WDM network management

Paolo Monti
Optical Networks Lab (ONLab),
Communication Systems Department (COS)
http://web.it.kth.se/~pmonti/

For some material in this lecture check the additional reading pointer in course website
Lecture objectives

- Overview of the control and management issues in optical networks
- Network management functions
- Optical layer services and layers within the optical layer
Network Management

• Network management refers to the activities, methods, procedures, and tools that support
 - operation
 - administration
 - maintenance
 - provisioning of networked systems

• The combination of hardware and software used to monitor and administrate the network is called Network Management System (NMS)
Why essential?

- The “obvious” managing role
- Efficient network management is a network optimization issue
- Quality of Service (QoS) enhances competitiveness
- Minimize CAPEX and OPEX
Management systems

• Hierarchical systems, from bottom to top we have

• Element management systems (EMS)
 ▪ Separate for amplifiers, OLT, OADM and OXC (also vendor dependent)
 ▪ Communicates with elements by a data communication network (DCN) and fast signaling channel (e.g., optical supervisory channel - OSC)
 ▪ EMS normally does not have comprehensive network view - focused on single element(s)

• Network management system (NMS)
 ▪ Has a network wide view, with elements from various vendors
 ▪ Carries out operator-set policies
 ▪ Manages elements singularly via the EMS
Manager-Agent paradigm

Network Management System

Manager

Agent

Managed Device

operation (get, set)
notification

Management Communication protocol

Management Interface

MO

MO

MO
Management Protocols

• Simple network management (SNMP) framework
 ▪ protocol with the same name
 ▪ runs over Internet protocol stack

• Telecommunication management networks (TMN) framework
 ▪ Common management information protocol (CMIP)
 ▪ Runs over the OSI protocol stack

• Common object request broker (CORBA) model
 ▪ Allows network elements from different vendors to come with their own management system
 ▪ Software standard that allows interoperability
Management system: an example

Figure 9.1 Overview of network management in a typical optical network, showing the network elements (OLTs, OADMs, OXCs, amplifiers), the management systems, and the associated interfaces.
Network management functions

- **Security** management
 - authentication and selected access to management and control functions (specific partitions depending on role)
 - data integrity (encryption, data isolation)

- **Accounting** management
 - billing and history recording
 - no specific issues for optical networks

- **Configuration** management
 - ensures orderly changes in the network
 - equipment management (adding/removing)
 - connection management (setup, teardown, book keeping)
 - adaptation management (signal conversion)

- **Performance** management
 - In charge of QoS guarantee but also makes sure clients comply to their requirements

- **Fault** management
 - fault detection and isolation
 - fault recovery
Optical layer services

- Providing lightpaths Set up and tear down lightpaths
- Agreed bandwidth (capacity)
- Adaptation to and from client layers
- Guaranteed level of performance
 - Bit error rate (BER)
 - Jitter
 - Maximum delay
- Multiple levels of protection
- Fault management
Optical Sub-Layers

- Optical layer: lambda multiplexing, switching, routing, and monitoring
- For efficient management it is useful to define a number of sub layers

[Diagram showing OCh, OMS, OTS layers with WDM node connections and Optical Amplifier]
Optical Transport Network protocol layers

- Four layers in the OTN layer-stack:
 - Optical channel sublayer (OCh)
 - Optical multiplex section (OMS)
 - Optical transmission section (OTS)
 - Physical media layer
 - Fiber-type specification, developed in other Recommendations

<table>
<thead>
<tr>
<th>Electronic Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTN</td>
</tr>
<tr>
<td>OCh- Optical Channel</td>
</tr>
<tr>
<td>OMS- Optical Multiplex Section</td>
</tr>
<tr>
<td>OTS- Optical Transmission Section</td>
</tr>
<tr>
<td>Physical media (optical fiber)</td>
</tr>
</tbody>
</table>
Simplified view of an optical connection

Electronic layers:
- DxC
- Electronic switch
- OXC
- Mux
- Optical switch
- Demux
- EDFA

OCh

OMS

OTS

Physical media
Optical channel sub-layer

• **End-to-end networking. Functions:**
 - optical channel connection *rearrangement* for flexible network routing
 - optical channel *overhead processing* for ensuring integrity of the optical channel adapted information
 - optical channel *supervisory functions* for enabling network level operations and management functions, such as connection provisioning, quality of service parameter exchange and network survivability

• **Typical involved devices**: switching subsystems of OXCs and OADMs

• **Optical channel entity**: the **lightpath** (or optical circuit)
OMS sub-layer

Electronic layers

OCh

OMS

OTS

Physical media

DXC Electronic switch OXC Mux Optical switch Demux EDFA
• Networking of a multi-wavelength optical signal (including the case of just one optical channel)

• The capabilities of OMS sublayer:
 ▪ OMS overhead processing
 ▪ OMS supervisory functions and management functions, such as multiplex section survivability

• Typical involved devices: multiplexing/demultiplexing subsystems of OXCs OADM
OTS sub-layer

Diagram showing the OTS sub-layer with various components and layers. The diagram includes:

- Electronic layers
- OCh
- OMS
- OTS
- Physical media

Key components:

- TX
- RX
- OCh trail
- OMS trail
- OTS trail

Equipment icons:

- DXC
- Electronic switch
- OXC
- Mux
- Optical switch
- Demux
- EDFA
• Transmission of optical signals on the optical transmission media

• The capabilities of OTS sub-layer:
 ▪ OTS overhead processing
 ▪ OTS supervisory functions

• Typical involved devices: optical amplifiers (e.g., EDFA gain-control, etc.), transponders, all-optical regenerators
Configuration management

- **Equipment management**
 - Inventory of equipment in the network

- **Adaptation management**
 - Conversion between client signals and optical layer signals

- **Connection management**
 - Topology management
 - Route computation
 - Signaling protocol
 - Signaling network
Adaptation management

- Converting the user’s signal to appropriate wavelength, optical power level, etc.
 - Adaptation interfaces
 - Compliant wavelength interface
 - Noncompliant wavelength interface
 - Subrate multiplexing
- Adding and removing overheads
- Policing
Connection management

• Centralized control or distributed control

• Distributed connection control
 ▪ Topology management
 o Discover the topology by exchanges with neighbors
 o Updates by flooding (OSPF or IS-IS)
 ▪ Route computation
 o Routing and wavelength assignment (RWA) problem
 ▪ Signaling protocol
 o To set up and tear down lightpaths
 ▪ Signaling network
 o The DCN
DCN and signaling

- Standard data network
 - TCP/IP or OSI

- Connectivity
 - Outside optical network
 - Leased lines
 - Not available to optical amplifiers (e.g., under water)
 - Optical supervisory channel (only for OTS, OMS, not available of OCh)
 - Framing information
 - SDH/SONET data channel
 - Digital wrapper