One-body operators depend upon one radial coordinate r only. In second quan-
tization a one-body operator M can be written as,

M=) (p|M|q)cie,
Pq

where p and ¢ run over all single-particle states (particle- as well as hole-states).



To proof that this is correct we will evaluate the matrix element of M between two
single-particle states, i. e. (A+1)-states of the form |i) = c||0) for which n; = 0.
The final result of this calculation sould be that we get the matrix element itself
again.

We then evaluate

(i M]5) =(0le:Mc}|0) = Y (plM]q) (Oleicieqe|0)

Pq

= (P M|g)(0] cich coct + cict e, [0)
Pq

A (1)
=Y (p|M]|q) [(1 = 1:)0ip(1 = 15)0; + (1 — n“')‘sijn”dp"]

=(1 = n:)(1 = ny) (3| M5) + (1 = n:)8; Y my(p| M|p)

and we see that with n; = n; = 0 we get the matrix element we needed, i. e.
(i|M|5), but that there is also another contribution which appears only when 7 = j.
This corresponds to the sum of the mean values of M over all hole states. It is
the interaction of the particles in the A-nucleon core among themselves, leaving the
particle in the (A+1)-nucleus untouched. This term is called ” core polarization”.



"

To avoid polarization effects one defines

M=) (p|M]|g): cle, :
Pq

that is, one assumes that M itself includes polarization. One sees that this avoids
the core polarization term, since one cannot contract the indeces p and ¢ (i. e. the
term J,, in Eq. (1)).



To avoid effects related to the interaction of the particles in the core, as it was
the core polarization effect in the one-particle case above, one defines the two-body
operator in second quantization in normal form, i. e. as,

M = Z(ath&) : chLcac,, : (2)
a6

and evaluate the matrix element of this operator between antisymmetrized two-
particle states, i. e. states in the (A+2)-nucleus. Our aim is to show that this
procedure will indeed provide the antisymmetrized matrix element. In this context



The antisymmetrized two-particle states are,

i) = clc}|0) = a(ij] = (0l(cle})" = (Oleje: (7.41)
and the matrix element is,
o(i5| Mkl)o =Y " (aB|M|y6)(0lc;c: : clchese, : clcf|0) (7.42)
afvyé

Since the mean value of operators in normal form vanishes, the terms that survive contain
only contractions. They are,

CiCi el c}),c Cy chf [c,c}; cjc:g — cz-c:',’, cch ] [c,ycL 0503 — c7c2‘ ctsc;fc ] (7.43)
which give,
o(id| M|kl)o =Y (| M |y8) [(1 — n;)0ia(1 —n;)dj8 — (1 —ni)dis(1 — "j)5ja]
afvyé

X [(1 — nk)5k7(1 — Tl.[)(sw — (1 w— nk)éka(l — n[)éh]
=(1 = n)(1 = ;) (1 = ) (1 = ) (35|l — (Gl TR,
— (L= ma)(1 = ) (1 — i) (1 — ) | (i | M|k — (G| BT L)

(7.44)
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The matrix element antisymmetrized to the right only becomes,
(ji| M|kl), = (il M [|kl) — |Ik)] = (35| M [|k) — |kD)] = — (5] M|kl),
and Eq. (3) becomes,

a(zJ|M|kl>a (1 —n:)(1 —n)(1 —n)(1 — i), (3.7|M|kl>a

The Hamiltonian becomes,

H= z(alTlﬁ)c'c,g+ Z(aﬁ[VhJ)c'cscac..
0816
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One-body operators depend upon one radial coordinate r only. In second quan-
tization a one-body operator M can be written as,

~ N n  —
M=) (p|Ml|g)cie, = Y (p|M]q)[: cheq : +cley)
Pq Pq

(i| M|5) =(0le:Mcl|0) = " (p| M]g)(0|eicheqct|0)

= > (plM) (0] eic) egc] + cic] e [0)
Pq

= 3 (pIT1g) [(1 = mo)6ip (1 = )6s + (1= 1)y
Pq

=(1 —n;)(1 — ;) (i|M]5) + (1 = n:)é;; Y _ ny(p| M|p)

