Lecture 12:
Model predictive control

Mikael Johansson
School of Electrical Engineering
KTH, Stockholm, Sweden
Learning aims

After this lecture, you should

- know how to transform a continuous-time linear system to discrete-time
- be able to formulate and solve a finite-horizon LQR problem
 - by minimizing a quadratic form, or
 - via dynamic programming
- be able to characterize the stationary optimal solution
- understand the principle behind receding-horizon optimal control
Computer-controlled systems

Output sampled every h seconds, control constant between samples
- how does state evolve between sampling instances?
Plant dynamics at sampling instants

Recall that

\[\dot{x}(t) = Ax(t) + Bu(t) \Rightarrow x(t + h) = e^{Ah}x(t) + \int_{s=0}^{h} e^{As} Bu(s) \, ds \]

so if \(u \) is held constant during sample interval \(u(t) = u_t, t \in [t, t + h] \)

\[x(t + h) = A_D x(t) + B_D u_t \]

\[y(t) = C x(t) + D u_t \]

A discrete-time linear system!
Discrete-time linear systems

For notational convenience, we drop reference to physical time and write

\[x_{k+1} = Ax_k + Bu_k \]
\[y_k = Cx_k + Du_k \]

where

- \(\{u_0, u_1, \ldots \} \) is an input sequence
- \(\{y_0, y_1, \ldots \} \) is the output sequence
- \(\{x_0, x_1, \ldots \} \) is the state evolution

System is stable if all eigenvalues of A are less than one in magnitude.
Discrete-time linear systems

Some system theory for discrete-time linear systems (Book Ch. 2.2, 3.7, 4)

System is controllable if $S(A, B) = [B \ AB \ A^2B \ \ldots \ A^{n-1}B]$ is full rank.

System is observable if

$$O(A, C) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

has full rank

Observer-based controllers have the form

$$\dot{x}_t = A\dot{x}_t + Bu_t + K(y_t - \hat{y}_t)$$
$$u_t = -L\dot{x}_t$$
Finite-horizon LQR problem

Find control sequence

\[U = \{u_0, \ldots, u_{N-1}\} \]

that minimizes the quadratic cost function

\[J(U) = \sum_{k=0}^{N-1} (x_k^T Q_1 x_k + u_k^T Q_2 u_k) + x_N^T Q_f x_N \]

for given state cost, control cost, and final cost matrices

\[Q = Q^T \geq 0, \quad R = R^T > 0, \quad Q_f = Q_f^T \geq 0 \]

N is called the \textbf{horizon} of the problem. Note the final state cost.
Finite-time LQR via least-squares

Note that $X = (x_0, \ldots, x_N)$ is a linear function of x_0 and $U = (u_0, \ldots, u_{N-1})$

$$
\begin{bmatrix}
 x_0 \\
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{bmatrix}
=

\begin{bmatrix}
 0 & 0 & \cdots & 0 \\
 B & 0 & \cdots & 0 \\
 AB & B & 0 & \cdots \\
 \vdots & \vdots & \ddots & \vdots \\
 A^{N-1}B & A^{N-2}B & \cdots & B
\end{bmatrix}
\begin{bmatrix}
 u_0 \\
 u_1 \\
 \vdots \\
 u_{N-1}
\end{bmatrix}
+

\begin{bmatrix}
 I \\
 A \\
 A^2 \\
 \vdots \\
 A^N
\end{bmatrix}
$$

Can express as

$$X = GU + Hx_0$$

where $G \in \mathbb{R}^{Nn \times Nm}$, $H \in \mathbb{R}^{Nn \times n}$
Finite-time LQR via least-squares

