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Learning aims

After this lecture, you should
know how to transform a continuous-time linear system to discrete-time

be able to formulate and solve a finite-horizon LQR problem
— by minimizing a quadratic form, or

— via dynamic programming
be able to characterize the stationary optimal solution
understand the principle behind receding-horizon optimal control
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Computer-controlled systems

time time

Output sampled every h seconds, control constant between samples
- how does state evolve between sampling instances?
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Plant dynamics at sampling instants

Recall that
h
(1) = A(t) + Bu(t) = a(t + h) = eMa() + / e Bu(s) ds
s=0
so if u is held constant during sample interval u(t) = u, t € [t,t + h)

h
z(t+ h) = Apx(t) + Bpuy (AD — 4" Bp = / eASBds>
s=0

y(t) = Ca(t) + Duy

A discrete-time linear system!
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Discrete-time linear systems

For notational convenience, we drop reference to physical time and write

Ti1 = Az + Buy
yr = Czy + Duy

where
- {uwo,u1,...} is an input sequence
- {%o,v1,...} is the output sequence
— {zo,z1,...} is the state evolution

System is stable if all eigenvalues of A are less than one in magnitude
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Discrete-time linear systems

Some system theory for discrete-time linear systems (Book Ch. 2.2, 3.7, 4)
System is controllable if S(A,B)=|B AB A?B ... A" !'BlJis full rank.

System is observable if

O(A,C) =

_CAn_l_
has full rank

Observer-based controllers have the form
Ty = Azy + Buy + K(yt — Ut)

U = —Liift
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Finite-horizon LQR problem

Find control sequence
U= {UQ, . o ,’LLN_l}

that minimizes the quadratic cost function

N-—-1

JU) = (xf Qg + uf Qoup) + sy Qrry
k=0

for given state cost, control cost, and final cost matrices
Q=Q">0, R=R">0, Qr=Q; >0

N is called the horizon of the problem. Note the final state cost.
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Finite-time LQR via least-squares

Note that X = (xo,...,zn) is a linear function of zg and U = (ug,...,un_1)

(20| [ O 0 e 0] [ 1]
T4 B 0 o 0 UO A
x| _ | AB B 0 - Lo ] A
ay|  |ANTIB AN—2p ... B | LN 4N

Can express as

where G € RVnxNm 1 RNnxn
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Finite-time LQR via least-squares

Can express finite-horizon cost as

Ql 0 0 QQ 0 0
JU)=XT o 0 X +U" 0 RN -
. 0 Ql 0 . 0 QQ 0
_0 0 Qf_ _0 0 Q2_
Q4 Qy

= (QU + Hx¢)"Q,(GU + Hzo) + UTQ,U =
=U"(G"Q,G+ Qy)U + 22 H' Q,GU + xg H' Q,Hxo =

= UTPLQU + QQ%QU +7rLQ
so optimal control is
U* = ~Pr4arq
for which

J(U*) =r1o — a1oProare
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Example

LQR problem for system
1 1 0
Lhk4+1 = [O 1] T + [1] U, C = []. O] Tt
Q=Q;=C"C, R=pI
with horizon length 20. Results for p =10 (blue) and p = 1(red)

2 4 6 8 10 12 14 16 18 20
lteration
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LQR via dynamic programming

Optimal LQ control can be found recursively using Dynamic Programming

Fort=0,...,N define the value functionV, : R" — R by

N—1
. E T T T
Vk(Z) - uk,.r.p,l?le—l — (xt let + Uy Q2ut) + xNQfo

subject to  x411 = Axy + Bug, x = 2

Vi(z) gives the minimum LQR cost-to-go, starting from state z at time k

Note that
— Vo(xo) is the minimal LQR cost (from state zgat time 0)
— the cost-to-go with no time left is the quadratic final state cost

Vn(z) = 2" Q2
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Dynamic programming principle

Assume that we know V;,1(z), what is the optimal choice for u; ?

