
Chapter 7

Second Quantization

Creation and annihilation operators. Occupation number. Anticommutation relations.
Normal product. Wick’s theorem. One-body operator in second quantization. Hartree-
Fock potential. Two-particle Random Phase Approximation (RPA). Two-particle Tamm-
Dankoff Approximation (TDA).

7.1 Creation and annihilation operators

In Fig. 3 of the previous Chapter it is shown the single-particle levels generated by a
double-magic core containing A nucleons. Below the Fermi level (FL) all states hi are
occupied and one can not place a particle there. In other words, the A-particle state |0〉,
with all levels hi occupied, is the ground state of the inert (frozen) double magic core.

Above the FL all states are empty and, therefore, a particle can be created in one
of the levels denoted by pi in the Figure. In Second Quantization one introduces the
creation operator c†pi such that the state |pi〉 in the nucleus containing A+1 nucleons can
be written as,

|pi〉 = c†pi |0〉 (7.1)

this state has to be normalized, that is,

〈pi|pi〉 = 〈0|cpic†pi |0〉 = 〈0|cpi |pi〉 = 1 (7.2)

from where it follows that
|0〉 = cpi|pi〉 (7.3)

and the operator cpi can be interpreted as the annihilation operator of a particle in the
state |pi〉. This implies that the hole state hi in the (A-1)-nucleon system is

|hi〉 = chi |0〉 (7.4)

Occupation number and anticommutation relations

One notices that the number
nj = 〈0|c†jcj|0〉 (7.5)

is nj = 1 is j is a hole state and nj = 0 if j is a particle state. In the same fashion it is

〈0|cjc†j|0〉 = 1 (0) if j is a particle (hole) state, that is 〈0|cjc†j|0〉 = 1 - nj. Therefore nj is
called occupation number of the state j.

In general it is
〈0|c†jck|0〉 = njδjk, (7.6)



7 Second Quantization 72

and
〈0|ckc†j|0〉 = (1− nj)δjk. (7.7)

Summing these two equations one gets,

〈0|ckc†j + c†jck|0〉 = δjk (7.8)

which is valid independently of whether |j〉 and |k〉 are particle or hole states. It is a
general equation and, therefore, the creation-annihilation operators satisfy

{cj, c†k} = δjk. (7.9)

The operation
{A,B} = AB +BA (7.10)

is called the anticommutator of A and B, and these operators anticommute if

{A,B} = 0 (7.11)

In second quantization the antisymmetrized two-particle state is |ij〉a = c†ic
†
j|0〉, since

it implies
c†ic
†
j = −c†jc

†
i =⇒ c†ic

†
i = 0 (7.12)

as required by the Pauli principle. In the same fashion

cicj = −cjci (7.13)

Therefore
{ci, cj} = {c†i , c

†
j} = 0 (7.14)

Since the state |0〉 corresponds to a nucleus with A = N+Z nucleons, the state c†ic
†
j|0〉

corresponds to A+ 2 nucleons. Therefore

〈0|c†ic
†
j|0〉 = 0, 〈0|cicj|0〉 = 0 (7.15)

for all i and j.

7.2 Normal product

Since 〈0|cic†j|0〉 = (1− ni)δij, one can write

cic
†
j = (1− ni)δij+ : cic

†
j : (7.16)

where : cic
†
j : is defined by the relation,

〈0| : cic†j : |0〉 = 0 (7.17)

The operator : AB : is called normal product between A and B. In the same fashion

c†icj = niδij+ : c†icj : (7.18)
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From these equations one gets (using {ci, c†j} = δij )

cjc
†
i = δij − c†icj = (1− ni)δij− : c†icj : (7.19)

but
cjc
†
i = (1− ni)δij+ : cjc

†
i : (7.20)

: cjc
†
i := − : c†icj : (7.21)

One uses the notation

cic
†
j = (1− ni)δij; c†icj = niδij (7.22)

The operation AB is called contraction of the operators A and B. The contraction is a
number. It is defined as the difference between the ordinary and the normal product of
the operators A and B.

