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Learning aims

After this lecture, you should
e know how to transform a continuous-time linear system to discrete-time
e be able to formulate and solve a finite-horizon LQR problem
- by minimizing a quadratic form, or
- via dynamic programming
e be able to characterize the stationary optimal solution
e understand the principle behind receding-horizon optimal control
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Computer-controlled systems

time time

Output sampled every h seconds, control constant between samples
- how does state evolve between sampling instances?
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Plant dynamics at sampling instants

Recall that
h
i(t) = Ax(t) + Bu(t) = x(t + h) = eMa(t) +/ e Bu(s) ds
5=0
so if u is held constant during sample interval u(t) = u, t € [t,t + h)

h
z(t+h) = Apx(t) + Bpu, (AD = Bp = / e B ds>
s=0

y(t) = Cx(t) + Duy

A discrete-time linear system!
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Discrete-time linear systems

For notational convenience, we drop reference to physical time and write

Tpy1 = Az + Buy
yr = Cxy + Duy

where
- {uo,u1,...} is an input sequence
- {yo,1,-..} is the output sequence
- {zo,1,...} is the state evolution

System is stable if all eigenvalues of A are less than one in magnitude
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Discrete-time linear systems

Some system theory for discrete-time linear systems (Book Ch. 2.2, 3.7, 4)
System is controllable if S(4,B)=[B AB A?B ... A""!B]is full rank.

System is observable if
C
CA
O(4,0) =
CAn—l
has full rank

Observer-based controllers have the form
Iy = Ay + Bug + K (ye — )
up = — LIy
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Finite-horizon LQR problem

Find control sequence
U = {ug,...,un—1}

that minimizes the quadratic cost function
N-1
JU) = Y (@l Qua + uf Qaur) + 2K Qran
k=0

for given state cost, control cost, and final cost matrices
Q=Q">0, R=R">0, Q;=Q7>0

N is called the horizon of the problem. Note the final state cost.
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Finite-time LQR via least-squares

Note that X = (zo,...,zn) is a linear function of zo and U = (uo,...,un_1)

0 0 0 e 0 w I
z1 B 0 0 uO A
x| = | AB B 0 - Va2
EN ANS1g an“2p L. g Luv—r AN
Can express as
X =GU + Hzxg
where G € RV»*Nm g ¢ RNnxn
2E1252 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se




Finite-time LQR via least-squares

Can express finite-horizon cost as

Q1 0 - 0 Qs 0 o 0
Joy=x7|% 0 X +U7 0 =
0 Q1 0 : 0 Q2 0
0 0 Q 0 - 0 Q
—  ——
Q. 2,

= (GU + Hx0)TQ,(GU + Hzo) + UTQ,U =
=UT(G"Q,G + Qu)U + 22T HTQ,GU + 2T HTQ Hay =
= UTPLoU + 241U + 110
so optimal control is
U* = —Praarq
for which
J(U*) =riq — aioProae
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Example

LQR problem for system
11 0
Tpy1 = [0 1] T+ [1] U, C=[1 0]z
@Q=Q;=C"C,  R=pI
with horizon length 20. Results for p =10 (blue) and p = 1(red)

2 4 6 14 16 18 20

10 12
Iteration
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LQR via dynamic programming

Optimal LQ control can be found recursively using Dynamic Programming

Fort=0,...,N define the value functionV, : R" — R by

N-1
Vi(z) = min ; (z{ Qo + uf Qoue) + 2} Qran

subject to @41 = Az + Buy, xp = 2
Vi(2) gives the minimum LQR cost-to-go, starting from state z at time k

Note that
- Vo(wo) is the minimal LQR cost (from state zjat time 0)
- the cost-to-go with no time left is the quadratic final state cost

Vn(z) = 2TQ;z
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Dynamic programming principle

Assume that we know V;;1(z), what is the optimal choice for u; ?

