&

L,
FKTHR

VETENSKAP
39 OCH KONST ¢

0 9

Q%X_%o

EQ2440: Visual Based In-Flight File
Transfer

Team Green 2013

Ahsan Mahmood
Brice Lavorel
Hanwei Wu

Jia Wang
Lukas Jornitz
Yasin El Guennouni

Supervisor: Per Zetterberg
Assistant: Igbal Hussain

Abstract

This paper describes a way to transfer files between two smart phones without using radio
transmission. Instead the information is sent using the screen on one phone and received
using the camera of the other phone. The project started with using the standard QR code.
However the standard was not followed completely, several tweaks were implemented in
order to make the communication handle larger amounts of data, run faster and be more
robust. To encode more data to the QR code color codes were used; this made it possible to
encode 3 times more data.

The final system was run on Samsung Galaxy S3 phones using Android 4.2. In the final
model a file that is up to 754 kilobytes can be transmitted with lowest error correction.

Keywords Visual channel, QR code, Android implementation

Table of Contents

AADSTIBCT ...ttt e R 1 E e 3
[o [FTot i o] RO TP PP PP PP POPPPPPPPPPPP 8
1.1 BACKGIOUN.o a e 8
2 o] o] L= g T T od] 1] o USSR 9
TREOIY . 11
2.1 CoOMMUNICALION SYSTEIM . ..iiiiiiiiii e et e e et e e e e e e e e e e e ettt e e e e eeeeeaastaaaaeeeaeeeennnes 11
A © | o o o =SSR 11
2.2.1 SYymbol Versions and SIZEScouuuuiiiiii e 12
2.2.2 FINOEE PAIIEINttt 12
2.2.3 SBPAIALONS. ... e ee ettt et e ettt e et — e e e et e e r e e e et e e e nr e e aeeeennne 12

2. 2.4 TIMING PaAlEIN e e e e e e et e e e e e e e e e aarta e e eeaeeaennees 12
2.2.5 AlIGNMENT PALIEINS ...ttt ennennes 12
2.2.6 ENCOAING REQIONoiiiiiiiiei e e e e e et e s e e e e e e e e aat e e e eaaaeeeenes 13
2.2.7 Error COrreCtion COOINGuuuuuuuuuuuiuiiiiiiiiiieii e eeeeeeeennees 13
2.2.8 QUIBE ZONE....uiuii ettt e e e e e e e e e e e e e e e et e aaaaaaaane 13
IMIEENOM ...ttt 14
G 700 I = TooTo L1 o RS UPRPPPPPRPRRt 14
3.1.1 Data ANAIYSIS ...t 14
3.1.2 Data ENCOTING ..o oo 14
3.1.3 Error Correction COAING..........cuuuiiiiiiii e eee et e e e e e e e 17
3.1.4 Structure Of FiNal MESSAGEcooeeeeeeeeeee e 18
3.1.5 Placement iN IMALIIXcooeiieeeeee e 19
318 IMASKING .. 21
3.1.7 Format and Version INfOrmation ... 22
3.1.8 Placement of Version Information in QR Codeooovviiiiiiiiieiieiiieiee e 24
3.1.9 Placement of Format Information in QR COdecccoviiiiiiiiiiiiieeien e, 25
3.1.10 Summary for Generating Single QR Code........cooiiiiiiiiiiii e 26
3.1.11 Colored QR COUESuuuuiiiieeeieieeiee e e ettt e e e e e e e e ettt a s e e e e aeesaaataaaaaeeaeeeennnes 26

I 70 0 2 |V B 11 o] L= @0 o =S 27
3.1.13 Multiple QR code data StIUCLUIEccceeeeiieeeiiicee e e e e e e eeeaeeannes 29

130728 I <o o o 1T TR SRR 29
3.2, BINANIZALION. ...ttt e e e e e e e e e e e e 30

3.2.2 Locate the Finder Pattern and the Affine Transformation...........ccocovvevveeviiievenninnes. 33

3.2.3. Decode the Version & Format INformationccccuvviiiiiiiiiiniiiiiiiee e 35
3.2.3 Locate the AlIgNMENt PAtteINS.........cooeiiieeeeeeeeee e 36
3.2.4 Reading Of the COUE.... oo i e e 37
3.2.5 C0I0red COUEo 38
3.2.6 MUIIPIE DECOAING ...evvviiiieeee i e e e e e e e e e e e e e e e eaaeaaas 38
IMIPIEIMIENTALION ...ttt 40
4.1 ENVIFONMIENT. ...ttt e e e et e e et e e s e e e e e e e e e e st reaaeeas 40
.11 SOMWAIE ... 40
412 HAIAWATE......cc oo 40