Therefore,

c†ic
†
j = cicj = 0 (7.23)

from where one gets,
c†ic
†
j =: c†ic

†
j :, cicj =: cicj : (7.24)

Wick’s theorem

One can write any product of creation and annihilation operators in normal form by using
the Wick’s Theorem. It says that the product of operators,

A1A2A3 · · ·An−1An (7.25)

where Ai is c†i or ci, can be written as

A1A2A3 · · ·An−1An = : A1A2A3 · · ·An−1An :

+ A1A2 : A3 · · ·An−1An :

− A1A3 : A2 · · ·An−1An :

+ · · · (all single-contractions)

+ A1A2A3A4 : A5 · · ·An−1An :

− A1A3A2A4 : A5 · · ·An−1An :

+ · · · (all double-contractions)

+ · · · (upto n/2-contractions)

(7.26)

The plus or minus sign in each term is determined by the number of permutations one
must do in order to arrive to the final form of the term. An odd (even) number of
permutation gives a minus (plus) sign.

The great property of this theorem is that it allows one to get in a straightforward
fashion the mean value of the product of operators, which is what one usually needs.
This number is just the term without normal products, i. e. the last term in the equation
above.
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We have

〈0| : A1A2A3 · · ·An−1An : |0〉 =〈0|A1A2A3 · · ·An−1An|0〉
− 〈0|A1A2A3 · · ·An−1An|0〉〈0|0〉

=0

(7.27)

The “normal product” of a normal product

:: AB ::= : AB : + :: AB ::=: AB : (7.28)

The best way of understanding how this theorem works is by applying it to simple
cases, We start by the product

c†icj = c†icj + : c†icj : (7.29)

where only one contraction is possible and no permutation is needed to reach the final

value, that is the sign is plus. As expected, one gets, 〈0|c†icj|0〉 = c†icj
The next degree of complication is when two contractions are possible, for instance

c†icjckc
†
l = : c†icjckc

†
l :

+ c†icj : ckc
†
l : − c†ick : cjc

†
l : − cjc†l : c†ick : + ckc

†
l : c†icj :

+ c†icj ckc
†
l − c

†
ick cjc

†
l

(7.30)

one needs one permutation to get the term c†ick : cjc
†
l and therefore a minus sign is added.

The same is done to get the signs of all other terms. The mean value of this operator is,

〈0|c†icjckc
†
l |0〉 = c†icj ckc

†
l − c

†
ick cjc

†
l = niδij(1− nk)δkl − niδik(1− nj)δjl (7.31)

Further examples
We have

: c†ici : c†αc
†
β = + cic

†
α : c†ic

†
β : − cic†β : c†ic

†
α :

+ : c†icic
†
αc
†
β :,

(7.32)

and

c†αc
†
β : c†ici :=− c†αci : c†ic

†
β : + c†βci : c†ic

†
α :

+ : c†αc
†
βc
†
ici :,

(7.33)

from which we get

[: c†ici :, c†αc
†
β] =δiα : c†ic

†
β : −δiβ : c†ic

†
α : . (7.34)

We also have

: c†αc
†
βcγcδ : c†ic

†
j = : c†αc

†
βcγcδc

†
ic
†
j :

− cγc†i : c†αc
†
βcδc

†
j : + · · · (other three single contractions)

− cγc†i cδc
†
j : c†αc

†
β : + cγc

†
j cδc

†
i : c†αc

†
β :

(7.35)
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and one finds, after some algebra

[: c†αc
†
βcγcδ :, c†ic

†
j] =− δγi : c†αc

†
βcδc

†
j : + · · · (other three single contractions)

+ (1− ni − nj)(−δγiδδj + δγiδδj) : c†αc
†
β :

(7.36)

7.3 One-body operator in second quantization

One-body operators depend upon one radial coordinate r only. In second quantization a
one-body operator M̂ can be written as,

M̂ =
∑
pq

〈p|M̂ |q〉c†pcq =
∑
pq

〈p|M̂ |q〉[: c†pcq : + c†pcq] (7.37)

where p and q run over all single-particle states (particle- as well as hole-states). To proof
that this is correct we will evaluate the matrix element of M̂ between two single-particle
states, i. e. (A+1)-states of the form |i〉 = c†i |0〉 for which ni = 0. The final result of this
calculation should be that we get the matrix element itself again.