Can express finite-horizon cost as

\[J(U) = X^T \begin{bmatrix} Q_1 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & \vdots \\ \vdots & 0 & Q_1 & 0 \\ 0 & \cdots & 0 & Q_f \end{bmatrix} X + U^T \begin{bmatrix} Q_2 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & \vdots \\ \vdots & 0 & Q_2 & 0 \\ 0 & \cdots & 0 & Q_2 \end{bmatrix} U = (GU + Hx_0)^T \overline{Q}_1 (GU + Hx_0) + U^T \overline{Q}_2 U = U^T (G^T \overline{Q}_1 G + \overline{Q}_2) U + 2x_0^T H^T \overline{Q}_1 GU + x_0^T H^T \overline{Q}_1 H x_0 = : U^T P_{LQ} U + 2q_{LQ}^T U + r_{LQ} \]

so optimal control is

\[U^* = -P_{LQ}^{-1} q_{LQ} \]

for which

\[J(U^*) = r_{LQ} - q_{LQ}^T P_{LQ}^{-1} q_{LQ} \]
Example

LQR problem for system

\[x_{k+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_t, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} x_t \]

\[Q_1 = Q_f = C^T C, \quad R = \rho I \]

with horizon length 20. Results for \(\rho = 10 \) (blue) and \(\rho = 1 \) (red).
LQR via dynamic programming

Optimal LQ control can be found recursively using Dynamic Programming

For \(t = 0, \ldots, N \) define the **value function** \(V_t : \mathbb{R}^n \to \mathbb{R} \) by

\[
V_k(z) = \min_{u_k, \ldots, u_{N-1}} \sum_{t=k}^{N-1} \left(x_t^T Q_1 x_t + u_t^T Q_2 u_t \right) + x_N^T Q_f x_N
\]

subject to \(x_{t+1} = A x_t + B u_t, \ x_k = z \)

\(V_k(z) \) gives the minimum LQR cost-to-go, starting from state \(z \) at time \(k \)

Note that

- \(V_0(x_0) \) is the minimal LQR cost (from state \(x_0 \) at time 0)
- the cost-to-go with no time left is the quadratic final state cost

\[
V_N(z) = z^T Q_f z
\]
Dynamic programming principle

Assume that we know $V_{t+1}(z)$, what is the optimal choice for u_t?

The choice of u_t affects
- cost incurred in current step (through $u_t^T Q_2 u_t$)
- the next state x_{t+1} (hence, the cost-to-go from x_{t+1})

Dynamic programming (DP) principle

$$V_t(z) = \min_w (z^T Q_1 z + w^T Q_2 w + V_{t+1}(A z + B w))$$

Follows from the fact that we can minimize in any order

$$\min_{w_1, \ldots, w_k} f(w_1, \ldots, w_k) = \min_{w_1} \left(\min_{w_2, \ldots, w_k} f(w_1, \ldots, w_k) \right)$$

a function of w_1
Hamilton-Jacobi-Bellman equation

The recursion

\[V_t(z) = z^T Q_1 z + \min_w \left(w^T Q_2 w + V_{t+1}(Az + Bw) \right) \]

is called the Dynamic Programming, Bellman or Hamilton-Jacobi equation.

Any minimizing \(w \) gives optimal control at time \(t \)

\[u_t^* = \arg\min_w \left(w^T Q_2 w + V_{t+1}(Az + Bw) \right) \]
The HJB equation for LQR

Assume that $V_{t+1}(z) = z^T P_{t+1} z$ for some $P_{t+1} = P_{t+1}^T \geq 0$ (holds for $t + 1 = N$)

Then,

$$V_t = z^T Q_1 z + \min_w \left(w^T Q_2 w + (A z + B w)^T P_{t+1} (A z + B w) \right) =$$

$$= z^T Q_1 z + \min_w \left(w^T (Q_2 + B^T P_{t+1} B)w + 2z^T A^T P_{t+1} B w + z^T A^T P_{t+1} A z \right) =$$

$$= z^T \left(Q_1 + A^T P_{t+1} A - A^T P_{t+1} B (Q_2 + B^T P_{t+1} B)^{-1} B P_{t+1} A \right) z := z^T P_t z$$

with optimal control

$$u_t^* = -(Q_2 + B^T P_{t+1} B)^{-1} B^T P_{t+1} A x_t$$
Summary of LQR via DP

1. set $P_N = Q_f$

2. for $t = N, N - 1, \ldots, 1$
 \[P_{t-1} := Q_1 + A^T P_t A - A^T P_t B (Q_2 + B^T P_t B)^{-1} B^T P_t A \]

