
REGLERTEKNIK

School of Electrical Engineering, KTH

EL2520 Control Theory and Practice – Advanced Course

Exam (tentamen) 2012–08–14, kl 08.00–13.00

Aids: The course book for EL2520 (advanced course) and EL1000/EL1100 (ba-
sic course), copies of slides from this year’s lectures, mathematical tables
and pocket calculator. Note that exercise materials (övningsuppgifter,
ex-tentor och lösningar) are NOT allowed.

Observe: Do not treat more than one problem on each page.
Each step in your solutions must be justified.
Lacking justification will results in point deductions.
Write a clear answer to each question
Write name and personal number on each page.
Only write on one side of each sheet.
Mark the total number of pages on the cover

The exam consists of five problems of which each can give up to 10
points. The points for subproblems have marked.

Grading: Grade A: ≥ 43, Grade B: ≥ 38
Grade C: ≥ 33, Grade D: ≥ 28
Grade E: ≥ 23, Grade Fx: ≥ 21

Responsible: Mikael Johansson 08-7907436

Resultat: Will be posted no later than September 4, 2012.

Good Luck!
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1. a) Consider the system

ẋ =

(
−1 1
0 1

)
x+

(
1 0
0 α

)
u

y =

(
1 0
1 1

)
x

where α is a scalar constant.

i) How many inputs, outputs, and states does the system have? (1p)

ii) Compute the transfer matrix of the system, G(s), for α = 1. (1p)

iii) Compute the poles and zeros of the system for α = 1. (2p)

b) We want to use decentralized control on the system

G(s) =
1

s+ 1

(
1

s+1
−1

2 2
s+1

)
, (1)

with desired cross-over frequency ωc = 10 rad/s. Which inputs and outputs are
suitable to pair? Motivate. (3p)

Hint:

G(iωc) ≈
(
−0.01− 0.002i −0.01 + 0.1i

0.02− 0.2i −0.02 + 0.004i

)
,

G(iωc)
−1 ≈

(
1.02 + 0.0001i 0.49 + 5i
−0.98− 10i 0.5

)
.

c) Consider the system
y = Gu+Gdd,

where G(s) = 1
0.1s+1

and Gd(s) = 4
s+6

. The disturbance d(t) is constant and
lies in the interval −4 < d < 4. The control signal is constrained to satisfy
|u(t)| < 1. Is it possible to use u(t) to eliminate the influence of the disturbance
in stationarity? (3p)
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2. Consider a feedback controlled system with

G(s) =
s− 2

s

a) The system is required to reject disturbances for all ω ≤ ωB. Determine a
reasonable value for ωB by using the rule of thumb. (1p)

b) Determine a proportional controller F (s) = K that satisfies the specification in
a) and guarantees internal stability. (3p)

c) Calculate ‖S‖∞ for the controller in b). If you are unable to solve b), you may
use K = −2

3
. (3p)

d) Let

Ws(s) =
s+ ω0S0

S0s

where S0 is ‖S‖∞ from c). Find the biggest ω0 such that ‖WSS‖∞ ≤ 1 for the
controller in b). If you are unable to solve b) and c), you may use K = −1

2
and

S0 = 2. (3p)
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3. (a) Consider the interconnection in Figure 1 and show that it can be written as the
interconnection of a linear system with the uncertainty

∆ = diag(∆G, ∆K)

Develop a stability criterion (expressed in terms of G, K and ∆) for the closed-
loop system based on the small-gain theorem. (4p)

Figure 1: Closed-loop system with uncertainties.

(b) When we have parametric uncertainties, i.e. when the structure of the sys-
tem is well-known, but the precise parameter values are not, the uncertainties
will typically appear directly in the differential equations describing the system
dynamics. As an example, we will consider the system

ẋ =

(
−1 + δ1 0

0 −2 + δ2

)
x (2)
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Show that we can put this system into standard form, i.e. write it as the
interconnection of a linear system on the form

ẋ = Ax+Bw

z = Cx

w = ∆z

and the uncertainty block

∆ =

(
δ1 0
0 δ2

)
Derive a stability criterion for the closed loop system based on the small gain
theorem. What is the maximum value of δ1 and δ2 that your criterion can allow?

