchange and Optimistic Push

• Balanced Exchange and Optimistic Push Protocols
are two gossiping algorithms that exchange the
same information.

•They differ in what the parties disclose to each other
during a history exchange and in how they
determine the content of their respective briefcases
during the update exchange.

Balanced Exchange

•Each party sends to the other a history set H
containing the identifiers of all the updates it
currently holds, compares the history it has received
with its own, and determines the largest number k
of updates that can be exchanged on a one-for-one
basis

Optimistic Push

•Optimistic Push helps nodes that have fallen behind
in the broadcast and that may not have any updates
to trade in a Balanced Exchange

•The initiator S forwards to the receiver R two lists: a
young list, which contains the IDs of some of the
most recent updates S knows, and an old list, which
contains the IDs of updates that S is missing and
that are about to expire.

•R replies with a want list, which contains the IDs of
the updates in the young list that R is missing.

•S and R then exchange briefcases: S’s briefcase
contains k updates in the want list, while R’s
briefcase is free to contain junk.

Optimistic Push

•Optimistic Push with two parameters:
pushage and pushsize: the young list consists only
of updates that have been broadcast within the last
pushage rounds and pushsize is an upper limit on
the number of updates that the Receiver can place
in its want list.

- Larger values of pushsize help lagging nodes to catch up
faster, but allow nodes to waste bandwidth

Rational Behaviour – Peer Selection

•Problem:
What if a rational node selects more partners per
round than prescribed or biases its selections
instead of choosing partners uniformly at random?

•Solution:
Restrict choice within balanced exchanges and
optimistic pushes

BAR Gossip – Peer Selection

•The sender S selects a peer for round r by seeding a
pseudo-random number generator (PRNG) with the
signature S(r,BAL), generated using S’s private key.

•S then deterministically maps the first number
generated by the PNRG into the identity of its gossip
receiver R.

•R then verifies that i) the seed is a valid signature,
ii) r is the current round, iii) the first number
generated by the PRNG when seeded with S(r,BAL),
maps to R, and iv) this is the first time that S has
presented this seed value to R.

•If the tests pass, R accepts the gossip request from
S.

Rational nodes follow peer selection protocol

•Peer selection limits the number of connections any
node can make to a small constant, preventing
Byzantine nodes from abusing the system through
the creation of arbitrarily many legitimate
connections.

•Each seed contains only the round and type of
exchange (Balanced or Optimistic). A node can thus
generate only two seeds per round, resulting in two
communication partners generated from the
deterministic PRNG.

- nodes keep track of the other nodes that have contacted it
in the current round

Rational Behaviour - History Exchanges

•S and R exchange histories, containing 3 messages

1. S provides a hash of its history and the seed value

2. R returns its current history

3. S divulges its actual history to R (R validates with hash)

•Each briefcase message contains the ids of the two
parties, the seed uniquely identifying this exchange,
the encrypted updates, and an update list stating
what the encrypted contents should be.

•Sender signs the briefcase thereby promising that
the encrypted contents are genuine and match the
update list.

Rational Nodes do not over-/under-report

Problem: What if a rational node lies about its
history?

• A rational node will not under-report in a balanced
exchange

- Limits the exchange to fewer updates

- May receive an update that it already holds but did not
report

•A rational node over-reports an update by claiming
to possess an update that it does not have

- Goal is to gain more utility in an exchange.

- However, to do this, it needs to send a briefcase message
in which the claimed contents are different from the
encrypted contents – a proof of misbehaviour (POM).

Rational nodes do not send garbage

Problem: What if a rational node places fake or
garbage data in briefcase messages?

•A rational node does not send invalid key response
messages as including updates that do not match
the update list in the signed briefcase represent a
POM that will lead to the rational node’s eviction.

•Rational nodes never place fake or garbage data in
briefcase messages.

•Rational nodes report malformed briefcases to the
broadcaster as it is in their interest to do so.

Rational Behaviour - Key Exchange

Problem: What if a rational node chooses not to send
the key or sends an invalid key?

•A rational node does not send invalid key response
messages.

- Sending an invalid key will generate a POM

- Ignoring a partner’s key requests saves the cost of sending
a symmetric key, but has been shown using the credible
threat mechanism and Nash Equilibria to not be in the
node’s interest.

•Therefore, a rational node eventually responds with
a valid key to key request messages.

Other secure gossiping sytems

•Brahms Byzantine-Resilient Gossiping [Brahms]

- Supports partial views

- Analysis of the its byzantine robustness

•Secure peer sampling service (SPS) [Jesi10]

- Identify and blacklist potentially malicious nodes

• Goal is different to BAR Gossip which prevents attacks

- Uses certificates to identify nodes

- Uses prestige from social network analysis theory to
identify misbehaving nodes

• Remove misbehaving nodes from the system

- Prestige is calculated using the in-degree of a node

• Exploratory gossip msgs used to build up a prestige table

• A whitelist of nodes believed to be ‘good’ is also maintained

Summary

•Naive assumptions about P2P network environments
can lead to the construction of systems that:

- do not work due to connectivity problems

- are vulnerable to attack

- do not exploit extra capabilities of ‘good’ nodes and/or
avoid ‘bad’ nodes

- do not handle network congestion.

References

•Security and privacy issues in P2P streaming systems: A
survey, In Journal of P2P Networked Applications, 2010.

•BAR Gossip, Li et Al, OSDI, 2006.

•BEHAVE RFC, Audet, F., Jennings, C.: Network address
translation (nat) behavioral requirements for unicast udp
(2007) IETF

•Roverso et al., Natcracker: Nat combinations matter, ICCC,
2009.

•Gummadi, K.P. et al, King: Estimating latency between
arbitrary internet end hosts. In SIGCOMM Internet
Measurement Workshop (2002)

•Gian Paolo Jesi, Alberto Montresor, and Maarten van Steen.
Secure Peer Sampling. Elsevier Computer Networks - Special
Issue on Collaborative Peer-to-Peer Systems, 54(12):2086-
2098, 2010.

References

•[DRUM] Gal Badishi, Idit Keidar, and Amir Sasson, Exposing
and Eliminating Vulnerabilities to Denial of Service Attacks in
Secure Gossip-Based Multicast, TDSC, 2006.

•Bortnikov et al, Brahms: Byzantine resilient random
membership sampling, Computer Nets, 2009

•Albert-László Barabási, Linked: The new science of networks,
2002.

•Niazi and Dowling, Usurp: Distributed NAT Traversal for
Overlay Networks, DAIS 2011.

