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Learning aims

After this lecture you should be able to

o express finite-horizon constrained LQR problems as quadratic programs
explain the basic idea of model predictive control

— apply constrained optimal control in receding-horizon fashion
enforce integral action in an MPC controller

explain the issue of infeasibility and know how to circumvent it
e limit computational requirements of MPC by limiting control horizon
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Last lecture: finite-horizon LQR

Find control sequence
U = {’U,(), . ,’U,N_l}

that minimizes the quadratic cost function
N—1

J(U) = Z (23 Q1) + ui Qoug) + Th QN
k=0

for given state cost, control cost, and final cost matrices
Q=Q" >0, R=R">0, Qr=Q} >0
N is called the horizon of the problem. Note the final state cost.

Optimal solution via quadratic minimization or dynamic programming.
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Last lecture: finite-horizon LQR

Dynamic programming solution

1. set Pv =Qy
2. fort=N,N-1,...,1
P_1:=Q+A"PA—-A"P,B(Q.+B'"P,B)"'B"P,A

3. fort=0,1,...,.N—1

Ly = (Qy+B'"P, . B) 'B"P A

uf = —Lt.CEt

Note: optimal control is a linear function of the state
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Example

Same system as earlier. Investigate how elements of P and L converge
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lteration

Rapid convergence to stationarity as t drops below horizon N!
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Last lecture: receding horizon LQR

Consider the cost function

ket K1
Ti(ue, - upsk—1) = Y (2 Quae + uf Qour) + of  Qraryk
=k

Here, K is called the horizon, and if

(UZ, e 7UZ+K—1)

minimizes J,, then u; is called K-step optimal receding horizon control

Receding-horizon control:

- at time k, find input sequence that minimizes K-step ahead LQR cost
(starting at time k)

— then apply only the first element of the input sequence
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Last lecture: receding horizon LQR

Two ways to ensure closed-loop stability:

1. Use terminal cost matrix @ s = P where
P=Q,+A"PA—- A"PB(Q,+ B"PB)"'BTPA

(i.e. P solves the discrete-time ARE) ensures stability.

Why? Receding horizon-control is then (independent of t)
uw, = —Lx; L= (Qy+B"PB)"'B"PA

and the associated closed-loop system is stable
(if basic observability and controllability conditions are met)

2. Use longer horizon, so that control approaches stationary optimal
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Today: constrained predictive control

Finite-horizon LQG with hard constraints on u and vy:
minimize J(U) = ]kV:_Ol(:cZlek -+ u{quk) + x%Qf:cN
subject t0  Umin < Uy < Umax, k=0,...,N —1

Ymin < CZUk; < Ymax; k= 17°°°7N
Tip1 = Az + Buy,

Can be simplified by eliminating {z1,...,2zn5} (as in last lecture)
- results in a quadratic programming problem in {uo,...,un—1}
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Quadratic programming (QP)

Minimizing a quadratic objective function subject to linear constraints

minimize  u! Pu+ 27 u +r
subject to Au <b

Any u satsifying Au < b is said to be feasible.

— clearly, not all quadratic programs are feasible
(depends on A, b; more about this later...)

“Easy” to solve when objective function is convex (P positive semidefinite)

— optimal solution found in polynomial time
— commercial solvers deal with 1000’s of variables in a few seconds
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Quadratic programming tricks

Example. The double inequality umin < u < umax Can be written as
1 u < | Umax
—1 —Umin

Example. The equality u = utgy can be written as ugy < u < e, hence

Bk
—1 | T Utgt
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Constrained control via QP

minimize J(U) = fj:_ol (af;Zlek -+ u,{quk) -+ xzj\}Qf:EN

subject to  Umin < U < Umax, Kk=0,...,N —1
Ymin < ka < Ymax, k= 17°°°7N
Tht1 = Axy + Buy,

As in last lecture, introducing X = (xg,...,zn), U = (ug,...,un—1),

and the objective function can be written as
J(U) =U"PrLoU +2q1oU + r1q

Convex since ()3 = 0 (see last lecture for precise expressions)

