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Two-particle excitations
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We found that to avoid core excitations the one-body operator should be defined
in terms of normal products. That is to use : clcs : instead of clcg. It was due
to this that we wrote the two-body operator in normal form also. But in doing so
we bypassed what maybe an important physics. And indeed there is an important
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Converting to normal form one gets,
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After some algebra to be performed,

1
H = Ey+ Hur + 1 Z(aﬁWhJ) : ch:gcacy :
afvé

where

Bo =Y na(alTla) + 3 Y (@BIV]ag). ©)
o af

This is the kinetic energy of particles in the occupied states plus the interaction
between particles placed in any pair of levels of the representation. It is the energy
carried by the core, as can also be seen by noticing that Ey, = (0|H|0).

The one-body Hamiltonian is

Hur =) ((alTlﬂ) + 2m(a7IVlﬁv)a)  ches :

al

In this Hamiltonian the levels a and [ include all states of the representation. These
are the levels that we will occupied by particles which eventually will be added to the



The one-body Hamiltonian is

Hyp =) ((alTlﬁ) + va(a’YlVW’Y)a) : ches

af

In this Hamiltonian the levels a and 3 include all states of the representation. These
are the levels that we will occupied by particles which eventually will be added to the
core. One thus sees that Hyr contains the core excitations through the interaction
of particles in all occupied states (called |y) in Hyp) with the rest of the particles
(including those in the core). The Hamiltonian Hyp, which is called the Hartree-
Fock Hamiltonian, thus corresponds to the core excitation which in the one-body
case were assumed to be contained in the renormalized operators.



In this Section we will study the dynamics of the (A+2)- and (A-2)-nuclei, that

is of two nucleons added or substracted from the core. For this we will write the
Hamiltonian in the Hartre-Fock representation which we will label with greek as

well as latin letters. It is,

H = ZE" Ly +% Z(aﬂ|V|76) : chLcac,y ; (7)
a afyd

where €, is the Hartrre-Fock single-particle energy. The constant energy Eq, Eq.
(6), is not included because all eigenvalues of the Hamiltonian (7) will be referred

to the core and, therefore, Ey plays no role.




To obtain the two-particle energies we evaluate the commutator,

[ ] ZE‘[ cle; QCB] Z(zJ|V|kl)[ clc,c , LCL]

=(gq + sg)cgcg + (1 — ng — ng) Z(zﬂVlaﬁ)aczc} (8)
i<j
+ ZZ(zj|V|ﬁl ¢l c cle: —ZZ(Z]lVlal ch,
1<J i<j

One sees in this equation that the two-particle creation operators are mixed with
three-particle one-hole excitations, that is with core excitation components. In the
Random Phase Approximation (RPA) one neglects the core excitations, that is terms
of the form (n,| : ¢! ;c}‘,c; |0), because they are supposed to generate states which

lie high in the spectrum, thus having little influence over the low-lying two-particle
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one gets,
(nal | H, clich | 10) =(Bny — Eo)(malcfc}[0)
=(ea + &5) (malcle}|0) + (1 = na = n5) D65V ]aB)a(nalclc]0)

i<j

which is the RPA equation. The term 1 —n, —ng in the RPA equations shows that
one can place two particles above the Fermi level, in which case it is 1 —n, —ng =
1, or below it (1 —n, —ng = -1). These two forms of excitations are mixed to each
other, given rise to the so-called RPA correlations. This also implies that within
the RPA one evaluates simultaneously the (A+2)- and (A-2)-systems and, therefore,
there is an influence of one system upon the other.



—

With w,,, = E,, — E; the RPA equation can be written in matrix form as

()= (% %) (3%) ®
where X,,,(af) = (ngchcL|O) with o and 3 particle states and Y,,,(a8) = (n2|c};cL|O)
but with a and 8 hole states. In the same fashion the indices of A are all particle
states and the indices of D are all hole states. Instead in the matrices B and C
the indices are mixed. For instance C(af87vd) = (vé|V|aB)., where o and § are
hole states while v and ¢ are particle states. Notice that the minus sign in front of

the matrices C' and D comes from the factor 1 — n, — ng in Eq. (9). Due to this,

the RPA matrix (10) is not Hermitian and, therefore, the energies w,, can become
complex quantities.
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and one hole orbital (3). The RPA equation can be written in a 2 X 2 matrix form as

“()-(25)G) e

We have A = 2=, + (aa|V|aa)’" where JT denote the spin and isospin of the two particle
state. D = —2e5 + (38|V|88)'T. B = C = (aa|V|B8)"". In such a case we get two

solutions for the eigen values, w,, = 452 £ \/ (";—D)2 + AD — C? , corresponding to the
particle-particle and hole-hole excitations respectively. For a system with no particle-hole
correlation, we get w,, = A for the two-particle state and w,, = —D for the two-hole
state.
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The difference between TDA and RPA is that we use
» The simple particle-hole vacuum |HF> in TDA

» The correlated ground state in the RPA

Sh 1 €h2 Ep 1 8p2 /
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We will concentrate in the shell model in this course, and here one has either
two-particle or two-hole excitations, and the (A+2) and (A-2) systems are indepen-
dent of each other. The shell model cases are actually particular cases of the RPA
since one gets them by imposing the condition that only particles can occupied par-
ticle states and only holes can occupied hole states. This is called Tamm-Damkoff
approximation (TDA).