The choice of u; affects
- cost incurred in current step (through u? Qou;)
- the next state z:11 (hence, the cost-to-go from z;4+1)

Dynamic programming (DP) principle

Vi(z) = Il’gn (27 Q12 + wT' Qow + Vi1 (A2 + Bw))

Follows from the fact that we can minimize in any order

min, flureeevn) =i (i Son,. )
i3 wy  \ Wa,..., W

a function of w,
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Hamilton-Jacobi-Bellman equation

The recursion
Vi(z) = 2T Q12 + IIBH (W' Q2w + Viy1(Az + Buw))

is called the Dynamic Programming, Bellman or Hamilton-Jacobi equation

Any minimizing w gives optimal control at time t

uj = argmin (v’ Qow + Vi1 (A2 + Bw))
w
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The HIB equation for LQR

Assume that V;,4(z) = 27 P41z for some Py = PL, >0 (holds for t +1 = N)

Then,
V,=2TQz + ngn (w"Qaw + (A2 + Bw)" Piy1(Az + Bw)) =
=2"Quz + min (w"(Q2 + B Py Byw + 22" AP Bu + 2T ATP 1 Az) =
=T (Qu+ ATPy1A— ATP 1 B(Qo+ BTPruiB) ' BP 1 A) 2 = 2T Pz

with optimal control

uf = —(Q2+ BTPy1B) ' BT Py Ay
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Summary of LQR via DP

1. set Py =Qf

2. fort=NN-1,...,1

Py =Qi+ATPA- ATP,B(Q,+ BTP,B) 'BTPA
3. fort=0,1,....N—1

L= (Q2+B"P1B)"'BTP 1 A

uj = —Lyay

Notes:
- optimal control is a linear function of the state

- recursion for minimum cost-to-go runs backwards in time
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Example

Same system as earlier. Investigate how elements of P and L converge

10 12
lteration

Rapid convergence to stationarity as t drops below horizon N!
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Steady-state regulator

Usually, P; converges rapidly as ¢t decreases below N

The stationary solution satisfies
P=Q, +ATPA—- ATPB(Q,+ BTPB)"'BTPA

(called the discrete-time algebraic Riccati equation)

When N is large, and t is not too close to N, optimal input approaches
w=—Ly; L= (Q2+B"PB)"'B"PA

(perfect agreement when N is infinite). A linear state feedback!
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Receding horizon LQR

Consider the cost function
k+K—1

Ti(g, .o Uy —1) = Z (2] Quae +uf Qaws) + xh k QTrti
=k

Here, K is called the horizon, and if
(Wes - U re—1)

minimizes J,, then u} is called K-step optimal receding horizon control

Receding-horizon control:

- at time k, find input sequence that minimizes K-step ahead LQR cost
(starting at time k)

- then apply only the first element of the input sequence
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Closed-loop system

If horizon tends to infinity, then control coincides with stationary LQR
- closed-loop system

%441 = (A— BL)xy

stable under mild conditions ( (A,B) controllable, (Q,A) observable)

In general, optimal K-step ahead LQR control is time-varying and
closed-loop not necessarily stable if horizon too short.
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Example

Consider a discrete-time system with

sy

and the the receding horizon control problem given by

le{(l) ?:|7 Q=1 Qp=Q:

The one-step optimal receding-horizon control is
uy=—(1+BTB)'BTAz=[1 0]z
N—_— ———
L

which yields an unstable closed-loop system

11
L1 = (A - BL)iI?t = [1 O:| Tt
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Closed-loop system cont’d

Two ways to ensure closed-loop stability:
1. use a different terminal cost. In particular Q; = P where

P=Q+ATPA—- ATPB(Q,+ BT"PB)'BTPA
(i.e. P solves the discrete-time ARE) ensures stability.
Why? Receding horizon-control is then (independent of t)
up=—-Lz; L=(Q2+B"PB)"'B"PA
and the associated closed-loop system is stable since
observability and controllability conditions are met.

2. Use longer horizon, so that control approaches stationary optimal
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Summary

“Sampling of systems”
- convert continuous-time system model to discrete-time
— states agree at sampling instances (if control is held constant)

The finite-time linear quadratic regulator
- by quadratic optimization or dynamic programming
- stationary solution and infinite-horizon LQR

Receding-horizon principle
- compute optimal input sequence over finite-time horizon,
apply first element in sequence, re-optimize next sampling instant

- stability if sufficient horizon, or “right” terminal constraint

Next week: model predictive control (receding horizon with constraints)
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