

# 2E1252 Control Theory and Practice

# Lecture 9: LQG design example and relation to H<sub>2</sub>

Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden

# Today's lecture

- Linear quadratic control review
- A design example: radial control of DVD servo
- Relation to H<sub>2</sub>-optimal control

### Linear quadratic Gaussian control

Model: linear system with white noise

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t) + Nv_1(t)$$
$$y(t) = Cx(t) + v_2(t)$$
$$z(t) = Mx(t)$$

where  $v_1$ ,  $v_2$  are white noise with

$$cov([v_1, v_2]) = \begin{bmatrix} R_1 & R_{12} \\ R_{12}^T & R_2 \end{bmatrix}$$

Objective: minimize effect of v on z, punish control cost

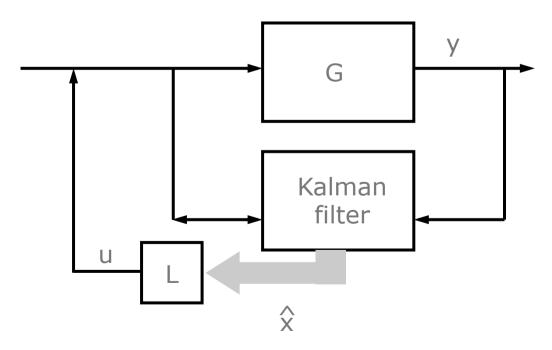
$$J = \mathbf{E} \left\{ \lim_{T \to \infty} \int_0^T [z^T Q_1 z + u^T Q_2 u] dt \right\}$$

LQG: Linear system, Quadratic cost, Gaussian noise

### Solution structure

Optimal solution satisfies separation principle, composed of

- Optimal linear state feedback (Linear-quadratic regulator)
- Optimal observer (Kalman filter)



### Optimal solution

State feedback

$$u(t) = -L\hat{x}(t) = -Q_2^{-1}B^T S\hat{x}(t)$$

where S is the solution to the algebraic Riccati equation

$$A^{T}S + SA + M^{T}Q_{1}M - SBQ_{2}^{-1}B^{T}S = 0$$

Kalman filter

$$\hat{x}(t) = Ax(t) + Bu(t) + K(y(t) - C\hat{x}(t))$$

where  $K=(PC^T+NR_{12})R_2^{-1}$  and P is the solution to

$$AP + PA^{T} + NR_{1}N^{T} - (PC^{T} + NR_{12})R_{2}^{-1}(PC^{T} + NR_{12})^{T} = 0$$

### Example: LQR for scalar system

Scalar linear system

$$\dot{x}(t) = ax(t) + u(t), \qquad y(t) = x(t)$$

with cost

$$J = \int_0^\infty [x^2 + \rho u^2] dt$$

Riccati equation

$$2as + 1 - s^2/\rho = 0$$

has solutions

$$s = a\rho \pm \sqrt{(\rho a)^2 + \rho}$$

so the optimal feedback law is

$$u = -(s/\rho)x = -(a + \sqrt{a^2 + 1/\rho})x$$

### Example: LQR for scalar system

Closed loop system

$$\dot{x}(t) = -(\sqrt{a^2 + 1/\rho})x(t)$$

**Note:** if system is unstable (a>0), then

- if control is expensive  $\rho \to \infty$  then the minimum control input to stabilize the plant is obtained with the input u=-2|a|x, which moves the unstable pole to its mirror image –a
- if control is cheap  $(\rho \to 0)$ , the closed loop bandwidth is roughly  $1/\sqrt{\rho}$

### Example: scalar system Kalman filter

Scalar linear system

$$\dot{x}(t) = ax(t) + u(t) + v_1(t), \qquad y(t) = x(t) + v_2(t)$$
 with covariances E{v<sub>1</sub><sup>2</sup>}=R<sub>1</sub>, E{v<sub>2</sub><sup>2</sup>}=R<sub>2</sub>, E{v<sub>1</sub>v<sub>2</sub>}=0.