Two-body operator

M = Z(aBM;IhJ) : ¢l chese,
afvyé



We found that to avoid core excitations the one-body operator should be defined
in terms of normal products. That is to use : clcs : instead of clcg. It was due
to this that we wrote the two-body operator in normal form also. But in doing so
we bypassed what maybe an important physics. And indeed there is an important

H= Z(a|T|;9 cleg + = 1 Z(aﬁIVlfycS)cT ChCsC-

af3vé

Converting to normal form one gets,

H= Zﬁ:alTlﬂ )(:cles : +cfc,3)+ ;(aﬁlVlvd)[ cl chese, -
lﬁ l—l ! 1 . |

. f - T -
+:cle,: ChCs — cches ChCy — c,sc,7 P ChCs+ 1 CyCs clc,

1 | 1

+Qg%q—dq%q



After some algebra to be performed,

1
H = Ey+ Hur + 1 Z(aﬁWhJ) : ch:gcacy :
afvé

where

Bo =Y na(alTla) + 3 Y (@BIV]ag). ©)
o af

This is the kinetic energy of particles in the occupied states plus the interaction
between particles placed in any pair of levels of the representation. It is the energy
carried by the core, as can also be seen by noticing that Ey, = (0|H|0).

The one-body Hamiltonian is

Hur =) ((alTlﬂ) + 2m(a7IVlﬁv)a)  ches :

al

In this Hamiltonian the levels a and [ include all states of the representation. These
are the levels that we will occupied by particles which eventually will be added to the



The one-body Hamiltonian is

Hyp=) ((alTlﬁ) + va(a’YlvlﬂW)a) cles :

af

In this Hamiltonian the levels a and 3 include all states of the representation. These
are the levels that we will occupied by particles which eventually will be added to the
core. One thus sees that Hyr contains the core excitations through the interaction
of particles in all occupied states (called |y) in Hyp) with the rest of the particles
(including those in the core). The Hamiltonian Hyp, which is called the Hartree-
Fock Hamiltonian, thus corresponds to the core excitation which in the one-body
case were assumed to be contained in the renormalized operators.




The diagonalization of Hyr provides the Hartree-Fock representation. This is
not a very easy task because it is not a linear problem. To see this we write Hy
in Dirac notation, i.e.

Hyp = zﬁ: ) (<0|T|5) + va(aleI&/)a) (8

and the Hartree-Fock representation will be defined by the eigenvectors {|7)} given

by,
HHF|Z'> — Ei|i>

To solve this eigenvalue problem we multiply by (a| from the left to get,

> ((aITIﬂ) - an(aﬂflVlﬂv)a> (Bl3) = e(ali)

3

and the eigenvectors are obtained by imposing the normalization condition,

i) = (elidla), (ils) =1

(83

Within the representation {|7)} it should be

(J|Hyurl|i) = €:dy;



In this Section we will study the dynamics of the (A+2)- and (A-2)-nuclei, that

is of two nucleons added or substracted from the core. For this we will write the
Hamiltonian in the Hartre-Fock representation which we will label with greek as

well as latin letters. It is,

H = ZE" Ly +% Z(aﬂ|V|76) : chLcac,y ; (7)
a afyd

where €, is the Hartrre-Fock single-particle energy. The constant energy Eq, Eq.
(6), is not included because all eigenvalues of the Hamiltonian (7) will be referred

to the core and, therefore, Ey plays no role.




To obtain the two-particle energies we evaluate the commutator,

[ ] ZE‘[ cle; QCB] Z(zJ|V|kl)[ clc,c , LCL]

=(gq + sg)cgcg + (1 — ng — ng) Z(zﬂVlaﬁ)aczc} (8)
i<j
+ ZZ(zj|V|ﬁl ¢l c cle: —ZZ(Z]lVlal ch,
1<J i<j

One sees in this equation that the two-particle creation operators are mixed with
three-particle one-hole excitations, that is with core excitation components. In the
Random Phase Approximation (RPA) one neglects the core excitations, that is terms
of the form (n,| : ¢! ;c}‘,c; |0), because they are supposed to generate states which

lie high in the spectrum, thus having little influence over the low-lying two-particle



