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Today s lecture

e Linear quadratic control review
e A design example: radial control of DVD servo
e Relation to H,-optimal control
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Linear quadratic Gaussian control

Model: linear system with white noise
n(t) = Aa(t) + Bu(t) + Noa (1
y(t) = Cz(t) + va(t)

z(t) = Mx(t)
where v, v, are white noise with
R1 Ri2
cov([vy, vo]) =
([v1, v2]) RI, R2]

Objective: minimize effect of v on z, punish control cost

J = {innm/ [zTle -+ uTQQu] dt}

LQG: Linear system, Quadratic cost, Gaussian noise
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Solution structure

Optimal solution satisfies separation principle, composed of

e Optimal linear state feedback (Linear-quadratic regulator)
e Optimal observer (Kalman filter)

Y
A - G -
Kalman
— filter  ——
u

x>
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Optimal solution

State feedback
u(t) = —Lz(t) = —Q5 BT Sz(¢)
where S is the solution to the algebraic Riccati equation
ATS + 544+ MTQM — SBQ;1BTS =0
Kalman filter

z(t) = Ax(t) + Bu(t) + K(y(¢) — Cz(1))
where K=(PC"+NR;,)R,! and P is the solution to

AP+ PAT + NRiNT — (PCT + NR15)R; 1 (PCT 4+ NR15)T =0
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Example: LQR for scalar system

Scalar linear system

z(t) = ax(t) + u(l), y(t) = z(t)

with cost
J = /O (< + pu=] dt

Riccati equation
Das+1—52/p=0
has solutions

2
8=api\/(pa) +p
so the optimal feedback law is

u=—(s/p)z = —(a+/a® +1/p)x
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Example: LQR for scalar system

Closed loop system

i(t) = —(ya® + 1/p)a(t)

Note: if system is unstable (a>0), then

e if control is expensive p — oo then the minimum control input to
stabilize the plant is obtained with the input u=-2|a|x, which moves
the unstable pole to its mirror image —-a

e if control is cheap (p — 0), the closed loop bandwidth is roughly 1/,/p
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Example: scalar system Kalman filter

Scalar linear system

z(t) = az(t) + u(t) + v1 (1), y(t) = z(t) + v2(t)

with covariances E{v,;?}=R,, E{Vv,%2}=R,, E{v,v,}=0.

Riccati equation
2ap + r1 —p2/fr2 =0

k=a,—|—\/a2—|-'r1/r2

and estimation error dynamics

CH(1) = —(Ja? + r1/r)i

gives

Interpretation: measurements discarded if too noisy.
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The tuning knobs

State and control weights:
— Trade-off between control effort and state errors

(Q.;=1, Q,=p gives closed-loop bandwidth ~ 1/\//5)
— Rule of thumb: start with diagonal Q_1, i.e.

ZTle — Q11Z% + -+ Qkkzg
where q is inversely proportional to maximum allowed value of z
(similarly with Q)

Noise covariance matrices
— Trade-off between sensitivity to process and measurement noise

(estimator bandwidth ~ /r1/r> )
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White noise inputs

No serious restriction:
— practically all disturbance spectra can be realized as filtered white noise
- need to augment system model with disturbance model

w (white)
v |
(non-white)

L e W Y I
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The servo problem

Preferred way: augment system with reference model

d
—Tref(t) = Averzrer(t) + Brz(t)

dt
e(t) = xper(t) — x(t)
where the reference model states are measurable, and use

J=E {Ilm / e’ Qie + ul Qoul dt}

T—o0
However, when r is assumed to be constant the solution is

u(t) = —Lz(t) 4 Lrerrz(t)

where L, is determined so that static gain of closed-loop
(r,~>z) equals the identity matrix
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LQG and loop shaping

e LQG: simple to trade-off response-time vs. control effort
- but what about sensitivity and robustness?

e These aspects can be accounted for using the noise models
— Sensitivity function: transfer matrix w—>z
— Complementary: transfer matrix n>z

Example: S forced to be small at low frequencies by letting
(some component of) w1l affect the input, and let wl have large
energy at low frequencies,

wi(t) = ——on (1)

(delta small, strictly positive, to ensure stabilizability)
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Design example

Track following (radial control) in DVD player

(based on laboratory exercise at LTH)
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Design example

Control lens position to follow track
- High bandwidth to allow fast read/write
- Key challenge: eccentricity of tracks on disk
— Sinusoidal disturbance of order 100 track widths!

Track position
4

Rotation center

Eccentricity
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Model

Model identified from real system

Bode Diagram
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An initial design

Use
z=y, Q1=1 Qx=1, Ri1 =1, Rpx=1
consider response to unit step input in reference:

Step Response
10

Output
o 4]
\
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Time (sec)

Step Response

Control
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Time (sec)

What is wrong?
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Adjusting feedforward gain

Simple solution: static adjustment of feedforward gain

Y (0) = Ge(0)LrR(0) = Ly = 1/G¢(0)

Kalman

—p filter B ——

x>
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Adjusting feedforward gain

Step Response
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Shaping the time response

Using Q;=I, Q,=p; responses for varying p (which is which?)

2E1252 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se



Suppression of measurement noise

Let R;=I, R,=r. Time responses of z to unit variance measurement noise
— Which design corresponds to the larger value of r?

0.5 -

-0.5 -

At r r r r r r r r r L
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A loop shaping perspective

Corresponding Bode diagrams of complementary sensitivity (n— z)
— Which one corresponds to the larger value of r?
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Dealing with output disturbance

Response to sinusoidal output disturbance at 20 Hz
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We would like the amplitude to be less than 1E-4.
- How can we achieve this?
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Introducing disturbance model

We will use

2
“o

82 + 2Cwgs + w%

Gy
What are the appropriate values for € and w,?

How should we choose R,?
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Improved disturbance suppression
Disturbance response with (left) and without (right) disturbance model
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Reference following of final controller

Step Response
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Which is the order of the final controller (and why?)
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What about an H-infinity design?

Our requirements constrain S and T - a standard problem!
What are reasonable weights?
Which is the corresponding extended system?

What is the order of the resulting controller?
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Result of H-infinity design
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Result of H-infinity design

Step Response

Amplitude
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Raw step-response. As for LQG, can be improved by feed-forward.
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Relation to H,-optimal control

Definition. The H, norm of a system G is defined as

1 o0

2 - 2

IGIB === | 1G(w)I3 d
™ J—00

Now, assume that w is white noise with @ (w)=I. Then
o0 1 00 _

1213 = | P dt = [ |2(iw)Pdw =

— O v J—00

1 [oo . LN D
— —/ GGw)W (iw) |3 dw =
21 J—00

— % A * Trace{G(iw)W (i)W (—iw)GT (—iw)} dw =

1 oo : T, . L © Y2
— —/ Trace{G(iw)G" (—iw)} dw = —/ |G (iw)|5 dw
27 J—o00 21 J—c0
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Relation to H,-optimal control

Consequence: minimizing the H,-norm is equivalent to
minimizing the influence of a white noise input w on z.

|z]15 = |[M=z + Dul|5 = || Mz|5 + ||[ul5 =
=/ xTMTM$—|—u u dt
— OO0

The LQG problem in standard form with Q;=Q,=R;=R,=1I
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Summary

Linear quadratic control review

— Solution structure, Riccati equations and tuning knobs
Design example: radial control of DVD player

- Reference following

- Trading off state vs control energy

— Influencing sensitivity to noise

— Shaping the response to non-white disturbances
Addressing the same problem using H-infinity
A relation between LQG and H,-optimal control
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