4.2 ENCOUE ...ttt e ettt e et a e e e e e s 40
4.2.1 UML fOF ENCOTINGciii e 43

B .3 DECOME ...ttt e e e ettt e e e e a s 44
4.3.1 UML fOF DECOAING.....cceeeeeeeeeeee e 45
RESUITS/DISCUSSION ...ttt e ittt e ettt e e e e e s e e e e e e e e e n bbb e e e e e e e e aaaa 48
Dz 1 - B =1 L= PP PSSP PPPTTPPTT 48
(©70] o] 1] o] o TP PP P PP PR PPPPPPPPI 53
1T o][ToTo =1 0] o)V TPPPTRTOR 54
AADPEINTIX A [8] -ttt 55
PN o] o 1= Vo [0t = J PSSP PP 56

Acknowledgement

We would like to take the chance to thank Per Zetterberg for making this course possible. He
has also been great support during the course as well, always coming to the lab and seeing if
everything is going as planned. We would also like to thank our project assistant Igbal
Hussain for giving us feedback and insights on different areas in the project. We would also
want to thank the other groups for the pleasant time spent in the lab.

Chapter 1

Introduction

1.1 Background

The ban of devices using radio transmitters on board aircrafts is well known in some parts of
the world. The common excuse is that the radio transmitters may interfere with the flight
instruments such as the navigation system. But the main reason, according to the Federal
Communications commission is that it interferes with networks on the ground [1]. Most base
stations on the ground are slightly tilted forward in order to enable users close to the base
station service. However, the antennas that are commonly used have a front and a back lobe,
tilting the front lobe forward makes the back lobe rise up [2]. If the passengers onboard have
their cell phones on they will connect to many base stations on the ground and disorder the
operator’s cell plans. The airline companies are creating new solutions to the problem by
offering the passengers services as Wi-Fi on board [3]. However the services are limited and
sometimes also expensive to use.

In this report a method that does not use the common radio transmission techniques will be
described, and by doing so the ban of radio transmitters will be worked around.

In this system a visual based file transfer will be carried out, using the screen on one phone
as a transmitter and the camera on another phone as a receiver. This method avoids any
use of frequencies that might interfere with other systems, whether it is in the aircraft or on
the ground.

In order to enable quick and reliable communication the Quick Response Code (QR Code)
will be used. The main advantages with QR code are that it can store large amounts of data,
both alpha numeric characters and in binary bits, [4] and it also runs very fast. Besides from
that it has error correction; which makes the solution very robust. This makes it possible to
read the code even if a part of it is missing or is unclear.

1.2 Problem Description

The layout of the problem solved in this project is illustrated in Figure 1. Initially the data is
broken down into small pieces on the transmitter side and each piece is encoded into a QR
image. Then these images will be displayed on an Android device at a certain rate.

On the other end of the system, namely the receiving end, the QR codes are read by the
camera on another Android device and saved onto its SD card. Further the received images
will be processed to decode the message and then combined in order to recover the initial
file.

Read file

Break down

Flolmin il into small files

Process file

Encoding

Visual based
file transfer
Write file

QR codes to
file Decoding

Process

Recombine

Figure 1: Flow chart of the system

10

Chapter 2

Theory

2.1 Communication System

In this project the system can be seen as a communication system with all the different parts
included. The phone that is displaying the QR code is the transmitting part and the other
phone using camera to read codes is the receiver. The system utilizes a visual channel
which is the screen. There is also noise that disturbs the signal, this is caused by reflections
and shadows on the screen

2.2 QR Codes

Each QR Code symbol should be constructed of encoding region and function patterns,
namely finder, separator, timing patterns, and alignment patterns. Function patterns should
not be used for encoding the data. The symbol should be surrounded by a quiet zone border.
Figure 2 illustrates the structure of a Version 7 QR Code symbol.

= Uizt Lome
= Paosition Detection ™ \
Patiemns
_hﬁﬁ-epualnm for Pasition | Funclion
Dreteetion Patrerns Patierns
Svmhiol
e Timing Patierns
= Alignment Pallerns
e
Format Information
Version Information | Eoeoding
Region
— Data and Error /
Corretion Codewords y

Figure 2: Structure of a Version 7 QR Code symbol [9]

11

2.2.1 Symbol Versions and Sizes

There are forty versions of QR Code symbols from 1 to 40. Version 1 measures 21 * 21
modules, Version 2 measures25 *25 modules and so on, increasing by the factor of 4
modules. For Version 40 which contains 177 *177 modules.

2.2.2 Finder Pattern

At the upper left, upper right and lower left corners of the symbol there are three Position
Detection Patterns. The width ratio of each Position Detection Pattern is 1:1:3:1:1 as
illustrated in Figure 3. The Finder pattern is used to rapidly find the QR Code symbol in the

field of view.
- %
A 3 modules
A B C I5: 5 modules
C: T modules
- ¥ @

Figure 3: Ratio of the finder pattern [10]

2.2.3 Separators

A one-module wide Separator is placed between the Position Detection Pattern and
Encoding Region, as illustrated in Figure 1; the Separators are constructed of all light
modules.

2.2.4 Timing Pattern

Timing Patterns consist of a one module wide row or column of alternating dark and light
modules, starting and ending with a dark module. The horizontal Timing Pattern is at row 7 of
the symbol between the Detection Patterns; the vertical Timing Pattern similarly is at column
7 of the symbol between the Position Detection Patterns. They enable the symbol density
and version to be determined and provide datum positions for determining module
coordinates.

