
REGLERTEKNIK

School of Electrical Engineering, KTH

EL2520 Control Theory and Practice – Advanced Course

Exam (tentamen) 2012–05–29, kl 14.00–19.00

Aids: The course book for EL2520 (advanced course) and EL1000/EL1100 (ba-
sic course), copies of slides from this year’s lectures, mathematical tables
and pocket calculator. Note that exercise materials (övningsuppgifter,
ex-tentor och lösningar) are NOT allowed.

Observe: Do not treat more than one problem on each page.
Each step in your solutions must be motivated.
Lacking motivation will results in point deductions.
Write a clear answer to each question
Write name and personal number on each page.
Only write on one side of each sheet.
Mark the total number of pages on the cover

The exam consists of five problems of which each can give up to 10
points. The points for subproblems have marked.

Grading: Grade A: ≥ 43, Grade B: ≥ 38
Grade C: ≥ 33, Grade D: ≥ 28
Grade E: ≥ 23, Grade Fx: ≥ 21

Responsible: Mikael Johansson 08-7907436

Resultat: Will be posted no later than June 19, 2012.

Good Luck!
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1. Consider the linear system U(s) = G(s)Y (s) with transfer matrix

G(s) =

(
1

s+1
2

s+3
1

s+1
1

s+1

)
While the individual elements of the transfer matrix are benign, we will show that
the interactions make the system hard to control.

(a) Compute the poles and zeros of G(s). Can you foresee any limitations in the
achievable control system performance? (4p)

(b) In which input direction will the non-minimum phase effect be most prominent?
In other words, which is the input direction associated with the non-minimum
phase zero found in (a) ? (2p)

(c) Consider the system G(s) defined in Problem 1a. Feedforward control is used to
obtain reference tracking with the regulator F (s) = G(s)−1. The corresponding
block diagram is shown in Figure 1. Is the system stable? Motivate. (1p)

F (s) G(s)
r u y

Figure 1: Block diagram.

(d) Rather than the precompensator in (c), you decide to use an “approximate”
inverse U(s) = FpŨ(s) with

Fp(s) =
1− s

(s+ 1)(s+ 3)
G−1(s) =

(
1 −2(s+ 1)/(s+ 3)
−1 1

)
and then a simple feedback Ũ(s) = −k(R(s) − Y (s)). What is the maximum
value of k that renders the closed-loop system stable? (3p)
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2. (a) We want to use decentralized control on the system

G(s) =
1

s+ 1

(
0.6
s+1

−0.4

0.3 0.6
s+1

)
, (1)

with desired cross-over frequency ωc = 10 rad/s. Which inputs and outputs are
suitable to pair? Motivate. (3p)

Hint:

G(iωc) ≈
(
−0.006− 0.001i −0.004 + 0.04i

0.003− 0.03i −0.006− 0.001i

)
,

G(iωc)
−1 ≈

(
5 + 0.05i 3 + 34i
−2.4− 26i 5− 0.05i

)
.

(b) Consider the feedback loop depicted in Figure 2. Let G(s) have two inputs and

F (s) G(s)
r u y

-

Figure 2: Block diagram.

two outputs. The open loop system is defined as L(s) = G(s)F (s), where

L(s) =

(
l11(s) l12(s)
l21(s) l22(s)

)
, G(s) =

(
g11(s) g12(s)
g21(s) g22(s)

)
,

F (s) =

(
f11(s) f12(s)
f21(s) f22(s)

)
.

Is the following statement true?

If we use a decentralized controller with diagonal elements set to zero (f11(s) =
f22(s) = 0), we need to shape the transfer functions l21(s) and l12(s) to obtain
reference tracking.

Motivate your answer! (3p)

(c) Consider once again the system G(s) in Equation (1) and the feedback loop in
Figure 2. Assume that we are controlling the system using the regulator

F̃ (s) =

(
f̃11(s) 0

0 f̃22(s)

)
,
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when we get an additional control performance requirement. The requirement
states that the static error in one output should not affect the static error in the
other output when performing reference tracking. Derive a controller, expressed
in terms of f̃11(s) and f̃22(s), that fulfills the additional requirement. (4p)

4



3. (a) Consider the system

ẋ(t) =

(
0 1
0 0

)
x(t) +

(
0
1

)
u(t)

y(t) =
(
1 0

)
x(t)

Determine the state feedback that minimizes the criterion∫ ∞
0

y2(t) + u2(t) dt.