We then evaluate

〈i|M̂ |j〉 =〈0|ciM̂c†j|0〉 =
∑
pq

〈p|M̂ |q〉〈0|cic†pcqc
†
j|0〉

=
∑
pq

〈p|M̂ |q〉〈0| cic†p cqc
†
j + cic

†
j c
†
pcq |0〉

=
∑
pq

〈p|M̂ |q〉
[
(1− ni)δip(1− nj)δqj + (1− ni)δijnpδpq

]
=(1− ni)(1− nj)〈i|M̂ |j〉+ (1− ni)δij

∑
p

np〈p|M̂ |p〉

(7.38)

and we see that with ni = nj = 0 we get the matrix element we needed, i. e. 〈i|M̂ |j〉, but
that there is also another contribution which appears only when i = j. This corresponds
to the sum of the mean values of M̂ over all hole states. It is the interaction of the
particles in the A-nucleon core among themselves, leaving the particle in the (A+1)-
nucleus untouched. This term is called ”core polarization”.

To avoid polarization effects one defines

M̂ =
∑
pq

〈p|M̂ |q〉 : c†pcq : (7.39)

that is, one assumes that M̂ itself includes polarization. One sees that this avoids the
core polarization term, since one cannot contract the indexes p and q (i. e. the term δpq
in Eq. (7.38)). Therefore the core polarization effects were assumed to be contained in
the operator itself. This procedure is called ”renormalization”. It is done by introducing
some parameters that takes proper account of the polarization. We will see that in
electromagnetic transitions this is done by defining an effective charge for protons and
also for neutrons which, without polarization, has no charge at all.
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7.4 Two-body operator in second quantization

To avoid effects related to the interaction of the particles in the core, as it was the core
polarization effect in the one-particle case above, one defines the two-body operator in
second quantization in normal form, i. e. as,

M̂ =
∑
αβγδ

〈αβ|M̂ |γδ〉 : c†αc
†
βcδcγ : (7.40)

and evaluate the matrix element of this operator between antisymmetrized two-particle
states, i. e. states in the (A+2)-nucleus. Our aim is to show that this procedure will
indeed provide the antisymmetrized matrix element. In this context it is worthwhile to
point out that a great advantage of second quantization is that in the many-particle case
the Pauli principle is automatically taken into account.

The antisymmetrized two-particle states are,

|ij〉a = c†ic
†
j|0〉 =⇒ a〈ij| = 〈0|(c†ic

†
j)
† = 〈0|cjci (7.41)

and the matrix element is,

a〈ij|M̂ |kl〉a =
∑
αβγδ

〈αβ|M̂ |γδ〉〈0|cjci : c†αc
†
βcδcγ : c†kc

†
l |0〉 (7.42)

Since the mean value of operators in normal form vanishes, the terms that survive contain
only contractions. They are,

cjci : c†αc
†
βcδcγ : c†kc

†
l =

[
cic
†
α cjc

†
β − cic

†
β cjc

†
α

][
cγc
†
k cδc

†
l − cγc

†
l cδc

†
k

]
(7.43)

which give,

a〈ij|M̂ |kl〉a =
∑
αβγδ

〈αβ|M̂ |γδ〉
[
(1− ni)δiα(1− nj)δjβ − (1− ni)δiβ(1− nj)δjα

]
×
[
(1− nk)δkγ(1− nl)δlδ − (1− nk)δkδ(1− nl)δlγ

]
=(1− ni)(1− nj)(1− nk)(1− nl)

[
〈ij|M̂ |kl〉a − 〈ji|M̂ |kl〉a

]
− (1− ni)(1− nj)(1− nk)(1− nl)

[
〈ij|M̂ |lk〉a − 〈ji|M̂ |lk〉a

]
(7.44)

In r-representation the matrix element is

〈ij|M̂ |kl〉 =

∫
dr1dr2

(
Ψi(r1)Ψj(r2)

)∗
M̂(r1, r2)Ψk(r1)Ψl(r2) (7.45)

and due to the principle of action and reaction it is, M̂(r1, r2) = M̂(r2, r1) which, ac-
cording to Eq. (7.45), implies 〈ij|M̂ |kl〉 = 〈ji|M̂ |lk〉.

