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Learning aims

After this lecture you should be able to

express finite-horizon constrained LQR problems as quadratic programs
explain the basic idea of model predictive control

- apply constrained optimal control in receding-horizon fashion
enforce integral action in an MPC controller
explain the issue of infeasibility and know how to circumvent it

limit computational requirements of MPC by limiting control horizon
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Last lecture: finite-horizon LQR

Find control sequence
U = {ug,...,un_1}

that minimizes the quadratic cost function
N—-1
JU) = Z (2f Quay + uf Qoug) + 2R Qpan
k=0

for given state cost, control cost, and final cost matrices
Q=Q">20, R=R">0, Q;=Qf >0
N is called the horizon of the problem. Note the final state cost.

Optimal solution via quadratic minimization or dynamic programming.
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Last lecture: finite-horizon LQR

Dynamic programming solution

1. set Py =Qy
2. fort=N,N-1,...,1

Py:=Q+ATP,A—- ATP,B(Q.+ B"P,B)"'BTP,A
3. fort=0,1,...,N—1

Ly :=(Q2+B"P1B)"'BT"P 1 A

u; = —Lyxy

Note: optimal control is a linear function of the state
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Example

Same system as earlier. Investigate how elements of P and L converge

10 12 14 16 18 20
teration

Rapid convergence to stationarity as t drops below horizon N!
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Last lecture: receding horizon LQR

Consider the cost function

k+K-1
Te(un, k1) = > (@] Quay +uf Qo) + 2 Qrani i
t=k

Here, K is called the horizon, and if

(U s Uy 1)
minimizes J,, then uj is called K-step optimal receding horizon control
Receding-horizon control:
- at time k, find input sequence that minimizes K-step ahead LQR cost

(starting at time k)
- then apply only the first element of the input sequence
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Last lecture: receding horizon LQR

Two ways to ensure closed-loop stability:

1. Use terminal cost matrix Q¢ = P where
P=Q,+A"PA- ATPB(Q,+ B"PB)'B"PA
(i.e. P solves the discrete-time ARE) ensures stability.

Why? Receding horizon-control is then (independent of t)
w=-Ly, L= (Qs+B"PB)"'BTPA

and the associated closed-loop system is stable
(if basic observability and controllability conditions are met)

2. Use longer horizon, so that control approaches stationary optimal
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Today: constrained predictive control

Finite-horizon LQG with hard constraints on u and y:

minimize J(U) = kN;Ol (aF Qi + uf Qour) + 28 Qran
subject t0  Umin < Up < Umax, K=0,...,N —1

Ymin < O < Ymax, k=1,..., N

Tpy1 = Az + Buy,

Can be simplified by eliminating {z1,...,zx} (as in last lecture)
- results in a quadratic programming problem in {ug, ..., un—1}
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Quadratic programming (QP)

Minimizing a quadratic objective function subject to linear constraints

minimize  u! Pu+ 2¢Tu +r
subject to  Au < b

Any u satsifying Au < b is said to be feasible.

- clearly, not all quadratic programs are feasible
(depends on A, b; more about this later...)

“Easy” to solve when objective function is convex (P positive semidefinite)

- optimal solution found in polynomial time
- commercial solvers deal with 1000’s of variables in a few seconds
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Quadratic programming tricks

Example. The double inequality %min < u < umax Can be written as
1 u< Umax
-1 —Umin

Example. The equality u = ug can be written as wuygy < u < uggy, hence

1 u< | Vst
-1 T T Ut
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Constrained control via QP

minimize J(U) = kN;OI (aFQrap + uf Qouy) + 25 QN
subject to  Umin < ur < Umax, K=0,...,N—1
Ymin < Cxp < Ymax, K=1,...,N
Ti1 = Azy + Buy
As in last lecture, introducing X = (zo,...,2n), U = (uo, ..., un—-1),
X =GU + Hxg
and the objective function can be written as
J(U) =U"PLoU +2¢1 U + riq