Riccati equation

$$2ap + r_1 - p^2/r_2 = 0$$

gives

$$k = a + \sqrt{a^2 + r_1/r_2}$$

and estimation error dynamics

$$\frac{d}{dt}\tilde{x}(t) = -(\sqrt{a^2 + r_1/r_2})\tilde{x}$$

**Interpretation:** measurements discarded if too noisy.

### The tuning knobs

#### State and control weights:

- Trade-off between control effort and state errors  $(Q_1=1, Q_2=\rho \text{ gives closed-loop bandwidth } \sim 1/\sqrt{\rho})$
- Rule of thumb: start with diagonal Q\_1, i.e.

$$z^T Q_1 z = q_{11} z_1^2 + \dots + q_{kk} z_k^2$$

where  $q_{\parallel}$  is inversely proportional to maximum allowed value of  $z_{\parallel}$  (similarly with  $Q_2$ )

#### Noise covariance matrices

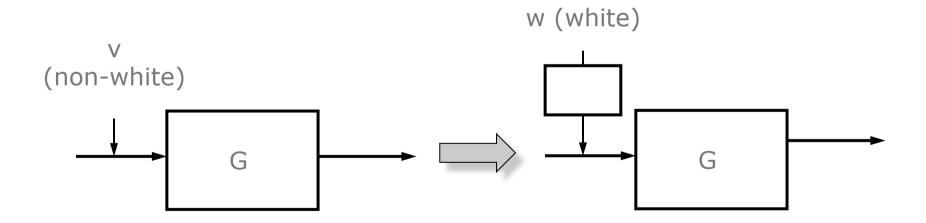
Trade-off between sensitivity to process and measurement noise

(estimator bandwidth 
$$\sim \sqrt{r_1/r_2}$$
 )

### White noise inputs

#### No serious restriction:

- practically all disturbance spectra can be realized as filtered white noise
- need to augment system model with disturbance model



### The servo problem

Preferred way: augment system with reference model

$$\frac{d}{dt}x_{\text{ref}}(t) = A_{\text{ref}}x_{\text{ref}}(t) + Br_z(t)$$
$$e(t) = x_{\text{ref}}(t) - x(t)$$

where the reference model states are measurable, and use

$$J = \mathbf{E} \left\{ \lim_{T \to \infty} \int_0^T [e^T Q_1 e + u^T Q_2 u] dt \right\}$$

However, when r is assumed to be constant the solution is

$$u(t) = -L\hat{x}(t) + L_{\mathsf{ref}}r_z(t)$$

where  $L_{ref}$  is determined so that static gain of closed-loop  $(r_7 \rightarrow z)$  equals the identity matrix

# LQG and loop shaping

- LQG: simple to trade-off response-time vs. control effort
  - but what about sensitivity and robustness?
- These aspects can be accounted for using the noise models
  - Sensitivity function: transfer matrix w→z
  - Complementary: transfer matrix n→z

**Example:** S forced to be small at low frequencies by letting (some component of) w1 affect the input, and let w1 have large energy at low frequencies,

$$w_1(t) = \frac{1}{p+\delta}v_1(t)$$

(delta small, strictly positive, to ensure stabilizability)

# Design example

Track following (radial control) in DVD player

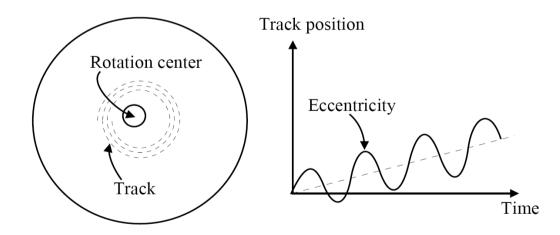


(based on laboratory exercise at LTH)

### Design example

Control lens position to follow track

- High bandwidth to allow fast read/write
- Key challenge: eccentricity of tracks on disk
- Sinusoidal disturbance of order 100 track widths!

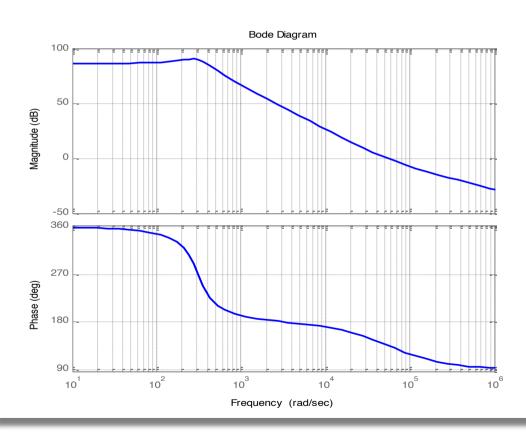


### Model

#### Model identified from real system

$$\dot{x} = \begin{pmatrix} 13.48 & -613.3 \\ 160.4 & -221.7 \end{pmatrix} x + \begin{pmatrix} -9.57 \\ -1046 \end{pmatrix} u$$