The matrix element antisymmetrized to the right only becomes,

〈ji|M̂ |kl〉a = 〈ji|M̂
[
|kl〉 − |lk〉

]
= 〈ij|M̂

[
|lk〉 − |kl〉

]
= −〈ij|M̂ |kl〉a (7.46)

and Eq. (7.44) becomes,

a〈ij|M̂ |kl〉a = (1− ni)(1− nj)(1− nk)(1− nl) a〈ij|M̂ |kl〉a (7.47)
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which is just what we wanted to show. However, one does not need to take the ma-
trix element with antisymmetric wave functions in bra as well as in ket positions since

a〈ij|M̂ |kl〉a = 2〈ij|M̂ |kl〉a. Therefore to obtain the matrix element 〈ij|M̂ |kl〉a one has to
add a factor 1/4 to the expression (7.40), i. e.

M̂ =
1

4

∑
αβγδ

〈αβ|M̂ |γδ〉 : c†αc
†
βcδcγ : (7.48)

This is the expression that is used in general. We will use it here also.

7.5 Hartree-Fock potential

We found that to avoid core excitations the one-body operator should be defined in terms
of normal products. That is to use : c†αcβ : instead of c†αcβ. It was due to this that we
wrote the two-body operator in normal form also. But in doing so we bypassed what
maybe an important physics. And indeed there is an important physics behind the core
excitations in the case of two-body operators, particularly in the Hamiltonian. This is
what we will explore now.

To this end we write the Hamiltonian H = T +V in a representation consisting of the
eigenvectors of another Hamiltonian. This is often chosen to be an Harmonic oscillator
representation because it is mathematically easy to deal with and also because the nuclear
bound states are well described by Harmonic oscillator potentials, as we have seen in the
previous Chapter. Within the chosen representation (labeled by Greek letters below) the
Hamiltonian becomes,

H =
∑
αβ

〈α|T |β〉c†αcβ +
1

4

∑
αβγδ

〈αβ|V |γδ〉c†αc
†
βcδcγ. (7.49)

Converting to normal form one gets,

H =
∑
αβ

〈α|T |β〉(: c†αcβ : + c†αcβ) +
1

4

∑
αβγδ

〈αβ|V |γδ〉[: c†αc
†
βcδcγ :

+ : c†αcγ : c†βcδ − : c†αcδ : c†βcγ − : c†βcγ : c†αcδ + : c†βcδ : c†αcγ

+ c†αcγ c
†
βcδ − c

†
αcδ c

†
βcγ],

(7.50)

where, as was shown before, we have cic
†
j = (1 − ni)δij and c†icj = niδij. After some

algebra to be performed,

H = E0 +HHF +
1

4

∑
αβγδ

〈αβ|V |γδ〉 : c†αc
†
βcδcγ : (7.51)

where

E0 =
∑
α

nα〈α|T |α〉+
1

2

∑
αβ

nαnβ〈αβ|V |αβ〉a (7.52)
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This is the kinetic energy of particles in the occupied states plus the interaction between
particles placed in any pair of levels of the representation. It is the energy carried by the
core, as can also be seen by noticing that E0 = 〈0|H|0〉.

The one-body Hamiltonian is

HHF =
∑
αβ

(
〈α|T |β〉+

∑
γ

nγ〈αγ|V |βγ〉a

)
: c†αcβ : (7.53)

In this Hamiltonian the levels α and β include all states of the representation. These
are the levels that we will occupied by particles which eventually will be added to the
core. One thus sees that HHF contains the core excitations through the interaction of
particles in all occupied states (called |γ〉 in HHF ) with the rest of the particles (including
those in the core). The Hamiltonian HHF , which is called the Hartree-Fock Hamiltonian,
thus corresponds to the core excitation which in the one-body case were assumed to be
contained in the renormalized operators.

The diagonalization of HHF provides the Hartree-Fock representation. This is not a
very easy task because it is not a linear problem. To see this we write HHF in Dirac
notation, i.e.