2.2.5 Alignment Patterns

The Alignment Patterns consist of three superimposed concentric squares which are
constructed of dark 5* 5modules, light 3*3 modules and a single central dark module. The
number of Alignment Patterns depends on the version of symbol. They easily enable to
detect the symbol at the good position.

12

2.2.6 Encoding Region

This region should contain the data, error correction codeword, version Information and
Format Information.

2.2.7 Error Correction Coding

The error correction codeword will be generated using a method called Reed-Solomon Error
correction.

2.2.8 Quiet Zone

Quiet zone nominally should be light modules. And this region surrounds the symbol on all
four sides. The quite zone enables the QR code to be distinguishable from the background.

13

Chapter 3

Method

3.1 Encoding

3.1.1 Data Analysis

Standard QR Codes include several modes to allow characters to be converted into symbol
characters in efficient ways. In this project, only byte mode is used as it can encode any file
type. The next step is to select the required Error Correction Level. If the user has not
specified the symbol version to be used, select the smallest version that will accommodate
the data.

3.1.2 Data Encoding

In this project, 8-bits mode is used to encode the data then split the resulting bit stream into
8-bit codeword. Pad Characters have to be added so as to fill the number of data codeword’s
required for the version if the data is not enough for that version.

8-Bit/Byte Mode
In this mode, one 8 bit codeword directly represents ASCII value of the input data as shown
in Table 1.

14

Dec Hex Char Dec Hex Charc bec Hex Char Dec Hex Charc
o o0 hhal az 20 Space &4 40 0 an G0 N
1 01 Siert of headng 33 21 ! &5 41 A a7 Gl -
z Oz =tert of tesd 34 22 L 66 4 E g G2 b
3 03 Endl of test 35 23 A 67 43 C 99 53 C
C 0= Erd af fransem 36 24 =4 &5 44 In 100 Ga d
5 05 Encqury 37 28 & &5 45 E 101 65 e
& 05 Acknowlzdge 38 25 £ T 48 F 102 (1] T
T 07 Aucble bl as 27 ! T1 4T G 1103 &7 g
E 0B Backspacs 40 23 [TE 45 H 10=% G h
S 09 Horizontalteb 41 29] T3 43 I 105 &3 i

10 OA Line faed 332 o T4 4A 0 106 [. |
11 0B ‘erical tab 43 2B + 7E 4B E 107 &B k
1z OC Form feed - 20 r Ve 40 L 103 [-1™ 1
13 oD Carriags refum 15 2D - Nala 4D N i09 ah m
14 OE Ehim out =1 2E - - 4 W 114 GE I
15 OF =hiltin 47 2F £ T2 4F O 111 aF a]
16 10 Dot ink ascepe 43 30 0O g0 50 P 112 70 p
17 11 Devics condral 1 49 31 1 &1 S51 113 71 q
18 12 Device cordrol 2 50 32 2 B2 B2 R 114 T2 ¢«
19 13 Dewics condrol 3 51 33 = 3] 53 = 115 T3 =]
20 14 Device condrol 4 52 34 4 B4 54 T 116 T4 ¢«
21 15 Meg. acknovdedps 53 35 5 6% 55 O 117 T5 1L
22 18 Synchronous ide 54 36 & BE EBE W 118 Té v
23 17 Erddirans. biock 55 37 7 87 &7 W iig 77 L
] 18 Cancel S 34 (] BE 58 X i1z20 i x
23 19 Endd of meddam 57 39 9 g% 55 ¥ 121 79 W
i 18 Subsiddtan 58 3IA H [=1n] ShA Z 122 TA =
27 18 Ezcope == 3B H 91 SE [123 7B [

Z6 1C Fie zeparslar a0 3C o =1 5C % 124 T |

29 1D Grouwp soparator 51 3D = 93 5D 1 125 0}

30 1E Recard separabar a2 JE > o4 SE - 126 TE M
321 1F LUnk soporshor 53 3F 72 S5 &F 127 9F O

Table 1: ASCII values
Terminator

The end of data in the symbol is signhaled by the Terminator sequence 0000. This may be
omitted if the data bit stream completely fills the capacity of the symbol, or abbreviated if the
remaining capacity of the symbol is less than 4 bits. The message bit stream should then be
extended to fill the data capacity of the symbol corresponding to the Version and Error
Correction Level.

Bit Stream to Codeword Conversion

The resulting message bit stream should be divided into 8 bits codeword. If the final
codeword is not exactly 8 bits in length, it shall be made 8 bits long by padding 0. Then
message bit stream should be extended to fill the capacity of simple, by the addition of the
Padding Codewords 11101100 and 00010001 alternately. In certain versions of symbol, it
may be necessary to add 3, 4 or 7 Remainder Bits (all zeros) to the end of the message in
order exactly to fill the symbol capacity.