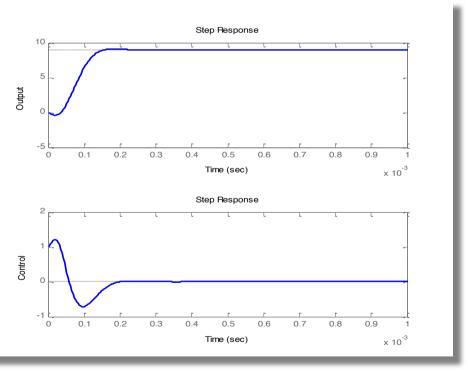
$$y = \begin{pmatrix} 3354 & 5.40 \end{pmatrix} x$$



# An initial design

Use

$$z=y, \quad Q_1=1, \quad Q_2=1, \quad R_1=I, \quad R_2=1$$
 consider response to unit step input in reference:

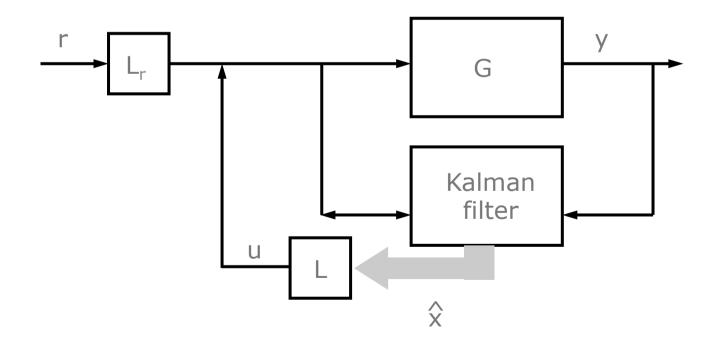


What is wrong?