(5p)

(b) A two-link robot can be described by a linearized model with four states and
two inputs

x1 : position of link 1

x2 : velocity of link 1

x3 : position of link 2 (smaller link with faster dynamics)

x4 : velocity of link 2

u1 : torque acting on link 1

u2 : tourque acting on link 2.

One wants to minimize the deviation of the end effector position (x1 + x3) from
a reference trajectory r(t). In addition it is desired to avoid saturation of the
smaller arm position. It is more important to keep u2 small than it is to keep
u1 small. This leads to the criterion

min
u1,u2

∫ ∞
0

[r(t)− (x1(t) + x3(t))]
2 + x3(t)

2 + 0.1u21(t) + u22(t) dt (2)

Show that this criterion can be minimized by minimizing

min
u

∫ ∞
0

x(t)TQ1x(t) + h(t)Tx(t) + u(t)TQ2u(t) dt.

Determine the associated matrices Q1, h(t) and Q2. (5p)
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4. Consider the plant

G(s) = 12
s− 1

(s+ 2)(s+ 3)

and the disturbance model

Gd(s) =
100

s+ 100

with their respective Bode diagrams shown in Figure 4.

F (s) G(s)Σ Σ

Gd(s)

r + u +

d

+

-

e y

Figure 3: Block diagram.

(a) Is it possible to find a controller F (s) that renders the closed-loop in Figure 3
internally stable and ensures that the following specifications are met?

a1) Low-frequency disturbances d(t) should be attenuated by a factor of 5 for
frequencies below 1Hz;

a2) In steady-state, bounded sinusoidal disturbances with |d(t)| ≤ 1 and fre-
quencies above 10 rad/s should be attenuated with a control signal satisfying
|u(t)| ≤ 1.

Motivate your answer! (2p)

(b) After some iterations the specifications were modified to

b1) There should exist a stabilizing controller satisfying the specifications

b2) A sinusoidal disturbance at 150Hz should be attenuated by a factor of 100;

b3) Low-frequency disturbances below 0.01Hz should not be amplified;

b4) The steady-state tracking error e(t) = r(t)−y(t) for a step reference should
be smaller than 0.01.
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Figure 4: Bode diagrams of G(s) and Gd(s).

Consider a weighted sensitivity design

minimize
Fy(s)

γ2

subject to ‖WsS‖∞ ≤ γ2

and translate each of the requirements b1)-b4)to a constraint on the sensitivity
weight WS(s) so that the requirements are fulfilled if γ2 ≤ 1. Sketch the Bode
magnitude plot of a weight that satisfies these constraints. (5p)

(c) Suppose a given controller F (s) is obtained and you want to verify that

c1) In stationarity, the control signal should satisfy |u(t)| ≤ 1 for any combina-
tion of bounded sinusoidal disturbances

d(t) = d0 sin(ωt+ ϕd) (3)

and bounded sinusoidal reference signals

r(t) = r0 sin(ωt+ ϕr) (4)

with the same frequency w = 0.5rad/s and amplitudes satisfying d20+r20 ≤ 2.

Recalling that u = Gdu(s)d + Gru(s)r, derive a condition on the transfer func-
tions that allow you to test that requirement c1) is satisfied for all disturbances
on the form (3), (4) with d20 + r20 ≤ 2. (3p)
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G 0
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Figure 5: Uncertainty model.

5. (a) Compute the energy-gain (H∞-norm) of the transfer function

G(s) =
s+ 1

(s+ 2)2

(3p)

(b) Consider the system Y (s) = G(s)U(s) where G(s) is uncertain and on the form

G(s) = (I −W (s)∆(s))−1G0(s)

Show that G(s) can be represented as in Figure 5 for the appropriate transfer
matrix M(s). Assume that U(s) = −Y (s) and use the small-gain theorem to
derive a condition for closed-loop stability for all ∆(s) with ‖∆‖∞ < dmax. (3p)

(c) Consider the nominal system

G0(s) =
1

s+ 1

and the uncertain system

G(s) =
s+ 2

(s+ 1)(s+ 2 + α)

where α is an uncertain parameter. Show that the uncertainty can be repre-
sented as in (b) with ∆(s) = α and determine the associated W (s). (2p)

(d) Use the results from (b) and (a) to compute a bound αmax such that the closed-
loop system is stable for all α with |α| ≤ αmax. (1p)

(e) How does the small-gain result in (d) compare with a direct analysis that first
computes the closed-loop transfer function for G(s) under the feedback U(s) =
−Y (s) and then inspects for which α the closed-loop system is stable? (1p)
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1. (a) The minors are

1

s+ 1
,

2

s+ 3
,

1

s+ 1
,

1

s+ 1
, detG(s) =

1

(s+ 1)2
− 2

(s+ 1)(s+ 3)
=

1− s
(s+ 1)2(s+ 3)

Hence, the system has a double pole in s = −1 and an additional pole in s = −2,
while it has a non-minimum phase zero for s = 1. The non-minimum phase zero
limits the frequency interval over which we can have good disturbance rejection.