Convex since @2 = 0 (see last lecture for precise expressions)

What about the constraints?
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Predictive control with constraints

Similarly, the constraints ymin < yx < Ymax, k=0,..., N can be written as
Y 2 Yminl, Y < Ymaxl

where Y = (yo,...,yn). Introducing

¢ 0 ... 0
_ o ¢ 0 0
C =

: oo 0

0o ... 0 C

we can re-write these inequalities in terms of U via

Y > Yminl & C(GU + Hxp) > Yminl & CG U > yminl — CHay
<~ oim” 0

Ay by
Y < Ymaxl © C(GU + Hzp) < Ymaxl € OG U < ymaxl — CHug
<~ Lo 70

Ay by
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Predictive control with constraints

Hence, the constrained predictive control problem can be cast as a QP

minimize UTPLqU + QqEQU +rLQ

Ay by

. —Ay —by

. < .
subject to J; U< ol
-1 —Uminl

Solution gives optimal finite-horizon control subject to constraints

Model predictive control:
— apply constrained optimal control in receding horizon fashion
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Model predictive control algorithm

1. Given state at time t compute (“predict”) future states
Tigk, k=0,1,....N
as function of future control inputs
wpr,  k=0,1,...,N—1
2. Find “optimal” input by minimizing constrained cost function
- a quadratic program, efficiently solved

3. Implement u(t)

4. A next sample (t+1), return to 1.
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MPC in pictures

Reference -
N\ / —
“Optimal” fuure outputs
Funure outputs, no control
Old outputs
N X T
“Optiamal” furue inputs
Old inputs /
/
Fatuze impus, no contral
Past Present Funure Tane
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Example: the DC servo

Discrete-time model (sampling time 0.05 sec)

1 0139 _ [o.0107 B
A‘[o 0.861}’ B_[o.139]’ c=1 o

Constrained input voltage
-1<u<1

Constrained position

Ymin < Yk < Ymax
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Impact of state and control weights

Prediction horizon N=10.

0710.0,001

odpay

ouputy

/

uners ) tnets)
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Impact of horizon

auputy

ity
225
I

Too short horizon=>inaccurate predictions=poor performance
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Reference tracking

Would like z to track a reference sequence{ri,...,7n}, i.e. to keep

N-1
Z (2 = 71)T Q1 (2 — 1) + uf Qawg) + (2v — )T Qp(2n — 7v)

k=0
small.

Problem: making z; = ry typically requires ux # 0
- a trade-off between zero tracking errors and using zero control

- often results in steady-state tracking error
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Including integral action

Integral action often included by a change in free variables
- Use Au; = u;-u;, as variables in the optimization
— Actual input obtained by summing up MPC outputs

{Aug, ..., Aupyn-1}
¥
Auk
MPC > Plant model
Controller up = up—1 + Aug
Extended model for MPC computations
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Including integral action cont’d

Form augmented model with state Zj, = (z  uk—1) and input Auy:
Th41| A B T 0
)= Tl [ e

-t 0]

Uk—1

Consider finite-horizon cost

N-1
> (k= ) Qa2 — 7i) + Auf QoAur) + (v — ) Qflan — 1)

k=0

(easy to add penalty also to uy ...)
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Tracking with output constraints

ot
H
ouputy
oty
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Infeasibility

What happens when there is no solution to the QP?

Ty o 1 2 3 I
time [s]

Not clear what control to apply!
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Ensuring feasibility

One way to ensure feasibility:
- introduce slack variables s, > 0
- “soften” constraints

Uk < Umax = Uk < Umax T+ Sck
— add term in quadratic programming objective to minimize slacks
mini[}nize UTProU + QqEQU +7rLQ
I
e T T T
mu%}rgnze U PLU +2q1oU +rpg +£S° S

Notes:
— still QP, but more variables; can also use penalty xS (also QP)
— better to soften already soft constraints (e.g. output constraints)
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Limited horizon control

The longer horizon, the more variables in the QP.