(4p)

(c) The stability criteria derived in (b) results in conditions of the type

|δi| < ci, i = 1, 2

for some positive scalars ci. Derive the necessary and sufficient conditions on
δ1 and δ2 for (2) to be stable and comment on the conservatism of the stability
criteria derived in (b). (2p)
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4. (a) Consider the discrete-time first-order system

xk+1 = axk + buk

where a and b are scalars.

Initially the system is controlled using a Linear Quadratic Regulator minimizing
the cost

J(x0, u) =
∞∑
t=0

Q1x
2
t +

∞∑
t=0

Q2u
2
t

for given scalars Q1 and Q2.

Compute the solution to the Riccati equation, S, and the optimal state-feedback
law uk = −Lxk. (2p)

Remark 1 Note that the system is in discrete-time and so the LQR controller
should be designed using the discrete-time Riccati equation, c.f. section 9.5 of
the course book.

(b) The LQR controller was then replaced by a Model Predictive Controller solving
the following optimization problem

min
u

QNx
2
k+Np

+

k+Np−1∑
t=k

Q1x
2
t +

k+Np−1∑
t=k

Q2u
2
t

subject to xk+1 = axk + buk, ∀k.

i) Considering the prediction horizon Np = 1, compute the control action u0
as a function of the initial condition x0 and the terminal weight QN . (3p)

ii) As seen in the previous exercise, solving the optimization problem for a
given xk results in a state-feedback law uk = −LMPCxk. How could one
choose the terminal weight QN so that the MPC recovers the performance
of the LQR controller? (2p)

(c) Now consider the MPC controller solving the constrained optimization problem

min
u

QNx
2
k+Np

+

k+Np−1∑
t=k

Q1x
2
t +

k+Np−1∑
t=k

Q2u
2
t

subject to |uk| < 1, ∀k
xk+1 = axk + buk, ∀k.

For the prediction and control horizon Np = 1, translate the MPC problem into
a Quadratic Programming (QP) problem

min
u

u>Hu+ h>u

subject to Lu < b.

That is, determine H, h, L and b. (3p)
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5. In the course, we have worked with linear-quadratic control of linear systems

ẋ(t) = Ax(t) +Bu(t)

z(t) = Cx(t) (3)

y(t) = x(t)

and worked out the optimal controller that minimizes a criterion on the form

J =

∫ T

s=0

x(s)TQx(s) + u(s)TRu(s) ds (4)

i.e. a criterion where we penalize the (weighted) deviation of x and u from zero. The
optimal solution is a state feedback

u(t) = −LLQx(t)

where the optimal gains can be found by solving an algebraic Riccati equation.

If we would like the output of (3) to track a constant reference signal r, then it is
more natural to try to minimize a criterion on the form

J ′ =

∫ T

s=0

(x(t)− x?)TQ(x(t)− x?) + (u(t)− u?)TR(u(t)− u?) dt (5)

where x? is the stationary state vector for which z? = Cx? = r and u? is the constant
control input that attains x(t) = x? in stationarity. In this quiz, your task will be to
work out the optimal controller and compare it with the “fix” that we used in the
lectures. Specifically

(a) Show that the optimal control problem associated with (5) can be written on
the same form as the standard LQ control problem (3-4), if we consider new
variables x̃(t) = x(t)−x?, ũ(t) = u(t)−u?, ỹ(t) = y(t)−y? and z̃(t) = z(t)−z?.
Show that the optimal controller is on the form

ũ(t) = −Lx̃(t)

and describe how we can find the optimal state feedback gain L. (4p)

(b) Show that x? and u? are linear functions of r, i.e. that they can be written on
the form

x? = Mr, u? = Nr

and that the optimal controller for the tracking problem is on the form

u(t) = lrr − Lx(t) (6)

and derive an expression for lr. (3p)
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(c) In the lectures, we also used a controller on the form

u(t) = lcr − Lx(t) (7)

but we computed lc in another way. We simply said that we first compute the
state feedback for the standard LQ control problem (3-4) and then adjust lc so
that the stationary gain of the closed-loop system from r to y equals one. Are
the two controllers the same?

If you are unable to work out the general solution, it is enough to consider the
special case of a scalar system on the form

x(t) = ax(t) + u(t)

z(t) = cx(t)

y(t) = x(t)

and compare the expressions for lr and lc that the two approaches give. (3p)
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