What about the constraints?
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Predictive control with constraints

Similarly, the constraints ymin < yr < Ymax, k£ =0,..., N can be written as
Y Z ymin]-a Y S ymax]-

where Y = (yo,...,yn). Introducing

C 0 ... 0
o 0o C 0O O
C —

) - .0

0 ... 0 (]

we can re-write these inequalities in terms of U via

Y > Yminl & G(GU + H:IJ()) > Yminl < CGU > Yminl — UHCCO

"~

AL bx
Y < Ymaxl © C(GU 4+ Hzp) < Ymaxl & CG U < ymaxl — CHug
Ay ber
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Predictive control with constraints

Hence, the constrained predictive control problem can be cast as a QP

minimize U’ ProU + Zq%QU T TLQ

Ay by
. _AX —bx
subject to 7 U < w1
i —1 _ __umin]-_

Solution gives optimal finite-horizon control subject to constraints

Model predictive control:
— apply constrained optimal control in receding horizon fashion
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Model predictive control algorithm

1. Given state at time t compute (“predict”) future states
Tt ik, kEk=0,1,...,N
as function of future control inputs
Ut ks k=0,1,...,.N -1

2. Find “optimal” input by minimizing constrained cost function
— a quadratic program, efficiently solved

3. Implement u(t)

4. A next sample (t+1), return to 1.

EL2520 Control Theory and Practice Mikael Johansson mikaelj@ee.kth.se



MPC in pictures

A

Reference UTETELE e

" "Optimal” future outputs

Future outputs, no control
Old outputs

i e

]

- Old inputs

Future mputs, no control

Time
Past Present Future
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Example: the DC servo

Discrete-time model (sampling time 0.05 sec)

1 0.139 0.0107 B
A= [o 0.861]’ b= [o.139]’ C=1 0

Constrained input voltage
—1<u<l1

Constrained position

Ymin < Yk < Ymax
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Impact of state and control weights

Prediction horizon N=10.

Oy=1 -0.Q,=01 Qy=1 0.Q=0.01 ) Qy=‘| .0.Q =0.0001

2 2
time [s] time [s] time [s]
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input u

Impact of horizon

=t S —

1 1 1 1 1 1 1 1 1 -
0 1 2 3 4 5 -1 0 1 2 3 4 5 -1 o 1
time [s] time [s]

Too short horizon=>inaccurate predictions=»poor performance
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Reference tracking

Would like z to track a reference sequence{ri,...,"n}, i.e. to keep
N-1
> (2 = re)"Qulze — 1) + uj Qaug) + (2n — )" Qp(an — i)
k=0

small.

Problem: making z; = ry typically requires ux # 0
— a trade-off between zero tracking errors and using zero control
— often results in steady-state tracking error
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Including integral action

Integral action often included by a change in free variables
- Use Au; = u;-u,_; as variables in the optimization
— Actual input obtained by summing up MPC outputs

{Auk, ceey Auk+N_1}
Y
Auk
MPC > D > Plant model
Controller U = Up—1 + Auy,
Extended model for MPC computations
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Including integral action cont’'d

Form augmented model with state Zy = (zx ux—1)and input Auy:
Tr+1| _A B L 0
S Cd | RS Vi

ele a2,

Uk —1

Consider finite-horizon cost

N-1
> (2 = )" Q2 — 1) + Auf QeAug) + (2y — rn) Qplzn — i)
k=0

(easy to add penalty also to uyg ...)
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Tracking with output constraints
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Infeasibility

What happens when there is no solution to the OP?

B — T e e v e T T e s s

input u

-1.5 1 1 | 1
-1 0 1 2 3 5

time [s]

Not clear what control to apply!
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Ensuring feasibility

One way to ensure feasibility:
- introduce slack variables s > 0
- “soften” constraints

UL S Umax = Uk S Umax + Sck

— add term in quadratic programming objective to minimize slacks

minimize U’ ProU + QQgQU +rLo

U
|
minimize  U* PLoU + 2q1qU + 11 + £S"S

Notes:
— still QP, but more variables; can also use penalty kS (also QP)
- better to soften already soft constraints (e.g. output constraints)
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Limited horizon control

The longer horizon, the more variables in the QP.

