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EL2520 
Control Theory and Practice 

 
 Lecture 13:  

Model predictive control 

Mikael Johansson 
School of Electrical Engineering 
KTH, Stockholm, Sweden 

Learning aims 

After this lecture you should be able to 
•  express finite-horizon constrained LQR problems as quadratic programs 
•  explain the basic idea of model predictive control 

–  apply constrained optimal control in receding-horizon fashion 
•  enforce integral action in an MPC controller 
•  explain the issue of infeasibility and know how to circumvent it 
•  limit computational requirements of MPC by limiting control horizon 
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Last lecture: finite-horizon LQR 

Find control sequence  
 
 
that minimizes the quadratic cost function 
 
 
 
for given state cost, control cost, and final cost matrices 
 
 
 
N is called the horizon of the problem. Note the final state cost. 
 
Optimal solution via quadratic minimization or dynamic programming. 
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U = {u0, . . . , uN�1}

Q = QT � 0, R = RT > 0, Qf = QT
f � 0

Last lecture: finite-horizon LQR 

Dynamic programming solution 
 
1.  set 

 
2.  for 

  

3.  for 

 
Note: optimal control is a linear function of the state 
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Example 

Same system as earlier. Investigate how elements of P and L converge 
 
 
 
 
 
 
 
 
 
 
 
Rapid convergence to stationarity as t drops below horizon N! 
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Last lecture: receding horizon LQR 

Consider the cost function 
 
 
 
Here, K is called the horizon, and if 
 
 
minimizes    , then     is called K-step optimal receding horizon control 
 
Receding-horizon control: 

–  at time k, find input sequence that minimizes K-step ahead LQR cost 
(starting at time k) 

–  then apply only the first element of the input sequence 
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Last lecture: receding horizon LQR 

Two ways to ensure closed-loop stability: 
 

1.  Use terminal cost matrix             where 
 
 
(i.e. P solves the discrete-time ARE) ensures stability. 
 
Why? Receding horizon-control is then (independent of t) 
 
 
and the associated closed-loop system is stable  
(if basic observability and controllability conditions are met) 
 

2.  Use longer horizon, so that control approaches stationary optimal 
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Qf = P

P = Q1 +ATPA�ATPB(Q2 +BTPB)�1BTPA
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T
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T
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Today: constrained predictive control 

Finite-horizon LQG with hard constraints on u and y: 
 
 
 
 
 
 
Can be simplified by eliminating                  (as in last lecture) 

–  results in a quadratic programming problem in  
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minimize J(U) =
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{x1, . . . , xN}
{u0, . . . , uN�1}
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Quadratic programming (QP) 

Minimizing a quadratic objective function subject to linear constraints 

 
Any u satsifying            is said to be feasible. 

–  clearly, not all quadratic programs are feasible  
(depends on A, b; more about this later…) 

 
“Easy” to solve when objective function is convex (P positive semidefinite) 

–  optimal solution found in polynomial time 
–  commercial solvers deal with 1000’s of variables in a few seconds 
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minimize uTPu+ 2qTu+ r
subject to Au  b

Au  b

Quadratic programming tricks 

Example. The double inequality                          can be written as 
 
 
 
 
Example. The equality             can be written as                      , hence    
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Constrained control via QP 

 
 
 
 
 
As in last lecture, introducing                                                 ,  
 
 
and the objective function can be written as 
 
 
Convex since            (see last lecture for precise expressions) 
 
What about the constraints?   
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X = (x0, . . . , xN ), U = (u0, . . . , uN�1)

X = GU +Hx0

J(U) = UTPLQU + 2qTLQU + rLQ

minimize J(U) =
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T
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y

min
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, k = 1, . . . , N

xk+1

= Axk +Buk

Q2 � 0

Predictive control with constraints 

Similarly, the constraints                                          can be written as 
 
 
where                      . Introducing 
 
 
 
 
 
we can re-write these inequalities in terms of U via  
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Predictive control with constraints 

Hence, the constrained predictive control problem can be cast as a QP 
 
 
 
 
 
 
 
Solution gives optimal finite-horizon control subject to constraints 
 
Model predictive control:  

–  apply constrained optimal control in receding horizon fashion 
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Model predictive control algorithm 

1.  Given state at time t compute (“predict”) future states 
 
 
as function of future control inputs 
 
 

2.  Find “optimal” input by minimizing constrained cost function 
–  a quadratic program, efficiently solved 

3.  Implement u(t) 

4.  A next sample (t+1), return to 1.  

xt+k, k = 0, 1, . . . , N

ut+k, k = 0, 1, . . . , N � 1
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MPC in pictures 
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Example: the DC servo 

Discrete-time model (sampling time 0.05 sec) 
 
 
 
Constrained input voltage 
 
 
Constrained position 
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Impact of state and control weights 

Prediction horizon N=10. 

Impact of horizon 

 
 
 
 
 
 
 
 
 
 
Too short horizonèinaccurate predictionsèpoor performance 
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N = 10 N = 3 N = 1

Reference tracking 

Would like   to track a reference sequence                 , i.e. to keep 
 
 
 
 
small.  
 
Problem: making            typically requires 

–  a trade-off between zero tracking errors and using zero control 
–  often results in steady-state tracking error    
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z {r1, . . . , rN}

N�1X

k=0

�
(zk � rk)

TQ1(zk � rk) + uT
kQ2uk

�
+ (zN � rN )TQf (zN � rN )

zk = rk uk 6= 0
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Including integral action 

Integral action often included by a change in free variables 
–  Use Δui = ui-ui-1 as variables in the optimization 
–  Actual input obtained by summing up MPC outputs 

X
MPC Plant model 

Extended model for MPC computations 

uk = uk�1 +�uk

{�uk, . . . ,�uk+N�1}
+

�uk

Controller 



6 

Form augmented model with state                         and input       : 
 
 
 
 
 
 
Consider finite-horizon cost 
 
 
 
 
(easy to add penalty also to     …) 
 
 

Including integral action cont’d 
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Tracking with output constraints 
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Infeasibility 
What happens when there is no solution to the QP? 
 