I

one gets,
(nal | H, clich | 10) =(Bny — Eo)(malcfc}[0)
=(ea + &5) (malcle}|0) + (1 = na = n5) D65V ]aB)a(nalclc]0)

i<j

which is the RPA equation. The term 1 —n, —ng in the RPA equations shows that
one can place two particles above the Fermi level, in which case it is 1 —n, —ng =
1, or below it (1 —n, —ng = -1). These two forms of excitations are mixed to each
other, given rise to the so-called RPA correlations. This also implies that within
the RPA one evaluates simultaneously the (A+2)- and (A-2)-systems and, therefore,
there is an influence of one system upon the other.



—

With w,,, = E,, — E; the RPA equation can be written in matrix form as

()= (% %) (3%) ®
where X,,,(af) = (ngchcL|O) with o and 3 particle states and Y,,,(a8) = (n2|c};cL|O)
but with a and 8 hole states. In the same fashion the indices of A are all particle
states and the indices of D are all hole states. Instead in the matrices B and C
the indices are mixed. For instance C(af87vd) = (vé|V|aB)., where o and § are
hole states while v and ¢ are particle states. Notice that the minus sign in front of

the matrices C' and D comes from the factor 1 — n, — ng in Eq. (9). Due to this,

the RPA matrix (10) is not Hermitian and, therefore, the energies w,, can become
complex quantities.



The two-particle state can be written as,
In2) = Y X(aB, na)clch|0)
a<f
and multiplying by (ms| one gets
Onsma = ) X (0B, o) (malclch|0)
a<f

since the basis elements form and independent set one finds, comparing with Eq.

(13),
X (e, ny) = (1 — na — ng)(ny|clch|0)”

which is the RPA wave function amplitude.
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p-h phonon operator Q" = EXm,ama, - 2 mia;am

\_H,Q*J=ha)Q+ O RPA)=0

Fermi Energy I
\J

RPA equation “
A B\ X 1 0Y\/X
. = hw
ml nj (8 — & )6mn5y + vm]m
B

mi I’l] ml’ll]
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The difference between TDA and RPA is that we use
» The simple particle-hole vacuum |HF> in TDA

» The correlated ground state in the RPA

Sh 1 €h2 Ep 1 8p2 /
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We will concentrate in the shell model in this course, and here one has either
two-particle or two-hole excitations, and the (A+2) and (A-2) systems are indepen-
dent of each other. The shell model cases are actually particular cases of the RPA
since one gets them by imposing the condition that only particles can occupied par-
ticle states and only holes can occupied hole states. This is called Tamm-Damkoff
approximation (TDA).

This approximation implies that the matrices B and C vanish in Eq. (10). The
particle- and hole-states decoupled and the RPA equation transforms in two TDA
equations, one for particle states, i. e.

and the other one for hole states,
_wn2 Yn2 — D Yn2

Since the matrices A and D are Hermitians the energies are real, as they should be.



o
(nal [H, clch] 10) =(En, — Eo)(male],chl0)
=(ea + £8)(malelcl0) + 3 i1V |aB)a(nalclc] o)

i<j

(14)
which is the TDA equation. It is also the shell model equation, which we will apply
in the next Chapter.

For holes

(no| [H, cacg] |0) =(En, — Eo)(nz|cacs|0)
= — (e + £5)(nalchch|0) + Y (ij|V]aB)u(nslcic;|0)

1<j



\

The TDA wave function can be written in the two-particle basis {cl,c5|0) }, where
it should be o < f because the states /3 and B are related by {clch|0)} = -
{ckcl|0)}. One thus gets,

In2) =) X (afB;na)chch|0) (16)

a<f

The TDA eigenvectors (n2|c’gc};|0) and the wave function amplitudes X are related
by,
(Ma|ns) = Gmyn, = » | X (aB;m2)(maclch|0)

a<f3

since the basis states chL|0) form an independent set of unit vectors, it should be
X (0 na) = (malcl,ch|0)"