Idea: limit the number of variables by
- predicting (and constraining) the system over horizon of length N
— only optimizing the first N, < N control actions

(called input and output horizons, or control and prediction horizons)

Solutions depend on what we assume about u beyond control horizon.
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Limited horizon control I

Simple solution: control is held constant beyond control horizon

{ug,...,un, —1} are optimized , uy, = - =uny_1 = Un,—1

Can use the same QP formulation as before and add linear equalities
U — UN,—1 k:NuaNu-i-l)"'?N

Can re-write as a QP on standard form (using techniques form earlier)

Modern solvers automatically remove these variables from QP.
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Limited horizon control II

Alternative approach: use inner-loop feedback

uk:_kaa k:NuaNu-l-l)'")N

Prediction model becomes

Trpi1 = Az + Bug Ek=0,1,..., Ny_1
rn. +t = (A—BL)xy, t=0,1,...,N— N, —1
With X = (zo,...,zn), U = (ug,...,un,_1), we can write

So finite-horizon constrained optimal control can be found via QP.

Note: beyond control horizon, Umin < Uk < Umax & Umin < — LTk < Upax
(constraints on control translates into constraints on predicted states)
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MPC controller tuning

MPC has a large number of “tuning” parameters.

The prediction model:

— we need to decide sampling interval
(rule of thumb: sample 10 times desired closed-loop bandwidth)

— oObtain discrete-time state-space model

Finite-horizon optimal control:

— set prediction horizon
(rule of thumb: equal to closed-loop rise time; could be smaller)

— decide weight matrices (as for continuous-time LQG)

— decide final state penalty
(guideline: stationary Riccati solution for given weight matrices)
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MPC controller tuning

Finite-horizon optimal control, advanced:
— control horizon (try to set small, rule-of-thumb: use 1-10)

— inner-loop control
(guideline: stationary LQR controller for given weight matrices)

Constraints and feasibility
- specify control and state constraints (problem dependent)
— introduce slacks to “soften” constraints

— choose constraint penalty (large value on kappa)

Integral action (almost always a good idea to include).
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Advanced issues: stability

Receding horizon control might yield unstable closed-loop

Stability can be guaranteed:

— for infinite-horizon unconstrained case (this is LQR)

— for finite-horizon unconstrained case
= if final state is penalized correctly
= if final state is enforced to lie in a given set

— for constrained finite-horizon
= jf final state enforced to lie in a sufficiently small set and
= jnitial QP (solved at time zero) is feasible

Hard to verify for sure in advance...
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Advanced issues: robustness

Consider the unconstrained quadratic program
minimize w!'Qu + 2¢lu
has optimal solution u = —Q‘lq

In the MPC setting, Q and g depend on the system model
(matrices A, B, C), weights Q,, Q,, and also horizons.

Solution is sensitive to uncertainties if Q is ill-conditioned
— Try scaling inputs and outputs in the model
— Modify weight matrices Q, and Q,
— Almost always a good idea to include integral action
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Advanced issues: observers

MPC, as presented here, assumes full state feedback.
In many cases, we will need to use an observer,
— to reconstruct states, and/or
— to filter out noise
Limited theory, but separation principle holds in some cases.
Suggests guideline

— design observer as for (unconstrained, infinite-horizon) LQG
— use estimated state in MPC calculations as if it was true state
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Get a feel for MPCI

Files for setting up and simulating a problem is on home page.

Do Computer Exercise 5 (download from home page)!
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Summary

Model predictive control (MPC)
— Can handle state and control constraints
— Predictive control computed via quadratic programming

Many parameters and their influence on the control
- System model, weights, horizons, constraints, ...

Advanced issues:
- The need for a state observer
— Different prediction and control horizons
— Feasibility and slacks to “soften” constraints
— Stability and the terminal weight
- Integral action

Do computer exercise 5 to get a feel for MPC!
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