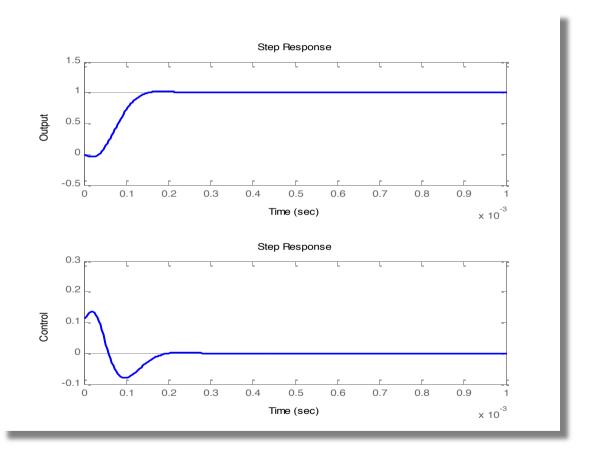
### Adjusting feedforward gain

Simple solution: static adjustment of feedforward gain

$$Y(0) = G_c(0)L_rR(0) \Rightarrow L_r = 1/G_c(0)$$

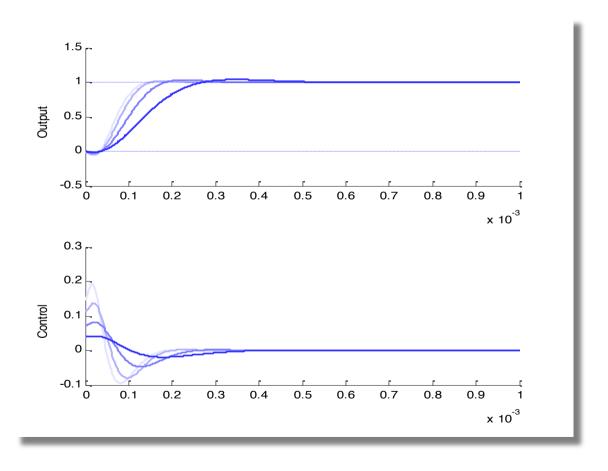


# Adjusting feedforward gain



### Shaping the time response

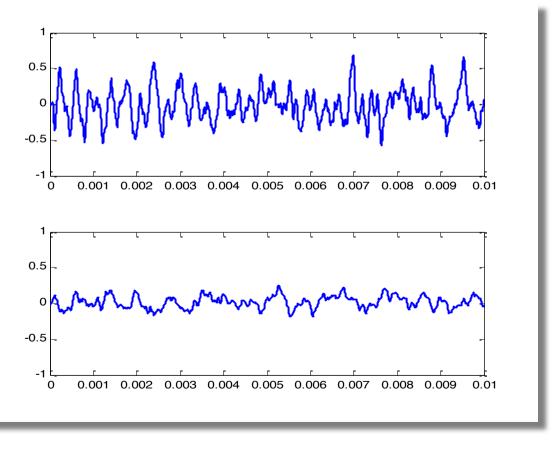
Using  $Q_1=I$ ,  $Q_2=\rho$ ; responses for varying  $\rho$  (which is which?)



### Suppression of measurement noise

Let  $R_1=I$ ,  $R_2=r$ . Time responses of z to unit variance measurement noise

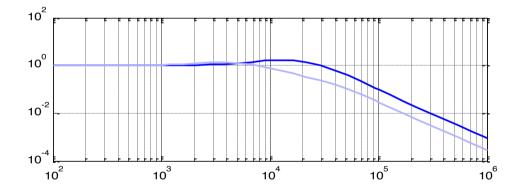
- Which design corresponds to the larger value of r?



### A loop shaping perspective

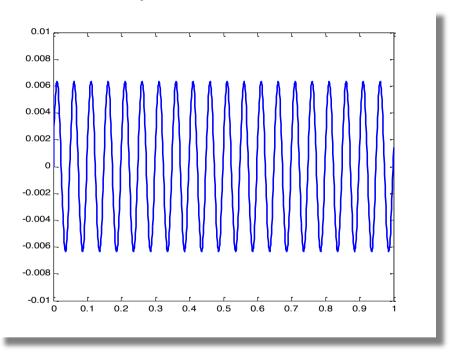
Corresponding Bode diagrams of complementary sensitivity ( $n \rightarrow z$ )

- Which one corresponds to the larger value of r?



# Dealing with output disturbance

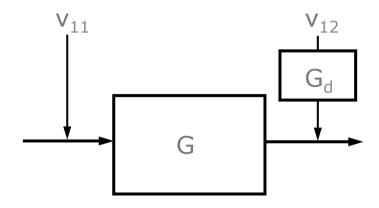
Response to sinusoidal output disturbance at 20 Hz



We would like the amplitude to be less than 1E-4.

- How can we achieve this?

### Introducing disturbance model



We will use

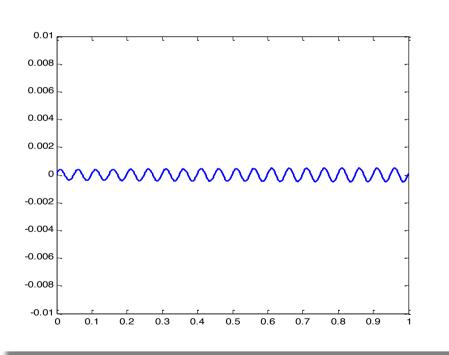
$$G_d = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

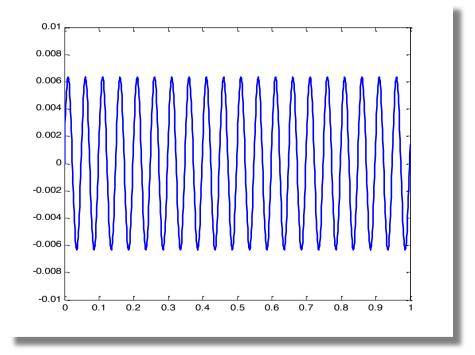
What are the appropriate values for  $\zeta$  and  $\omega_0$ ?

How should we choose  $R_1$ ?

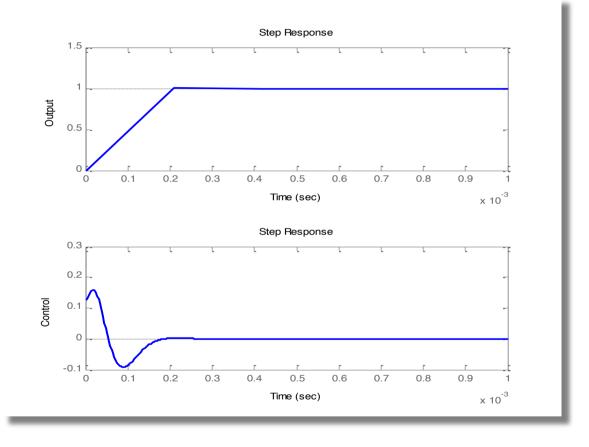
# Improved disturbance suppression

Disturbance response with (left) and without (right) disturbance model





# Reference following of final controller



Which is the order of the final controller (and why?)