EXAMPLE: (for Version 1-H symbol)
Input data: 012345
1. Convert data to its binary value:

15

0 00000000

1 00000001

2 00000010

3 00000011

N

00000100

5 00000101

2. Connect the binary data in sequence:

00000000 0000000100000010000000110000010000000101

3. Add Character Count and mode Indicator to binary (10 bits for version 1-H):
No. of input data characters: 6 00000110

Mode indicator: 0100

4. Add padding bit and divided it into each 8 bits.

00000110 01000000 00000000 00010000 00100000 00110000 01000000 01010000

To encode a sequence of input data in a given mode, the steps defined in sections 2.2.1 to
2.2.3 shall be followed.

Table 2 defines the Mode Indicators for each mode. Table 3 defines the length of the
Character Count Indicator,

16

Table 2 — Mode indicators

Moda Indicator

ECI 0111
Numéaric 0001
Alphanumeric 0010
B-bit Byte 0100
Kanji 1000
Struclured Append LR

FNCT 0101 (First position)

1001 (Second position)

Terminator (End of Message) 0000

Table 3 — Number of bits in Character Count Indicator

Version Mumenc Alphanumeric B-bit Byte Kanji

Mode Modea Mode Mode
109 10 9 8 8
10t 26 12 11 16 10
27 1o 40 14 13 16 12

3.1.3 Error Correction Coding

The error correction codeword will be generated using a method called Reed-Solomon Error
correction.

Steps of Polynomial Long Division

The steps for polynomial long division are:

1. Find the appropriate term to multiply the divisor. The result of the multiplication should
have the same first term as the dividend.

2. Subtract the result from the dividend. Repeat steps 1 and 2 until it is no longer possible to
multiply by an integer, or in other words, it would be necessary to multiply by a fraction. The
number at the bottom of is the remainder.

Galois Field Arithmetic

GF (256) contains the numbers from O to 255. Mathematical operations in GF (256) are
cyclical, meaning that if a number is larger than 255, it will be necessary to use modulo
operation to get a number still in the Galois Field.

In the Galois Field, negative numbers have the same value as positive numbers, so:

In other words, always use the absolute value of the numbers involved in Galois Field
arithmetic. This means that addition and subtraction within the Galois Field is the same thing.

17

Generator Polynomial
The generator polynomial is a polynomial that is created by multiplying (x - a0) ... (x - an-1)
where n is the number of error correction codeword that must be generated.

Generating Error Correction Codeword
Divide the Message Polynomial by the Generator Polynomial, after dividing the two polynomials,
there will be a remainder. The error correction codeword are the coefficients of the remainder.

3.1.4 Structure of Final Message

Now the data codeword and their corresponding error correction codeword should be
available. As mentioned in the previous step, larger QR codes requires one to break the data
codeword into smaller blocks, and generate error correction codeword separately for each
block. When this is the case, the data blocks and error correction codeword must be
interleaved according to table 4. Interleaving for data and error correction codewords are
carried out separately. For each part, one codeword is taken from each block and interleaved
with corresponding codewords from the other blocks. If the number of codewords in blocks is
different, then the initial blocks should have lesser number of codewords. Number of
codewords in error correction blocks is always the same.

Determine how many blocks are required for the data interleaving.

The error correction table in Appendix B shows how many data blocks are required for
each version and error correction level.

Data codewords Error correction codewords
Block 1 D1 D2 | ... D11 E1 E2 | ... E22
Block 2 D12 | D13 | ... D22 E23 | E24 | ... E44
Block 3 D23 | D24 | ... D33 | D34 | E45 | E46 | ... E66
Block 4 D35 | D36 | ... D45 | D46 | E67 | EBB | ... E88

Table4: Interleaving [8]

18

3.1.5 Placement in Matrix

If the data and error correction codeword are interleaved, and the final string of bits is
obtained, then the next step is to put them in the QR code matrix along with the required
function patterns.

Put the Finder Patterns into the Matrix

First, put the finder patterns into the matrix. The finder pattern (shown below) consists of an
outer black square that is 7 modules by 7 modules, an inner white square that is 5 modules
by 5 modules, and a solid black square in the center that is 3 modules by 3 modules.

—7—
—5—
3

Figure 4: Finder pattern in modules [7]

QR code scanners can search for this ratio of light to dark modules to detect the finder
patterns and correctly orient the QR code for decoding. The finder patterns are always
placed in the top left, top right, and bottom left corners of the QR code, no matter which
version is in use.

Add the Separators into the Matrix

The separators are lines of white modules, one module wide, that are placed beside the
finder patterns to separate them from the rest of the QR code. The separators are only
placed beside the edges of the finder patterns that touch the inside of the QR code. For
example:

19

Figure 5: White separators surrounding the finder patterns [7]

Add the Alignment Patterns into the Matrix

QR codes that are version 2 and larger are required to have alignment patterns. An
alignment pattern, shown below, consists of a 5 module by 5 module black square, an inner
3 module by 3 module white square, and a single black module in the center.

The locations at which the alignment patterns must be placed are defined in the alignment
pattern locations table in Annex A.