The choice of u, affects
- cost incurred in current step (through ] Qouy)
- the next state z;+1 (hence, the cost-to-go from x;y1 )

Dynamic programming (DP) principle

V;t(z) = mui;n (ZTQLZ + ’LUTQQ’UJ + ‘/754_1(142 + B’w))

Follows from the fact that we can minimize in any order

min f(wl,...,wk)zmin( min f(w17°°°7wk)>

WY yeeey Wi w1 W y..ty Wk

-~

a function of w,
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Hamilton-Jacobi-Bellman equation

The recursion
Vi(z) = 2" Quz + min (w" Q2w + Vi1 (Az + Bw))

is called the Dynamic Programming, Bellman or Hamilton-Jacobi equation
Any minimizing w gives optimal control at time t

uy; = argmin (wTng + Vit1(Az + Bw))

w
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The HIB equation for LQR

Assume that V;,(z) = 2T P,z for some P,y = PL, >0 (holds for t 1= N)

Then,
V; = 27Q12 + min (wTsz + (Az + Bw)TPtH(Az + Bw)) =
= 27Q1z + min (wT(Q2 +BTP, 1 B)w+2z"ATP,,Bw + zTATPtHAz) =
= ZT (Ql + ATPt_|_1A — ATPt+1B(Q2 -+ BTPt+1B)_1BPt+1A) Z = ZTPtZ
with optimal control

’LL: = —(QQ + BTPt+1B)_1BTPt+1ALEt
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Summary of LQR via DP

1. set Py =Qy

2. fort=N,N—-1,...,1
Pt—l = Ql ‘|‘ATP7§A — ATPtB(Q2 +BTPtB)_1BTPtA
3. fort=0,1,..., N -1

L, :=(Qy+B"PB)"'B"P, 1A

’U,: = _tht

Notes:
— optimal control is a linear function of the state
— recursion for minimum cost-to-go runs backwards in time

2E1252 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se



Example

Same system as earlier. Investigate how elements of P and L converge

15

0.8

0.6

-7 0.4F

0.2F

2 4 6 8 10 12 14 16 18 20
lteration

Rapid convergence to stationarity as t drops below horizon N!
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Steady-state regulator

Usually, P, converges rapidly as t decreases below N

The stationary solution satisfies
P=Q,+AT"PA—- ATPB(Q,+ B"PB)"'BTPA

(called the discrete-time algebraic Riccati equation)

When N is large, and t is not too close to N, optimal input approaches
w = —Lx; L= (Qy+B"PB)"'B"PA

(perfect agreement when N is infinite). A linear state feedback!
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Receding horizon LQR

Consider the cost function

k+K—1
Jk(uk:a “ e auk:+K—1) = Z (CU?QlfUt + U$Q2ut) + CUngKfoEkJrK
t=k

Here, K is called the horizon, and if

(s - Uy k1)

minimizes J,, then u; is called K-step optimal receding horizon control

Receding-horizon control:

- at time k, find input sequence that minimizes K-step ahead LQR cost
(starting at time k)

— then apply only the first element of the input sequence

2E1252 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se



Closed-loop system

If horizon tends to infinity, then control coincides with stationary LQR
— closed-loop system

Lt41 = (A - BL)CIZt

stable under mild conditions ( (A,B) controllable, (Q,A) observable)

In general, optimal K-step ahead LQR control is time-varying and
closed-loop not necessarily stable if horizon too short.
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Example

Consider a discrete-time system with

<L e

and the the receding horizon control problem given by

Q1=[(1) (117 Q=1 Q=0

The one-step optimal receding-horizon control is
up=—(14+B"B)"'B"Az=[1 0]«

L

which yields an unstable closed-loop system

1 1
Lt41 = (A — BL)CCt = [1 0] Tt
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Closed-loop system cont'd

Two ways to ensure closed-loop stability:
1. use a different terminal cost. In particular Qy = P where

P=Q,+A"PA—- ATPB(Q,+ B"PB)"'BTPA
(i.e. P solves the discrete-time ARE) ensures stability.

Why? Receding horizon-control is then (independent of t)
w = —Lr; L=(Qy+B'PB)"'B"PA

and the associated closed-loop system is stable since
observability and controllability conditions are met.

2. Use longer horizon, so that control approaches stationary optimal
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Summary

“Sampling of systems”
— convert continuous-time system model to discrete-time
— states agree at sampling instances (if control is held constant)

The finite-time linear quadratic regulator
— by quadratic optimization or dynamic programming
— stationary solution and infinite-horizon LQR

Receding-horizon principle

- compute optimal input sequence over finite-time horizon,
apply first element in sequence, re-optimize next sampling instant

— stability if sufficient horizon, or “right” terminal constraint

Next week: model predictive control (receding horizon with constraints)
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