(b) Since

G(0) =
1

2

(
1 1
1 1

)
we can see that the output is zero for any input on the form c(1, −1). Hence,
(1, −1) is the input direction assoicated with the zero.

(c) Since the process has a zero in the right-half plane, its inverse will be unstable.
Hence, the series connection will not be internally stable.

(d) We have

Y (s) = G(s)U(s) = G(p)FpŨ(s) =

(
1

s+1
2

s+3
1

s+1
1

s+1

)(
1 −2 s+1

s+3

−1 1

)
Ũ(s) =

=

(
1−s

(s+1)(s+3)
0

0 1−s
(s+1)(s+3)

)
Ũ(s)

Since the system is decoupled and the controller is diagonal, we can consider
the loops in isolation. The closed-loop from r1 to y1 is

k(1− s)
(s+ 1)(s+ 3) + k(1− s)

=
k(1− s)

s2 + (4− k)s+ 3 + k

For stability, all coefficients of the characteristic polynomial need to be positive.
Hence, the maximum value for k that ensures stability is k = 4.
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2.

a) Use RGA-analysis.

RGA(G(0)) ≈
(

0.75 0.25
0.25 0.75

)
.

All elements are positive, therefore all pairings are possible. Let us look atRGA(G(iωc)).

RGA(G(iωc)) ≈
(
−0.03− 0.005i 1.05 + 0.008i
1.03 + 0.012i −0.03− 0.005i

)
.

The off-diagonal elements are close to 1, therefore u2 should be paired with y1 and
u1 should be paired with y2.

b) No, the statement is false. We have the following relationship:(
y1
y2

)
=

(
l11(s) l12(s)
l21(s) l22(s)

)(
e1
e2

)
,

=

(
l11(s)(r1 − y1) l12(s)(r2 − y2)
l21(s)(r1 − y1) l22(s)(r2 − y2)

)
,

where r1 and r2 are the reference signals. Solving for y1 and y2 gives

y1 =
l11

1 + l11
r1 +

l12
1 + l11

(r2 − y2),

y2 =
l21

1 + l22
(r1 − y1) +

l22
1 + l22

r2.

The control objective was to perform reference tracking, that is y1 should follow r1
and y2 should follow r2. Therefore, we would like to shape

y1 =
l11

1 + l11
r1 = Gc,11r1,

y2 =
l22

1 + l22
r2 = Gc,22r2.

We know from the theory of loop shaping that we can design the closed loop transfer
function by shaping the open loop transfer function, in our case l11 and l22. Thus,
we would always like to shape l11 and l22, independently of the decentralization of
the controller (diagonal or off-diagonal). For more details, see the document labeled
Additional instructions for lab 3 and lab 4 by Erik Henriksson on the course web
page.

c) To decouple the system at zero frequency we use G(0)−1 as filter in the following way

F (s) = W1(s)F̃ (s)W2(s) = G−1(0)F̃ (s)I =

(
1.25f11(s) 0.83f22(s)
−0.63f11(s) 1.25f22(s)

)
.

See for example the computer exercise on Decoupling and Glover-McFarlane robust
loop-shaping.
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3. (a) The problem is matched to the standard LQ problem. z = y gives M = I.

Q1 = CTC =

(
1 0
0 0

)
, Q2 = I. The optimal controller is given by L = Q−12 BTS,

where S ≥ 0 is the solution to

ATS + SA+MTQ1M − SBQ−12 BTS = 0.

The solution is S =

(√
2 1

1
√

2

)
which gives L =

(
1
√

2
)
.

Answer: The optimal feedback is L = 1
√

2.

(b) Identifying coefficients between the two expressions gives

Q1 =


1 0 1 0
0 0 0 0
1 0 2 0
0 0 0 0

 Q2 =

(
0.1 0
0 1

)
h(t) =


−2r(t)

0
−2r(t)

0


The difference between the two criteria is a term containing r. Because it
does not depend on u nor x, it will not affect the solution to the minimization
problem. The two forms are therefore equivalent.
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4. a) The plant G(s) has a RHP zero at z = 1, leading to the constraint S(z) = 1
for any internally stabilizing controller. For condition a1) to hold we need
|S(jw)| ≤ 0.2 ∀w ≤ 2π, which cannot be met for w = z = 1 due to the RHP
zero.