Add the Timing Patterns into the Matrix

The timing patterns are two lines, one horizontal and one vertical, of alternating dark and
light modules. The horizontal timing pattern is placed on the 7th row of the QR code between
the separators. The vertical timing pattern is placed on the 7th column of the QR code
between the separators. The timing patterns always start and end with a dark module.
Alignment patterns may overlap timing patterns because their light and dark modules always
coincide with the light and dark modules of the timing patterns.

Add the Dark Module and Reserved Areas

The dark module must be added, and there are areas of the matrix that must be reserved for
the format and version bits, which will be added later.

Place the Data Bits

The data bits are placed starting from the bottom-right of the matrix and proceeding upward
in a column that is 2 modules wide. When top of the column is reached, continue with the
next 2-module column to the left and continues downwards. Whenever edge of a column is

20

reached, move on to the next 2-module column and change direction. While moving
upwards/downwards, first place on right part of the 2-module column and then in the left part.
If a function pattern or reserved area is encountered, the data bit is placed in the next unused
module.

Figure 6: Placement of data bits [7]

3.1.6 Masking

A mask pattern decides which modules are dark and which are light according to a particular
rule. The purpose of this step is to modify the QR code to make it easy to scan for a QR code
reader.

The Mask Patterns

Each mask pattern uses a formula to determine whether or not to change the color of the
current bit. The coordinates of the current bit are put into the formula, and if the result is 0,
then the opposite bit at that coordinate is used.

Here is the list of the mask pattern formulas:

Mask Number

0 (row + column) mod 2 ==

1 (row) mod 2 ==

2 (column) mod 3 ==

3 (row + column) mod 3 ==

4 (floor(row / 2) + floor(column / 3)) mod 2 ==

5 ((row * column) mod 2) + ((row * column) mod 3) == 0

21

6 (((row * column) mod 2) + ((row * column) mod 3)) mod 2 ==

7 (((row + column) mod 2) + ((row * column) mod 3)) mod 2 ==

Determining the Best Mask

Note that the entire matrix (including function patterns and reserved areas) is evaluated,
even though the masking is only applied to data and error correction modules. For the
purpose of evaluation, the reserved areas are considered to all be light modules, not dark
modules.

The four penalty rules can be summarized as follows:

Feature Evaluation condition Points

Adjacent modules in row/column in same color | No. of modules = (3 +1) N, +i

Block of modules in same color Block size =mxn Nyx (m-1)x(n-1)
1:1:3:1:1 ratio (darklight dark light dark) pattem N;

In row/column

Proportion of dark modules in entire symbol | 50+ (5x k)% 1050+ (5x (k+ 1))% | Nyxk

Table 5: Mask [7]

e The first rule gives the QR code a penalty for each group of five or more same-colored
modules in a row (or column).

e The second rule gives the QR code a penalty for each 2x2 area of same-colored modules in
the matrix.

e The third rule gives the QR code a large penalty if there are patterns that look similar to the
finder patterns.

e The fourth rule gives the QR code a penalty if more than half of the modules are dark or light,
with a larger penalty for a larger difference.

Mask pattern results in the lowest penalty score is the mask pattern that must be used for the
final output.

3.1.7 Format and Version Information

Format Information consists of 15 bits. First two bits represent the error correction level and
next three represent the mask used for encoding. The remaining 10 bits are used for error
correction of the format information. The first two bits for different error correction levels are
classified as:

01 > Level L

00 2 Level M

10 - Level Q

11 > Level H

22

Version Information consists of 18 bits. First 6 bits represent the version of used QR symbol
while remaining 12 bits are used for error correction. Version information is used only if
version>6.

Generate Error Correction Bits for Format String and Version string

When five bits for the format string are available, then they are used to generate ten error
correction bits. This step uses BCH Error Correction, but it is a little easier because in this
case it is just required to generate ten error correction bits.

Get the Generator Polynomial

When generating the format string's error correction codeword’s, then it is suggested by the
QR code specification to use the following generator polynomial:

X10+x8+x5+x4+x2+x+1

This can be converted to a binary string by only taking the coefficients of each term. The
coefficient of x10 is 1, the coefficient of x9 is 0 since x9 is not present in the polynomial. In
other words, the binary string that represents the generator polynomial for this step is
10100110111

Calculate the Error Correction Bits

The next step is to divide the format string bits by the generator polynomial. To do this, first
create a 15-bit string by putting ten 0s to the right of the format string. Now remove any 0s
from the left side, and then the division is performed.

The steps for division are:

1. Pad the generator polynomial string on the right with Os to make it the same length as the
current format string.

2. XOR the padded generator polynomial string with the current format string.

3. Remove 0Os from the left side of the result.

One has to be careful since it is needed to divide the polynomials until the resulting format
string is 10 or fewer bits long. Therefore, before each division step, a check to make sure
that the current format string is 11 bits or longer is done.