 
 
 
 
 
 
 
 
 
 
 
Not clear what control to apply! 
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Ensuring feasibility 

One way to ensure feasibility:  
–  introduce slack variables 
–  “soften” constraints  

–  add term in quadratic programming objective to minimize slacks 

 
Notes:  

–  still QP, but more variables; can also use penalty      (also QP)  
–  better to soften already soft constraints (e.g. output constraints) 

 
 
 

sck � 0

uk  u
max

) uk  u
max

+ sck

minimize
U

UTPLQU + 2qTLQU + rLQ

+
minimize

U,S
UTPLQU + 2qTLQU + rLQ + STS

S
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Limited horizon control 

The longer horizon, the more variables in the QP. 
 
Idea: limit the number of variables by 

–  predicting (and constraining) the system over horizon of length N 
–  only optimizing the first             control actions 

(called input and output horizons, or control and prediction horizons) 
 
Solutions depend on what we assume about u beyond control horizon. 
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Nu  N

Limited horizon control I 

Simple solution: control is held constant beyond control horizon 
 
 
 
Can use the same QP formulation as before and add linear equalities 
 
 
Can re-write as a QP on standard form (using techniques form earlier) 
 
Modern solvers automatically remove these variables from QP. 
 
 

EL2520 Control Theory and Practice                                              Mikael Johansson mikaelj@ee.kth.se 

{u0, . . . , uNu�1} are optimized , uNu = · · · = uN�1 = uNu�1

uk = uNu�1 k = Nu, Nu+1, . . . , N

Limited horizon control II 

Alternative approach: use inner-loop feedback 
 
 
Prediction model becomes 
 
 
 
With                                                       , we can write 
 
 
So finite-horizon constrained optimal control can be found via QP. 
 
Note: beyond control horizon, 
(constraints on control translates into constraints on predicted states)  
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uk = �Lxk, k = Nu, Nu+1, . . . , N

xk+1 = Axk +Buk k = 0, 1, . . . , Nu�1

xNu+t = (A�BL)txNu t = 0, 1, . . . , N �Nu � 1

X = (x0, . . . , xN ), Ū = (u0, . . . , uNu�1)

X = GU +Hx0

u

min

 uk  u

max

, u

min

 �Lxk  u

max

MPC controller tuning 

MPC has a large number of “tuning” parameters.  
 
The prediction model:  

–  we need to decide sampling interval  
(rule of thumb: sample 10 times desired closed-loop bandwidth) 

–  obtain discrete-time state-space model 

Finite-horizon optimal control: 
–  set prediction horizon 

(rule of thumb: equal to closed-loop rise time; could be smaller) 
–  decide weight matrices (as for continuous-time LQG) 
–  decide final state penalty 

(guideline: stationary Riccati solution for given weight matrices) 
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MPC controller tuning 

Finite-horizon optimal control, advanced: 
–  control horizon (try to set small, rule-of-thumb: use 1-10) 
–  inner-loop control 

(guideline: stationary LQR controller for given weight matrices) 
 

Constraints and feasibility 
–  specify control and state constraints (problem dependent) 
–  introduce slacks to “soften” constraints 
–  choose constraint penalty (large value on kappa) 

Integral action (almost always a good idea to include). 
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Advanced issues: stability 

Receding horizon control might yield unstable closed-loop 
 
Stability can be guaranteed: 

–  for infinite-horizon unconstrained case (this is LQR) 
–  for finite-horizon unconstrained case 

§  if final state is penalized correctly 
§  if final state is enforced to lie in a given set 

–  for constrained finite-horizon 
§  if final state enforced to lie in a sufficiently small set and 
§  initial QP (solved at time zero) is feasible 

Hard to verify for sure in advance… 
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Advanced issues: robustness 

Consider the unconstrained quadratic program 
 
 
has optimal solution 
 
In the MPC setting, Q and q depend on the system model  
(matrices A, B, C), weights Q1, Q2, and also horizons. 
 
Solution is sensitive to uncertainties if Q is ill-conditioned 

–  Try scaling inputs and outputs in the model 
–  Modify weight matrices Q1 and Q2  

–  Almost always a good idea to include integral action 
 

Advanced issues: observers 

MPC, as presented here, assumes full state feedback. 
 
In many cases, we will need to use an observer, 

–  to reconstruct states, and/or 
–  to filter out noise 

Limited theory, but separation principle holds in some cases. 
 
Suggests guideline 

–  design observer as for (unconstrained, infinite-horizon) LQG 
–  use estimated state in MPC calculations as if it was true state  
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Get a feel for MPC! 

Files for setting up and simulating a problem is on home page. 
 
Do Computer Exercise 5 (download from home page)!  
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Summary 
Model predictive control (MPC)  

–  Can handle state and control constraints 
–  Predictive control computed via quadratic programming 

Many parameters and their influence on the control 
–  System model, weights, horizons, constraints, … 

Advanced issues: 
–  The need for a state observer 
–  Different prediction and control horizons 
–  Feasibility and slacks to “soften” constraints 
–  Stability and the terminal weight 
–  Integral action 

Do computer exercise 5 to get a feel for MPC! 
 