# What about an H-infinity design?

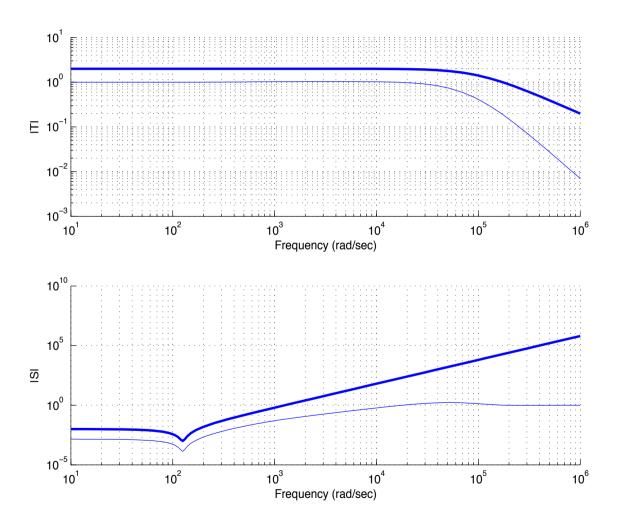
Our requirements constrain S and T – a standard problem!

What are reasonable weights?

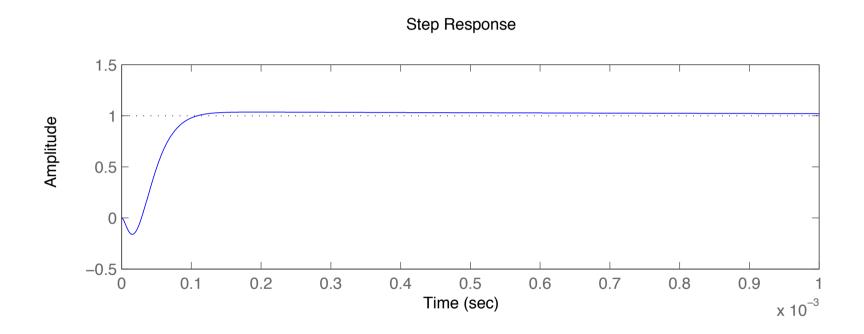
Which is the corresponding extended system?

What is the order of the resulting controller?

# Result of H-infinity design



# Result of H-infinity design



Raw step-response. As for LQG, can be improved by feed-forward.

# Relation to H<sub>2</sub>-optimal control

**Definition.** The H<sub>2</sub> norm of a system G is defined as

$$||G||_2^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|_2^2 d\omega$$

Now, assume that w is white noise with  $\Phi_{w}(\omega)=I$ . Then

$$||z||_{2}^{2} = \int_{-\infty}^{\infty} y^{2}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |Z(i\omega)|^{2} d\omega =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)W(i\omega)|_{2}^{2} d\omega =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{Trace}\{G(i\omega)W(i\omega)W^{T}(-i\omega)G^{T}(-i\omega)\} d\omega =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{Trace}\{G(i\omega)G^{T}(-i\omega)\} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|_{2}^{2} d\omega$$

# Relation to H<sub>2</sub>-optimal control

Consequence: minimizing the  $H_2$ -norm is equivalent to minimizing the influence of a white noise input w on z.

$$||z||_{2}^{2} = ||Mx + Du||_{2}^{2} = ||Mx||_{2}^{2} + ||u||_{2}^{2} =$$
$$= \int_{-\infty}^{\infty} x^{T} M^{T} Mx + u^{T} u dt$$

The LQG problem in standard form with  $Q_1=Q_2=R_1=R_2=I$ 

### Summary

- Linear quadratic control review
  - Solution structure, Riccati equations and tuning knobs
- Design example: radial control of DVD player
  - Reference following
  - Trading off state vs control energy
  - Influencing sensitivity to noise
  - Shaping the response to non-white disturbances
- Addressing the same problem using H-infinity
- A relation between LQG and H<sub>2</sub>-optimal control