The Version Information areas are the 6* 3 module block above the Timing Pattern and
immediately to the left of the top right Position Detection Pattern Separator, and the 3* 6

23

module block to the left of the Timing Pattern and immediately above the lower left Position
Detection Pattern separator

Example:

Version number: 7
Data: 000111
BCH bits: 110010010100

Format Information module pattern: 000111110010010100.

Ey‘-'ﬂwm [sfor it ron

T

Ry

T

-

Figure 7: Version information [8]

3.1.8 Placement of Version Information in QR Code

There are two rectangular areas where the version information string must be placed: one on
the bottom-left and other on the top right. We are using two blocks for redundancy as both
contain the same information.

Bottom Left Version Information Block

The dimension of bottom left version information block is 3x6. The following table explains
how to arrange the bits of the version information string in the bottom-left version information
area. The 0 represents the RIGHT most (least significant) bit of the version information string,
and the 17 represents the LEFT most (most significant) bit of the version information string.

24

J2)05 |08 11| 14|17

Table 6 [7]

Top Right Version Information Block

The dimension of the top right version information block is 6x3. The following table explains
how to arrange the bits of the version information string in the top-right version information
area. The 0 represents the right-most (least significant) bit of the version information string,
and the 17 represents the LEFT most (most significant) bit of the version information string.

Qo |01)02
03| 0405
06 |07 |08
g3)110]11
1211314
151 1e | 17
Table: 7 [7]

3.1.9 Placement of Format Information in QR Code

Format information is placed around the first finder pattern module. Redundant information is
split into half and placed around other finder patterns. The O represents the right-most (least
significant) bit of the format information string, and the 14 represents the LEFT most (most
significant) bit of the format information string.

25

141312111009 877161514 312110

Figure 8: Format Information in QR Symbol [8] Table 8: Format Information [8]

3.1.10 Summary for Generating Single QR Code

* Determine which encoding mode to use

* Encode the data

« Generate error correction codeword’s

* Interleave blocks if necessary

* Place the data and error correction bits in the matrix

* Apply the mask patterns and determine which one results in the lowest penalty
* Add format and version information

3.1.11 Colored QR Codes

In order to achieve higher data rates, colored QR codes in RGB color space were used. In
this way, it was possible to transmit three QR codes at the same time.

For generating colored codes, the only difference from the normal case is that instead of only
using black and white pictures, three pictures (red, green and blue) is used. These pictures
are added together resulting in one colored code having eight possible colors for
transmission.

The easiest way to add capacity to your code is to add color to it which enables you transmit
them together. As QR code does not have to be standard black and white in order to be
scanned. It is possible to embed multiple colors and apply a color gradient without affecting
scan ability. The only rule of thumb is that the dark modules are placed on a colored
background.

26

Figure 9: Colored QR codes and combined color QR code (bottom right)

3.1.12 Multiple Codes

If we need to transmit a file which length exceeds the capacity of the single QR-code, the file
is divided into smaller blocks depending upon the capacity of single QR code. And these
blocks are transmitted sequentially. Two different approaches have been implemented in this
project:

1) Asynchronous Transmission
In this approach, multiple QR codes are displayed on the screen of one cell
phone at a specified rate. After short interval, codes are updated and
transmitter is not synchronized with the receiver.

27

2) Synchronous Transmission
Synchronous transmission relies on the acknowledgement from the receiver.
When the receiver decodes one code, it sends a flash in order to acknowledge
correct reception. The transmitter, upon reading the flash, updates the next
code on the screen.

A new protocol has been implemented for communication of multiple codes. Frame number
information is put around the first finder block that aids the decoder in reading multiple
frames. If the receiver has already decoded a particular frame then it ignores decoding of the
same code and hence improving the performance of the system. Frame number information
consists of 24 bits. 8 bits are used for frame number while remaining are used for error
correction of frame number information.

Generate Frame Number Information

The Bose-Chaudhuri-Hocquenghem code was used for error correction of frame number
information. The polynomial whose coefficient is the data bit string should be divided by the
generator polynomial. The coefficient string of the remainder polynomial should be appended
to the data bit string to form the (24, 6) BCH code string.

Placement of Frame Number Information in Matrix

E ——= Vieranen [Slieristed

Frame
Number

Figure 10: Frame number

The frame number information is divided into two blocks and placed around the first
(top left) finder pattern. Each sub block contains 12 bits. O is the least significant
while 23 is the most significant bit of the frame number information block. Table 9 and
Table 10 illustrates these bits.

28

0 1

2| 3

4(g

3l 21181715] 1= 6 | 7
22 20018 J1s] 14] 12 89
10 (11

Table 9 Table 10

3.1.13 Multiple QR code data structure

The structure of the data message is visible in the figure below:

ESf1E& bits
I character count |::-E||:||:Iilng

1 1T 1 EETT |
| | R S—

L8 LE o] tot=1 Current
Abits r its fra=me frames=
s Shits Shits

Figure 11: Data message structure

Now the data codeword and their corresponding error correction codeword should be known,
as illustrated above. To transmit multiple QR Codes, a new protocol was implemented. The
final message starts with 4 bits mode indicator which is followed by 8/16 bits character count
that shows how many data bits there are in the message. Then there is a unique 4 bits frame
indicator and a total frame number which shows how many frames that are used to transmit
file followed them. The data part and padding part are also the same as single QR code data.