HHF =
∑
αβ

|α〉

(
〈α|T |β〉+

∑
γ

nγ〈αγ|V |βγ〉a

)
〈β| (7.54)

and the Hartree-Fock representation will be defined by the eigenvectors {|i〉} given by,

HHF |i〉 = εi|i〉 (7.55)

To solve this eigenvalue problem we multiply by 〈α| from the left to get,∑
β

(
〈α|T |β〉+

∑
γ

nγ〈αγ|V |βγ〉a

)
〈β|i〉 = εi〈α|i〉 (7.56)

and the eigenvectors are obtained by imposing the normalization condition,

|i〉 =
∑
α

〈α|i〉|α〉, 〈i|i〉 = 1 (7.57)

Within the representation {|i〉} it should be

〈j|HHF |i〉 = εiδij (7.58)

If it is not then one uses as representation these vectors {|i〉} (instead of the one labeled
by Greek letters) to obtained new eigenvectors, which we call {|i′〉}, satisfying

HHF |i′〉 = εi′ |i′〉, |i′〉 =
∑
i

〈i|i′〉|i〉 (7.59)

If the condition 〈j′|HHF |i′〉 = ε′iδi′j′ is still not fulfilled, then one proceeds as before and
chooses {|i′〉} as representation. One repeats this procedure until one arrives after n
attempts, to

〈j(n)|HHF |i(n)〉 = εi(n)δi(n)j(n) (7.60)

and the states {|i(n)〉} form the Hartree-Fock representation.
This representation is used very often in shell model studies. It has the advantage

of being based in a fully microscopical formalism. This can be contrasted with the one
obtained as diagonalization of the shell model potential discussed in the previous Chapter.
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7.6 Two-particle Random Phase Approximation (RPA)

In this Section we will study the dynamics of the (A+2)- and (A-2)-nuclei, that is of two
nucleons added or subtracted from the core. For this we will write the Hamiltonian in the
Hartre-Fock representation which we will label with Greek as well as Latin letters. It is,

H =
∑
α

εα : c†αcα : +
1

4

∑
αβγδ

〈αβ|V |γδ〉 : c†αc
†
βcδcγ : (7.61)

where εα is the Hartrre-Fock single-particle energy. The constant energy E0, Eq. (7.52),
is not included because all eigenvalues of the Hamiltonian (7.61) will be referred to the
core and, therefore, E0 plays no role.

To obtain the two-particle energies we evaluate the commutator,[
H, c†αc

†
β

]
=
∑
i

εi

[
: c†ici :, c†αc

†
β

]
+

1

4

∑
ijkl

〈ij|V |kl〉
[
: c†ic

†
jclck :, c†αc

†
β

]
=(εα + εβ)c†αc

†
β +

1

2
(1− nα − nβ)

∑
ij

〈ij|V |αβ〉ac†ic
†
j

− 1

2

∑
ijl

〈ij|V |βl〉a : c†ic
†
jclc

†
α : +

1

2

∑
ijl

〈ij|V |αl〉a : c†ic
†
jclc

†
β :

(7.62)

One sees in this equation that the two-particle creation operators are mixed with three-
particle one-hole excitations, that is with core excitation components. In the Random
Phase Approximation (RPA) one neglects the core excitations, that is terms of the form
〈n2| : c†ic

†
jc
†
αcl : |0〉, because they are supposed to generate states which lie high in the

spectrum, thus having little influence over the low-lying two-particle states. With this
and noticing that,

H|n2〉 = En2|n2〉, H|0〉 = E0|0〉 (7.63)

one gets,

〈n2|
[
H, c†αc

†
β

]
|0〉 =(En2 − E0)〈n2|c†αc

†
β|0〉

=(εα + εβ)〈n2|c†αc
†
β|0〉+ (1− nα − nβ)

∑
i<j

〈ij|V |αβ〉a〈n2|c†ic
†
j|0〉

(7.64)

which is the RPA equation. The term 1− nα − nβ in the RPA equations shows that one
can place two particles above the Fermi level, in which case it is 1−nα−nβ = 1, or below
it (1− nα − nβ = -1). These two forms of excitations are mixed to each other, given rise
to the so-called RPA correlations. This also implies that within the RPA one evaluates
simultaneously the (A+2)- and (A-2)-systems and, therefore, there is an influence of one
system upon the other.