Condition a2) requires |G(jw)| > |Gd(jw)| ∀w which does not hold as seen in
Figure 4.

b) Consider the mixed sensitivity design objective ‖WS(s)S(s)‖∞ ≤ 1. First
note that G(s) has a RHP zero at z = 1 and thus condition b1) requires
that |WS(z)| ≤ 1. Condition b2) corresponds to |S(j300π)| ≤ 1

100
, which

implies |WS(j300π)| ≥ 100. Condition b3) can be posed as the requirement
|S(jw)| ≤ 1 ∀w ≤ 0.02π and the corresponding condition of the weight is
|WS(jw)| ≥ 1 ∀w ≤ 0.02π. Recall that the transfer function from the refer-
ence r(t) to the tracking error e(t) = r(t) − y(t) is Gre(s) = S(s). Thus b4) is
equivalent to |S(0)| ≤ 0.01 which leads to |WS(0)| ≥ 100.

c) Note that the specification concerns any given combination of bounded sinu-
soidal signals with the same frequency w ≤ 0.5rad/s. Hence u = Gdu(s)d +
Gru(s)r can be seen as a MIMO system with one output and two inputs,
u = [Gdu(s) Gru(s)][d u]> = Gw(s)w. As the inputs are sinusoids, the speci-
fication is equivalent to have

max
‖W (jw)‖2=

√
2

‖U(jw)‖2
‖W (jw)‖2

=
√

2σ1(Gw(jw)) ≤ 1 ∀w ≤ 0.5rad/s

Hence the specification holds if and only if

σ1([Gdu(jw) Gru(jw)]) ≤ 1√
2
∀w ≤ 0.5rad/s

12



5. (a)

‖G‖∞ = sup
ω≥0
|G(iω)| =

√
1 + ω2

4 + ω2
:= f(ω)

Note that f(0) = 1/4, f(ω)→ 0 as ω →∞. In addition, we see that since f(w)
is positive, it is maximized for ω that maximizes g(ω) = f 2(ω). We find the
stationary points of g(ω):

g′(ω) =
2ω(4 + ω2)2 − (1 + ω2)2 · 2ω(4 + ω2)

(4 + ω2)4
=

2ω(4 + ω2)(2− ω2)

(4 + ω2)4
= 0

which yields the critical frequencies ω = 0 and ω =
√

2. Since f(
√

2) =
√

3/6 >
1/4, we have that ‖G‖ =

√
3/6.

(b) Following the notation in Figure 5, we have Y = G0U + MY ⇒ Y = (I −
M)−1G0U . Hence, uncertainty model can be represented as in the figure, with
M = W (s)∆(s).

Introduce Z(s) and V (s) such that V (s) = ∆(s)Z(s). Then

Z(s) = W (s)V (s)−G0(s)Z(s)⇒ Z(s) = (I +G0(s))
−1W (s)V (s)

The small gain theorem now gives

‖(I +G0(s))
−1W (s)‖∞‖∆(s)‖∞ < 1

Hence, to ensure stability for all ‖∆(s)‖∞ ≤ dmax, we must require that

‖(I +G0(s))
−1W (s))‖∞ ≤

1

dmax

(c) The uncertainty model is

G(s) = (I −W (s)∆(s))−1G0(s)⇒ W (s)∆(s) = I − G0(s)

G(s)

With the proposed transfer functions, we find

1− G0(s)

G(s)
= 1− s+ 2 + α

s+ 2
= − α

s+ 2

Hence, with ∆(s) = α, we have W (s) = −1/(s+ 2).

(d) Identifying dmax = αmax, our stability condition reads

‖(I +G0(s))
−1W (s)‖∞ ≤

1

αmax
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Note that

(1 +G0(s))
−1W (s) = − s+ 1

(s+ 2)2

Using the norm computation from (a) we find the stability condition

√
3

6
≤ 1

αmax

i.e. that

αmax ≤
6√
3

=
√

12

(e) When G(s) is closed under negative unity feedback U(s) = −Y (s), we find the
characteristic polynomial

λ(s) = (s+ 2) + (s+ 1)(s+ 2 + α) = s2 + (4 + α)s+ (4 + α)

The closed-loop system is stable if all coefficients are non-negative, i.e. if α >
−4. Hence, a linear analysis gives that αmax ≤ 4, while the small gain theorem
yields αmax ≤

√
12. Since

√
12 <

√
16 = 4, the small gain theorem is more

conservative.
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