3. for $t = 0, 1, \ldots, N - 1$
 \[L_t := (Q_2 + B^T P_{t+1} B)^{-1} B^T P_{t+1} A \]
 \[u_t^* = -L_t x_t \]

Notes:
- optimal control is a linear function of the state
- recursion for minimum cost-to-go runs backwards in time
Example

Same system as earlier. Investigate how elements of P and L converge

Rapid convergence to stationarity as t drops below horizon N!
Steady-state regulator

Usually, P_t converges rapidly as t decreases below N

The stationary solution satisfies

$$P = Q_1 + A^T P A - A^T P B (Q_2 + B^T P B)^{-1} B^T P A$$

(called the discrete-time algebraic Riccati equation)

When N is large, and t is not too close to N, optimal input approaches

$$u_t = -L x_t \quad L = (Q_2 + B^T P B)^{-1} B^T P A$$

(perfect agreement when N is infinite). A linear state feedback!
Consider the cost function

\[
J_k(u_k, \ldots, u_{k+K-1}) = \sum_{t=k}^{k+K-1} (x_t^T Q_1 x_t + u_t^T Q_2 u_t) + x_{k+K}^T Q_f x_{k+K}
\]

Here, K is called the horizon, and if

\[
(u_k^*, \ldots, u_{k+K-1}^*)
\]

minimizes \(J_k\), then \(u_k^*\) is called **K-step optimal receding horizon control**

Receding-horizon control:
- at time k, find input sequence that minimizes K-step ahead LQR cost (starting at time k)
- then apply only the first element of the input sequence
Closed-loop system

If horizon tends to infinity, then control coincides with stationary LQR - closed-loop system

\[x_{t+1} = (A - BL)x_t \]

stable under mild conditions ((A,B) controllable, (Q,A) observable)

In general, optimal K-step ahead LQR control is time-varying and closed-loop not necessarily stable if horizon too short.
Example

Consider a discrete-time system with
\[
A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]
and the receding horizon control problem given by
\[
Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Q_2 = 1, \quad Q_f = Q_1
\]
The one-step optimal receding-horizon control is
\[
u_t = -(1 + B^T B)^{-1} B^T A x = [1 \quad 0] x
\]
which yields an unstable closed-loop system
\[
x_{t+1} = (A - BL)x_t = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} x_t
\]
Closed-loop system cont’d

Two ways to ensure closed-loop stability:

1. use a different terminal cost. In particular \(Q_f = P \) where

\[
P = Q_1 + A^T P A - A^T P B (Q_2 + B^T P B)^{-1} B^T P A
\]

(i.e. P solves the discrete-time ARE) ensures stability.

Why? Receding horizon-control is then (independent of t)

\[
u_t = -L x_t \quad L = (Q_2 + B^T P B)^{-1} B^T P A
\]

and the associated closed-loop system is stable since observability and controllability conditions are met.

2. Use longer horizon, so that control approaches stationary optimal
Summary

“Sampling of systems”
- convert continuous-time system model to discrete-time
- states agree at sampling instances (if control is held constant)

The finite-time linear quadratic regulator
- by quadratic optimization or dynamic programming
- stationary solution and infinite-horizon LQR

Receding-horizon principle
- compute optimal input sequence over finite-time horizon,
 apply first element in sequence, re-optimize next sampling instant
- stability if sufficient horizon, or “right” terminal constraint

Next week: model predictive control (receding horizon with constraints)
Acknowledgements