With ωn2 = En2 − E0 the RPA equation can be written in matrix form as

ωn2

(
Xn2

Yn2

)
=

(
A B
−C −D

)(
Xn2

Yn2

)
(7.65)

where Xn2(αβ) = 〈n2|c†αc
†
β|0〉 with α and β particle states and Yn2(αβ) = 〈n2|c†αc

†
β|0〉 but

with α and β hole states. In the same fashion the indices of A are all particle states
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and the indices of D are all hole states. Instead in the matrices B and C the indices are
mixed. For instance C(αβγδ) = 〈γδ|V |αβ〉a, where α and β are hole states while γ and
δ are particle states. Notice that the minus sign in front of the matrices C and D comes
from the factor 1 − nα − nβ in Eq. (7.64). Due to this, the RPA matrix (7.74) is not
Hermitian and, therefore, the energies ωn2 can become complex quantities.

Eq. (7.74) can also be written as,

ωn2

(
Xn2

Yn2

)
=

(
A B
C D

)(
Xn2

−Yn2

)
(7.66)

and taking the adjoint of this equation one gets,

ω∗n2
(X∗n2

, Y ∗n2
) = (X∗n2

,−Y ∗n2
)

(
A B
C D

)
(7.67)

where the properties A† = A, D† = D, C† = B (and, therefore, C = B†) were used.

Multiplying Eq. (7.67) to the right by

(
Xm2

−Ym2

)
and using Eq. 7.66 one gets,

(ω∗n2
− ωm2)(X

∗
n2
, Y ∗n2

)

(
Xm2

−Ym2

)
= 0 (7.68)

If n2 6= m2 this Equation implies that

(X∗n2
, Y ∗n2

)

(
Xm2

−Ym2

)
= 0 (7.69)

and normalizing it to unity one gets,∑
α≤β

(1− nα − nβ)〈n2|c†αc
†
β|0〉

∗〈m2|c†αc
†
β|0〉 = δn2m2 (7.70)

which defines the RPA scalar product, or metric. In functional analysis it is also called
indefinite inner product.

The two-particle state can be written as,

|n2〉 =
∑
α≤β

X(αβ, n2)c†αc
†
β|0〉 (7.71)

and multiplying by 〈m2| one gets

δn2m2 =
∑
α≤β

X(αβ, n2)〈m2|c†αc
†
β|0〉 (7.72)

since the basis elements form an independent set one finds, comparing with Eq. (7.70),

X(αβ, n2) = (1− nα − nβ)〈n2|c†αc
†
β|0〉

∗ (7.73)

which is the RPA wave function amplitude.
As an example, we evaluate the energy of the a system with one particle orbital (α)

and one hole orbital (β). The RPA equation can be written in a 2× 2 matrix form as

ωn2

(
x
y

)
=

(
A B
−C −D

)(
x
y

)
. (7.74)
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We have A = 2εα+〈αα|V |αα〉JT where JT denote the spin and isospin of the two particle
state. D = −2εβ + 〈ββ|V |ββ〉JT . B = C = 〈αα|V |ββ〉JT . In such a case we get two

solutions for the eigen values, ωn2 = A−D
2
±
√(

A−D
2

)2
+ AD − C2 , corresponding to the

particle-particle and hole-hole excitations respectively. For a system with no particle-hole
correlation, we get ωn2 = A for the two-particle state and ωn2 = −D for the two-hole
state.

7.7 Tamm-Dankoff Approximation (TDA)

We will concentrate in the shell model in this course, and here one has either two-particle
or two-hole excitations, and the (A+2) and (A-2) systems are independent of each other.
The shell model cases are actually particular cases of the RPA since one gets them by
imposing the condition that only particles can occupied particle states and only holes can
occupied hole states. This is called Tamm-Dankoff approximation (TDA).

This approximation implies that the matrices B and C vanish in Eq. (7.74). The
particle- and hole-states decoupled and the RPA equation transforms in two TDA equa-
tions, one for particle states, i. e.