3.2 Decoding

Decoding of QR codes begin with the application of essential image processing techniques
followed by the reading algorithm.

29

The task of the image processing includes location of the finder pattern, alignment patterns,
and to do the affine transformation to the picture in the segments divided by the alignment
pattern.

3.2.1 Binarization

The first step in decoding is to make the picture readable. In order to do is the picture has to
be binarized, from different gray levels into black and white. We implemented the following
methods for binarization and compared their performances. The results suggested Otsu
Method as our preferred choice.

Figure 12: Original image Figure 13: Binarized image

Static Thresholding

This is the basic method for converting grayscale images to black and white picture. In this
method a threshold is chosen manually and pixels having grayscale value greater than the
threshold are set to white while remaining are set to black. This method is very fast but it
does not give good results especially when there is non-uniform light across the image.

Otsu Method

In this method, we iterate through all the possible values of thresholds and choose the one
that minimizes intra-class variance i.e. for each threshold; we find the measure of spread for
pixel levels each side of the threshold and then find the weighted sum of both calculated
variances.

30

2
Gwithin—class

Where, W is weight of the foreground,

=W.0Z + W07

W is the weight of the background
o} is the variance of foreground

o:is the variance of background

A faster approach for minimizing intra-class variance is to maximize inter-class (between-
class) variance.
= 0'2 — 02

2 — 2
O petween—class within—class — WeWg (,Ll,: - ;UB)

Where, M is the mean value of foreground,

Uz is the mean value of background

Barnes’s Method

This algorithm was published in 1986 in [5]. In comparison to Otsu uses it local thresholds.
This means that the algorithm runs each threshold calculation for a sub square of the original
image. This sub-square is commonly referred to as b2 with b set to 31 as default. This sub-
square is inspected for each pixel.

For this sub-square the ideal threshold is approximated by the mean value of the maximum
and minimum pixel intensity within it. In short mathematical form it can be represented as
follows:

Fmax + Fmin

Txy) = >

_(1 ifgly)>T(xy)
b(x,y) = {O otherwise}

where b(x,y) is the output binary image (or sub-image) and g(x,y) is the input image as
compared with the threshold T(x,y). This method works well as long as the contrast
difference in the sub divided window is large enough. An always associated problem with
local thresholding is the calculation time. If it is increased b, it will give better results but also
a higher computation time. In addition a high resolution photo from the camera is used and

31

the calculation is made on a mobile device. In the next section an algorithm is proposed
which is adapted to working on QR codes.

Modified Sauvola’s Algorithm by J. Zhou and Y. Liu

This adapted method [6] was proposed in 2010. It is one of the first methods trying to use the
assumption that black:white should be 1:1 in the picture (due to masking). Sauvola’s method
is used for document processing and needs a huge amount of time for calculation. It
estimates the threshold as:

T(x, y) = mean(x, y)[l+ k(1—%¥(x’y))]

where R by default is 128 and k is 0:5. The method is extremely effective but the default
parameters are used for document processing.

Due to masking the image, only containing the QR code without the quiet zone, has the
same amount of white and black pixels. Therefore k = 0:5 is proposed in the paper. For R, it
is a value around D/3, where D is the maximum of image width and height. R can be a bit
smaller for an image where the QR code won't fill up the whole image. The proposed value
can be calculated using the QR features [7, 6].

With these values Savola’s method is used. For each pixel the threshold is calculated by
using the b-square around it. If the pixel(x,y) to be binarized is located at the border of the
image, the square is filled up with black pixels.

Comparison

We compared the execution times of all of the above algorithms and drew the following
conclusion:

- Static Thresholding -- Fast but unreliable (~40ms)
- Otsu Algorithm -- Fast and reliable (~200ms)
- Barnes’s Algorithm -- Reliable and slows (~2sec)

- Modified Sauvola’s Algorithm by J. Zhou and Y. Liu -- Excellent results but slow (over 10
sec)

32

3.2.2 Locate the Finder Pattern and the Affine Transformation

Rows Search

When the picture is readable the first step is to locate the finder patterns located in three of
the four corners [5]. This position detection pattern consists of a black-white-black-white-
black sequence with the ratio of 1:1:3:1:1, this is the distance between A and B in the Figure
below. In order to find this pattern in the picture the rows are read and the value is put into an
array of five. As an example if the first pattern is:

[3, 4,5, 1, 16].

This means that we have three black pixels in a row and then four white pixels etc. To see if
the pattern is found, the middle value is divided by three and compared to the remaining
values (in the example 3, 4, 1, 16), to see if the pattern is found. Otherwise the procedure is
repeated until there is a match. To save memory, instead of making a new array the current
array is just shifted to the right, placing the new value to the left (in the example in the place
of the 3).