Idea: limit the number of variables by
— predicting (and constraining) the system over horizon of length N
— only optimizing the first N, < N control actions

(called input and output horizons, or control and prediction horizons)

Solutions depend on what we assume about u beyond control horizon.
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Limited horizon control I

Simple solution: control is held constant beyond control horizon
{uo,...,un,—1} are optimized , un, =+ =un_1 = un,—1

Can use the same QP formulation as before and add linear equalities
Up = UN,—1 k= Ny, Nyy1,...,N

Can re-write as a QP on standard form (using techniques form earlier)

Modern solvers automatically remove these variables from QP.
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Limited horizon control II

Alternative approach: use inner-loop feedback

up = —Lay, k= Ny, Nyy1,...,N

Prediction model becomes

21 = Azxy, + Buy k=0,1,...,Ny1
Ty,4t = (A— BL)tzy, t=0,1,...,N—N, —1
With X = (zo,...,2zn), U = (ug, . ..,un,_1), We can write
X =GU + Hxy

So finite-horizon constrained optimal control can be found via QP.

Note: beyond control horizon, Umin < Uk < Umax € Umin < —LZk < Umax
(constraints on control translates into constraints on predicted states)
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MPC controller tuning

MPC has a large number of “tuning” parameters.

The prediction model:
— we need to decide sampling interval
(rule of thumb: sample 10 times desired closed-loop bandwidth)
— obtain discrete-time state-space model

Finite-horizon optimal control:

— set prediction horizon
(rule of thumb: equal to closed-loop rise time; could be smaller)

- decide weight matrices (as for continuous-time LQG)
- decide final state penalty
(guideline: stationary Riccati solution for given weight matrices)
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MPC controller tuning

Finite-horizon optimal control, advanced:
- control horizon (try to set small, rule-of-thumb: use 1-10)
— inner-loop control
(guideline: stationary LQR controller for given weight matrices)

Constraints and feasibility
- specify control and state constraints (problem dependent)
- introduce slacks to “soften” constraints

- choose constraint penalty (large value on kappa)

Integral action (almost always a good idea to include).
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Advanced issues: stability

Receding horizon control might yield unstable closed-loop

Stability can be guaranteed:

- for infinite-horizon unconstrained case (this is LQR)

- for finite-horizon unconstrained case
= if final state is penalized correctly
= if final state is enforced to lie in a given set

- for constrained finite-horizon
= if final state enforced to lie in a sufficiently small set and
= initial QP (solved at time zero) is feasible

Hard to verify for sure in advance...
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Advanced issues: robustness

Consider the unconstrained quadratic program
minimize u’Qu 4+ 2¢Tu
has optimal solution v = —Q‘lq

In the MPC setting, Q and gq depend on the system model
(matrices A, B, C), weights Q;, Q,, and also horizons.

Solution is sensitive to uncertainties if Q is ill-conditioned
- Try scaling inputs and outputs in the model
- Modify weight matrices Q; and Q,
— Almost always a good idea to include integral action
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Advanced issues: observers

MPC, as presented here, assumes full state feedback.
In many cases, we will need to use an observer,
- to reconstruct states, and/or
- to filter out noise
Limited theory, but separation principle holds in some cases.
Suggests guideline

- design observer as for (unconstrained, infinite-horizon) LQG
- use estimated state in MPC calculations as if it was true state
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Get a feel for MPCI

Files for setting up and simulating a problem is on home page.

Do Computer Exercise 5 (download from home page)!
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Summary

Model predictive control (MPC)
- Can handle state and control constraints
- Predictive control computed via quadratic programming

Many parameters and their influence on the control
- System model, weights, horizons, constraints, ...

Advanced issues:
- The need for a state observer
— Different prediction and control horizons
- Feasibility and slacks to “soften” constraints
- Stability and the terminal weight
Integral action

Do computer exercise 5 to get a feel for MPC!
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