This approximation implies that the matrices B and C vanish in Eq. (10). The
particle- and hole-states decoupled and the RPA equation transforms in two TDA
equations, one for particle states, i. e.

and the other one for hole states,
_wn2 Yn2 — D Yn2

Since the matrices A and D are Hermitians the energies are real, as they should be.
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(nal [H, clch] 10) =(En, — Eo)(male],chl0)

=(ea +£5)(nalclch|0) + D (ij|V]aB)a(nzlclc]|0)

i<j

(14)

which is the TDA equation. It is also the shell model equation, which we will apply
in the next Chapter.

For a system with two particles in one orbital o, we sunply have w,, = 2g, +
{aa|V|aa)'" where JT' denote the spin and isospin of the two particle state.

For holes
(na| [H, cacs| |0) =(En, — Ep)(n2|cacs|0)
= — (ea + £5)(nalcl,ch|0) + Y (ij|V]aB)a(nelcic;|0)

<]
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Holpgq; IM) = €, + £4|pg; JTM)

[|Oz) = |pq; IM )} form the orthonormal bases

> la)al =1
> (al(Ho+V)|B)(BIn) = En(a|n)

B

3 (68— En)das + (@lV18)] (8ln) = 0

B

where

|)B>=|T'S;JM>) Eg = Er + €5



The wave function is

) = (BIn)|B), or |n)=> X(pg;n)lpg;J)
B pP<q
where X (pg;n) = (pq; JM|n) and the Hamiltonian equations are
> (o0 + 20— En)0yrdys + (pg; J|Vrs; J) | X (rssm) = 0
r<Ss

notice that this is M independent.

The two-body interaction

(pg; J|V|rs; J)
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There are two basis states for 0
) = |(P1/2)230+> and |B) = |(99/2)2; 0+)
2e1 + (a|V]a) — E, (a|V]3)
(B|V]a) 2z0 + (BV|B) — En
(261 + (a|V]a) — En)(252 + (B|V|B) — En) — (a|V[B)* =0
calling V53 = (a|V|3) one gets
E,% o En(281 4+ 280 4+ Vo + Vﬂﬂ) e (261 4 Vaa)(ng 4 Vﬁg) o Vo?ﬁ =0

Voo — Vig\
(61—82-!- 5 ﬂﬁ) +V35

=0

Vaa + Vﬂﬂ 4
2

E,=c+¢2+
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X(ezn) = (aln) = (p} ;0% |n);  X(B;n) = (B|n) = (g5/5: 07 |n)

{ (Ea — En + Vaa) X (a3 n) + VapX(Bin) =0
VapX(a;n) + (g5 — En + Vi) X(B5n) =0

since we have obtained the energies E,, such that the determinant is 0, it is

{ (a — En + Vaa) X (a;n) = —VapX(B;n)
X*(a;n) + X*(B;n) = 1



ction which is 0
=

(pg; J|Vrs; J) = =G f(pq; J) f(rs; J)

3 [0t 20 = B)oynye — G (pg: 1) frs; )| X rsim) =0

T<S

X(pg;n) =G €+€ EZfrsJ (rs;n)

L T<Ss

multiplying by Z f(pg; J) one gets

P<q

> fpg; )X (pg;m) ngf pa; - E Zf rs; J)X (rs;n)

P<q P<q




S

fas0%) | f2(5;0)
G i
(251 E, 2,-E, ) =1

o (f?(a 04 | FA(B:0Y)
281 E 282 — E )
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The pairing force in nuclear physics is used for the states 0% as

f(pg;0%) = f(pp; 07) = /25, + 1

For the states in *°Zr one has

Fles07) = f(p1/9:0%) =V2;  F(B;0%) = f(ga/s:07) = V10

—1
2 10
G =

o X = e

and

X(a;n) =G’251 5
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NN interaction and LST coupling



Answer: It depends on the ener

Nuclear Physics: MeV

The atomic nucleus consists of protons and neutrons (two types of baryons) bound

by the nuclear force (also known as the residual strong force). The baryons are further
composed of subatomic fundamental particles known as quarks. The residual strong force is a
minor residuum of the strong interaction which binds quarks together to form protons and
neutrons. At low energies, the two nucleons “see” each other as structure-less point
particles.




erties of nuclear forces :
<>Nuclear forces are finite range forces. For a distance of the o
are quite strong. Short-range repulsion (“hard core”)

<>These forces show the property of saturation. It means each nucleon interacts

only with its immediate neighbours. Volume and binding energies of nuclei are proportional
to the mass number A.

V() ?

The distance b is found empirically to
be of order b=1.4fm. V/(r) is maximally
attractive inside 1 fm while for very
short distances the nucleon-nucleon
interaction becomes repulsive.

Fig. 13.1. Schematic illustration of the radial dependence of the nucleon—nucleon
interaction.



