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Model predictive control 
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Learning aims 

After this lecture, you should 
•  know how to transform a continuous-time linear system to discrete-time 
•  be able to formulate and solve a finite-horizon LQR problem 

–  by minimizing a quadratic form, or 
–  via dynamic programming 

•  be able to characterize the stationary optimal solution 
•  understand the principle behind receding-horizon optimal control 

 
 

 
 
Output sampled every h seconds, control constant between samples 

–  how does state evolve between sampling instances? 

Computer-controlled systems 
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Plant dynamics at sampling instants 

Recall that 
 
 
 
so if u is held constant during sample interval 
 
 
 
 
A discrete-time linear system!  
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ẋ(t) = Ax(t) +Bu(t) ) x(t+ h) = e

Ah
x(t) +

Z h

s=0
e

As
Bu(s) ds

u(t) = ut, t 2 [t, t+ h)

x(t+ h) = ADx(t) +BDut

 
AD = e

Ah
, BD =

Z h

s=0
e

As
B ds

!

y(t) = Cx(t) +Dut
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Discrete-time linear systems 
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For notational convenience, we drop reference to physical time and write 
 
 
 
where 

–                   is an input sequence 
–                   is the output sequence 
–                   is the state evolution 

System is stable if all eigenvalues of A are less than one in magnitude   

xk+1 = Axk +Buk

yk = Cxk +Duk

{u0, u1, . . . }

{x0, x1, . . . }
{y0, y1, . . . }

Discrete-time linear systems 

Some system theory for discrete-time linear systems (Book Ch. 2.2, 3.7, 4) 
 
System is controllable if                                                      is full rank. 
 
System is observable if                            
 
 
 
 
has full rank 
 
Observer-based controllers have the form 
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x̂t = Ax̂t +But +K(yt � ŷt)

ut = �Lx̂t

S(A,B) =
⇥
B AB A2B . . . An�1B

⇤

O(A,C) =

2

6664

C
CA
...

CAn�1

3

7775

Finite-horizon LQR problem 

Find control sequence  
 
 
that minimizes the quadratic cost function 
 
 
 
for given state cost, control cost, and final cost matrices 
 
 
 
N is called the horizon of the problem. Note the final state cost. 
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J(U) =
N�1X

k=0

(xT
kQ1xk + u

T
kQ2uk) + x

T
NQfxN

U = {u0, . . . , uN�1}

Q = QT � 0, R = RT > 0, Qf = QT
f � 0

Finite-time LQR via least-squares 

Note that                        is a linear function of     and 
 
 
 
 
 
 
 
Can express as 
 
 
where 
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x0

X = GU +Hx0

U = (u0, . . . , uN�1)X = (x0, . . . , xN )

G 2 RNn⇥Nm, H 2 RNn⇥n

2

666664

x0

x1

x2
...

xN

3

777775
=

2

666664

0 0 · · · 0
B 0 · · · 0
AB B 0 · · ·
...

...
A

N�1
B A

N�2
B · · · B

3

777775

2

6664

u0

u1
...

uN�1

3

7775
+

2

666664

I

A

A

2

...
A

N

3

777775
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Finite-time LQR via least-squares 
Can express finite-horizon cost as 
 
 
 
 
 
 
 
 
 
 
so optimal control is 
 
for which 
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J(U?) = rLQ � qTLQP
�1
LQqLQ

U? = �P�1
LQqLQ

J(U) = XT

2

66664

Q1 0 · · · 0

0
. . . 0

...
... 0 Q1 0
0 · · · 0 Qf

3

77775

| {z }
Q1

X + UT

2

66664

Q2 0 · · · 0

0
. . . 0

...
... 0 Q2 0
0 · · · 0 Q2

3

77775

| {z }
Q2

U =

= (GU +Hx0)
TQ1(GU +Hx0) + UTQ2U =

= UT (GTQ1G+Q2)U + 2xT
0 H

TQ1U + xT
0 H

TQ1Hx0 =

:= UTPLQU + 2qTLQU + rLQ

= (GU +Hx0)
TQ1(GU +Hx0) + UTQ2U =

= UT (GTQ1G+Q2)U + 2xT
0 H

TQ1GU + xT
0 H

TQ1Hx0 =

:= UTPLQU + 2qTLQU + rLQ

Example 
LQR problem for system 
 
 
 
with horizon length 20. Results for          (blue) and        (red) 
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xk+1 =


1 1
0 1

�
xt +


0
1

�
ut, C =

⇥
1 0

⇤
xt

Q1 = Qf = C

T
C, R = ⇢I

⇢ = 1⇢ = 10
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y t

LQR via dynamic programming 

Optimal LQ control can be found recursively using Dynamic Programming 
 
For                 define the value function                 by 
 
 
 
 
 
        gives the minimum LQR cost-to-go, starting from state z at time k 
 
Note that 

–           is the minimal LQR cost (from state    at time  ) 
–  the cost-to-go with no time left is the quadratic final state cost 
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t = 0, . . . , N Vt : Rn 7! R

Vk(z) = min

uk,··· ,uN�1

N�1X

t=k

�
x

T
t Q1xt + u

T
t Q2ut

�
+ x

T
NQfxN

subject to xt+1 = Axt +But, xk = z

Vk(z)

V0(x0) x0 0

VN (z) = zTQfz

Dynamic programming principle 

Assume that we know          , what is the optimal choice for    ? 
 