ωn2Xn2 = AXn2 (7.75)

and the other one for hole states,

−ωn2Yn2 = DYn2 (7.76)

Since the matrices A and D are Hermitian the energies are real, as they should be.
We will study these two cases separately starting from Eq. (7.64). For the two-particle

case the TDA thus means nα = nβ = 0. That is

〈n2|
[
H, c†αc

†
β

]
|0〉 =(En2 − E0)〈n2|c†αc

†
β|0〉

=(εα + εβ)〈n2|c†αc
†
β|0〉+

∑
i<j

〈ij|V |αβ〉a〈n2|c†ic
†
j|0〉

(7.77)

which is the TDA equation. It is also the shell model equation, which we will apply in
the next Chapter.

The equation for the two-hole states is better obtained starting from the transverse

of the RPA operator form, i. e. by performing the operation
[
H, c†αc

†
β

]†
= (Hc†αc

†
β)† −

(c†αc
†
βH)† =cβcαH −Hcβcα = [H, cαcβ] in Eq. (7.62). One thus obtains,

[H, cαcβ] =− (εα + εβ)cαcβ − (1− nα − nβ)
∑
i<j

〈ij|V |αβ〉acicj (7.78)

where the contribution from three-particle one-hole operators have been neglected. Since
the single-particle levels are hole states, one has (1−nα−nβ) = -1 and the TDA equation
for the states |n2〉 in the (A-2) nucleus is

〈n2| [H, cαcβ] |0〉 =(En2 − E0)〈n2|cαcβ|0〉

=− (εα + εβ)〈n2|c†αc
†
β|0〉+

∑
i<j

〈ij|V |αβ〉a〈n2|cicj|0〉 (7.79)
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This TDA equation is also the shell model equation for two-hole states. It is usually
written as,

ω(n2)〈n2|cαcβ|0〉

=(εα + εβ)〈n2|c†αc
†
β|0〉 −

∑
i<j

〈ij|V |αβ〉a〈n2|cicj|0〉 (7.80)

and the eigenvalues ω(n2) = −(En2 − E0) are minus the energies of the (A-2)-nucleus
referred to the ground state of the A-nucleus, i. e. to the core. Remember that for
convention these energies are minus the binding energies (with this convention the binding
energies are all positive). The binding energy of a nucleus increases with the nuclear
number A. Therefore En2 −E0 > 0 and ω(n2) < 0. The eigenvalues of the TDA equation
for the (A+2) nucleons, Eq. (7.77), are also negative, as it should be for bound states.
The difference between particles and holes is that for holes the interaction contributes
with a minus sign, as seen in Eq. (7.80).

The TDA wave function can be written in the two-particle basis {c†αc
†
β|0〉}, where it

should be α < β because the states αβ and βα are related by {c†αc
†
β|0〉} = -{c†βc†α|0〉}.

One thus gets,

|n2〉 =
∑
α<β

X(αβ;n2)c†αc
†
β|0〉 (7.81)

The TDA eigenvectors 〈n2|c†αc
†
β|0〉 and the wave function amplitudes X are related by,

〈m2|n2〉 = δm2n2 =
∑
α<β

X(αβ;n2)〈m2|c†αc
†
β|0〉 (7.82)

since the basis states c†αc
†
β|0〉 form an independent set of unit vectors, it should be

X(αβ;n2) = 〈n2|c†αc
†
β|0〉∗.

For a system with two particles in one orbital α, we simply have ωn2 = 2εα +
〈αα|V |αα〉JT where JT denote the spin and isospin of the two particle state.
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7.8 Homework problems

Exercise 1:
a) Write the operator c+

p cq in normal form.
b) Write the operator c+

p c
+
q crcs in normal form.

Exercise 2:
a) Write the Hamiltonian H =

∑
αβ < α|T |β > c+

α cβ+ 1
4

∑
αβγδ < αβ|V |γδ > c+

α c
+
β cδcγ

in normal form and extract the Hartree-Fock potential.
b) Evaluate < 0|H|0 >.

Exercise 3:
Write the operator : c+

p c
+
q crcs :: c+

i c
+
j : in normal form.

Exercise 4:
a) With the Hamiltonian H written in the Hartree-Fock representation, i. e. H =∑
α εα : c+

α cα : +(1/2)
∑

αβγδ < αβ|V |γδ >: c+
α c

+
β cδcγ : evaluate the commutator [H, c+

α c
+
β ]

in normal form and extract the two-particle RPA equation.
b) Starting from the RPA metric deduce the metric of the TDA space.