1 — Yukawa (meson theory or Meson Hypo
1950’s — Full One-Pion-Exchange potential (OPEP)
--Hamada-Jonston
1960’s — non-relativistic One-Boson-Exchange potential (OBEP) (pions, Many pions,
scalar mesons, 782(w), 770(p), 600(c))
1970’s — fully relativistic OBEPs
-- 2-pion exchange
-- Paris, Bonn potential
1990’s — High-precision Nijmegen, Argonne V18, Reid93, Bonn potentials
1990-2000’s — Chiral or Effective Field Theory potentials (2 and 3 body), Lattice QCD



N-N quantum states

LG,

i

01

Spectroscopic notation:

N-N state vector:

ang. momentum

of N-N pair

ang. momentum

of N-N pair

use S,PD,... for L=0,1,2,...

w(12)) =|LS:IM,)




I The total spin is either S = 1 (triplet) or § = 0 (singlet), whose wave !

functions take the form (problem 13.2)

a(1)a(2) , m=
I = | BBR) m=—1
(1/ D) [(1)B2) + B1)(2)] , m =0

50 = é [(1)B2) — B(H2)]

It is evident that the triplet wave function is symmetric in the spin variables
while the singlet wave function is antisymmetric. Thus, for identical particles,
even L must be combined with S = 0 and odd L with § = 1. These wave



thus if the space and spin variables of any two protons or any two neutrons are

interchanged, the wave function must reverse its sign.

Isospin symmetry requires that the wave function reverse its-sign upon an odd
permutation of all coordinates (i.e. space, spin and isospin) of any two nucleons.

This property is strongly connected with the symmetry of the two-particle wave
function |1 2). Since nucleons are fermions, they have to be totally antisymmetric.
For example, if we take a product wave function built out of ordinary space, a spin

and an isospin part

(rysyty, 18505 | 12) = @(ry, 1) x (s, 5)8 (24, 1)

we have four combinations compatible with the Pauli principle

Q X abbreviation {
even singlet es +
even triplet et -
odd singlet 0S =
odd triplet ot i
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Table 13.1. Possible states defined by internal spin S, orbital angular

momentum L, total angular momentum J and parity n applicable to the NP
(neutron—proton) and NN and PP systems, respectively. In the last column,

the corresponding isospin is given. Only those states having L < 3 are

indicated.
S L J¥ Symmetry Notation Isospin T
1 0 1+ symmetric 38,
12 1% 2+ 3+ in D123
NP only 0
0 1 1- spin + position P,
0 3 3~ 3 3
NN 1 1 0°,17,2° antisymmetric 3Po12
PP 1 3 27,34 Fai4
in 1
and 0 0O 0t 1So
NP 0 2 2+ spin 4 position D,
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In the 1940s and early 1950s information about the nucleon—nucleon in-
teraction came largely from studying the simplest non-trivial nucleus, the
deuteron, denoted d or 2H, consisting of a neutron and a proton. For
the deuteron the most important properties, known since the 1930s are the
following

binding energy Eg = 2.25 MeV

spin, parity Jr=1%

isospin T=0

magnetic moment u= 08574 nm. = yp + up— 0.0222 n.m.

quadrupole moment Q =282 x 1073 barn

Much more information about the nucleon-nucleon interaction has been
obtained from the scattering of proton and neutron projectiles against protons
and neutrons.



The deuteron is the only bound state of 2 nucleons, with isospin T' = 0, spin-parity J™ = 17, and
binding energy Ep=2.225 MeV. For two spin % nucleons, only total spins S = 0,1 are allowed.
Then the orbital angular momentum is restricted to J —1 <[l < J+1,1i.e.,l =0, 1 or 2. Since the = *
parity is 7 = (—)l =+, only [ = 0 and [ = 2 are allowed; this also implies that we have S = 1.

eutron

Y, =da’Ss, +b‘ *D,

Relative motion : S wave (L=0) + D wave (L=2)

N/

Tensor force does mix

Vi=(T1,) ( [0102](2) Y® (82)) Z(r)

contributes
only to S=1 states
The tensor force is crucial to bind the deuteron. Without tensor force, deuteron is unbound.
No S wave to S wave coupling by tensor force because of Y2 spherical harmonics

relative motion
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Attractive ~ Repuilsive ~ Attractive Repulsive
Tensor forcé
Fig. 14.11. The tensor force in the deuteron is attractive in the cigar-shaped
configuration and repulsive in the disk-shaped one. Two bar magnets provide
a classical example of a tensor force. |
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Y, = a‘ 3SI> + b‘ 3D1> o

h21 2 h2 L2
r+ —— + Val(r) + Vr(r)Sie

H=3rra" T aue

we find the radial equations

[h2 d2

M a2 +FE — Vc(T)] us = \/gVT(T)UD

2
[Z, ((Zi - fz) + E +2Vp(r) — Vc(r)‘ up V8Vp(r)us

These equations can be solved numerically.



://Inn-online.org \
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Deuteron wave functibn [ '

— AVIS’S, _
051 — AvVis’D, |~
i ~ = Niymegen I- 3Sl 7

04 — - NijmegenI’D,

0.1
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http://www.phy.anl.gov/theory/movie-run.html

Anybody has a better solution?