The choice of    affects  

–  cost incurred in current step (through          ) 
–  the next state        (hence, the cost-to-go from       ) 

Dynamic programming (DP) principle 
 
 
 
Follows from the fact that we can minimize in any order 
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Vt+1(z) ut

uT
t Q2ut

xt+1 xt+1

ut

Vt(z) = min
w

�
zTQ1z + wTQ2w + Vt+1(Az +Bw)

�

min

w1,...,wk

f(w1, . . . , wk) = min

w1

✓
min

w2,...,wk

f(w1, . . . , wk)

◆

| {z }
a function of w1
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Hamilton-Jacobi-Bellman equation 

The recursion 
 
 
is called the Dynamic Programming, Bellman or Hamilton-Jacobi equation 
 
Any minimizing w gives optimal control at time t 
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Vt(z) = zTQ1z +min
w

�
wTQ2w + Vt+1(Az +Bw)

�

u?
t = argmin

w

�
wTQ2w + Vt+1(Az +Bw)

�

The HJB equation for LQR 

Assume that                          for some                       (holds for             ) 
 
Then,  
 
 
 
 
 
with optimal control 
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t+ 1 = NVt+1(z) = zTPt+1z Pt+1 = PT
t+1 � 0

Vt = zTQ1z +min
w

�
wTQ2w + (Az +Bw)TPt+1(Az +Bw)

�
=

= zTQ1z +min
w

�
wT (Q2 +BTPt+1B)w + 2zTATPt+1Bw + zTATPt+1Az

�
=

= zT
�
Q1 +ATPt+1A�ATPt+1B(Q2 +BTPt+1B)�1BPt+1A

�
z := zTPtz

u

?
t = �(Q2 +B

T
Pt+1B)�1

B

T
Pt+1Axt

Summary of LQR via DP 

1.  set 
 

2.  for 
  

3.  for 

 
Notes: 

–  optimal control is a linear function of the state 
–  recursion for minimum cost-to-go runs backwards in time 
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PN = Qf

t = N,N � 1, . . . , 1

t = 0, 1, . . . , N � 1

Lt := (Q2 +B

T
Pt+1B)�1

B

T
Pt+1A

u

?
t = �Ltxt

Pt�1 := Q1 +ATPtA�ATPtB(Q2 +BTPtB)�1BTPtA

Example 

Same system as earlier. Investigate how elements of P and L converge 
 
 
 
 
 
 
 
 
 
 
 
Rapid convergence to stationarity as t drops below horizon N! 
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Steady-state regulator 

Usually,     converges rapidly as    decreases below 
 
The stationary solution satisfies 
 
 
(called the discrete-time algebraic Riccati equation) 
 
When N is large, and t is not too close to N, optimal input approaches 
 
 
(perfect agreement when N is infinite). A linear state feedback! 
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t NPt

P = Q1 +ATPA�ATPB(Q2 +BTPB)�1BTPA

ut = �Lxt L = (Q2 +B

T
PB)�1

B

T
PA

Receding horizon LQR 

Consider the cost function 
 
 
 
Here, K is called the horizon, and if 
 
 
minimizes    , then     is called K-step optimal receding horizon control 
 
Receding-horizon control: 

–  at time k, find input sequence that minimizes K-step ahead LQR cost 
(starting at time k) 

–  then apply only the first element of the input sequence 
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(u?
k, . . . , u

?
k+K�1)

Jk u?
k

Jk(uk, . . . , uk+K�1) =
k+K�1X

t=k

(xT
t Q1xt + u

T
t Q2ut) + x

T
k+KQfxk+K

Closed-loop system 

If horizon tends to infinity, then control coincides with stationary LQR 
–  closed-loop system  

 
 
stable under mild conditions ( (A,B) controllable, (Q,A) observable) 

 
In general, optimal K-step ahead LQR control is time-varying and 
closed-loop not necessarily stable if horizon too short. 
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xt+1 = (A�BL)xt

Example 

Consider a discrete-time system with 
 
 
and the the receding horizon control problem given by 
 
 
The one-step optimal receding-horizon control is 
 
 
 
which yields an unstable closed-loop system 
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A =


1 1
2 0

�
, B =


0
1

�

Q1 =


1 0
0 1

�
, Q2 = 1, Qf = Q1

ut = � (1 +B

T
B)�1

B

T
A| {z }

L

x =
⇥
1 0

⇤
x

xt+1 = (A�BL)xt =


1 1
1 0

�
xt
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Closed-loop system cont’d 

Two ways to ensure closed-loop stability: 
1.  use a different terminal cost. In particular             where 

 
 
(i.e. P solves the discrete-time ARE) ensures stability. 
 
Why? Receding horizon-control is then (independent of t) 
 
 
and the associated closed-loop system is stable since  
observability and controllability conditions are met. 
 

2.  Use longer horizon, so that control approaches stationary optimal 
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Qf = P

P = Q1 +ATPA�ATPB(Q2 +BTPB)�1BTPA

ut = �Lxt L = (Q2 +B

T
PB)�1

B

T
PA

Summary 
“Sampling of systems” 

–  convert continuous-time system model to discrete-time 
–  states agree at sampling instances (if control is held constant) 

The finite-time linear quadratic regulator 
–  by quadratic optimization or dynamic programming 
–  stationary solution and infinite-horizon LQR 

Receding-horizon principle 
–  compute optimal input sequence over finite-time horizon, 

apply first element in sequence, re-optimize next sampling instant 
–  stability if sufficient horizon, or “right” terminal constraint 
 

Next week: model predictive control (receding horizon with constraints) 

2E1252 Control Theory and Practice                                              Mikael Johansson mikaelj@ee.kth.se 

Acknowledgements 

Slides borrow heavily from Stanford EE363 Winter 2008-2009 (Prof. Boyd). 

2E1252 Control Theory and Practice                                              Mikael Johansson mikaelj@ee.kth.se 