Figure 14

Research of the Center

When we have a match, we take the center of the matching sequence and we verify if ht
sequence [1,1,3,1,1] is matched on the column. If it matches, we save the center of every
matching sequence on the row in the black neighbor. And we do the same for the column.
We have the result (red: centers of row matching, yellow: centers of column matching):

33

Figure 15

Now we can calculate the parameter of the line which goes through the red point and the line
which goes through the yellow point and we are able to calculate the cross point of the two
lines which is a very good estimation of the center of the finder pattern.

To finish we save the center of the pattern, the total number of point (red + yellow) and the
estimate size of the finder pattern.

Avoid too Many Calculation

To avoid calculating the same pattern several times, we indicate the area where we have
already researched a pattern so we can avoid these areas when the procedure of research
of [1,1,3,1,1] is running.

Determine the Finder Pattern

We can determine more than 3 finder patterns in the picture, so we only have to keep the
best one. For that we keep the finder patterns which have the biggest number of point (see
above: red+yellow).

Determine the Orientation of the Picture

After finding the three best finder patterns, we need to put them in the good order to have the
good orientation of the QR code. The first step is to find the top left finder pattern. For that we
calculate the scalar product between the three vectors created by the three points that we
have just found. Because the angle between the two vectors around the top left finder pattern
is a multiple of 90°, the scalar product of the vectors should be the closest from zero.
So we need now to put the two other points in the good order, for that we just need to verify
the orientation of the orthogonal coordinate center in the top left point and set by the two
other points.

Calculate the Length
We need now to evaluate the size of the QR code in number of module :
WyL+W
D + UL2 UR
N = WyLtWyr
14

34

WuL Wur

F 9
h 4

Figure 16

In addition, we know the length of a QR code has the form: N = 4q + 1, so we can select the
better result in function of the previous calculation.

The Affine Transformation

When the three finder pattern points are obtained and the length of the QR code is known,
we can determine an affine transformation to transform the relative coordinate in the QR
code (Xg,y1), into the real coordinate in the picture (x,,y.). The affine transformation is carried
out according to the following equation.

MMEvIEM

3.2.3. Decode the Version & Format Information

Case of a QR Length Inferior or Equal to 41
In this case, there is no information about the version in the QR code, so we determine it with:

N-—-17

Version =

The version will be between 1 and 6.

Case of a QR Length Superior or Equal to 45
In this case, we read the version information in the QR code:

35

Vetsion

A Information 1 B

R

Vetsion E E E

Information 2

--"‘-.-;1

O O

Figure 17

The version will be between 7 and 40.

Format Information

The format information is simply read around the finder patterns as explained in the encoding
part.

3.2.3 Locate the Alignment Patterns

The Goal of the Alignment Patterns

After the finder pattern locations are found, the alignment patterns have to be located in the
symbol to operate a better reading because a simple affine transformation is not enough to
correct the perspective deformation of the QR code. Using the affine transformation is a good
way to read the information around the finder patterns but for the rest of the QR code more
precision will be needed.

Localization of the Alignment Patterns

For the top left, top right and bottom left positions, we will take the finder patterns. For the
other, we approximate the location of the alignment patterns based on the standard and we
are making a research in a local area of the two dimensional shape of the alignment pattern:

36

Figure 18: Alignment pattern

3.2.4 Reading of the Code

Next it is time to read the code. This is done in two steps:
First, we read all the information applying the mask and avoiding useless areas.
Second, we read the previous reading in the good order

Useless Area

First, we determine the area where the information is useless, like the different patterns, the
version information, the timing line, etc. And the useful information will be in the rest of the
QR code:

Figure 19

Reading and Applying the Mask
With the previous area, we can read all the information and apply the XOR mask at the same
time using the Format information. We finally put it in a new array.

Snake Reading and Recombination of the Blocks

We can, now, aboard the second step by reading the previous array in the good order like in
the encoding. After that, we recombine every block of byte in the good order in the goal to
apply the Reed-Solomon algorithm for the decoding.

Reed-Solomon decoding
The Reed-Solomon algorithm for decoding operates in different steps:

37

- First Step: this algorithm is a linear encoding, so it checks if the message is in the
alphabet. If yes, the message hasn’t been deformed by the transmission.

- Second Step: in the case that the message is not in the alphabet, the algorithm tries
to locate the errors in the message. For that, it resolves a linear system on the Galois
Field to find a polynomial. The root of it gives it the position of errors.

- Third Step: the algorithm resolves a last linear system to find the correction link to the
position of an error.

3.2.5 Colored Code

For decoding the colored QR codes, we just need to separate the three colored channel of
the picture (red, green and blue) and we treat each channel separately like if it was a simple
QR decode. We finally need to put the three decoded messages together to have the final
message.

For the localization of the different patterns, we just need to do it for one of the channels and
the two others have the same.

3.2.6 Multiple Decoding

For the multiple decoding, we need to decode several colored or standard QR code in real
time. The emitter plots a code on its screen and updates it every second with the next code.
The receptor needs to take a picture at least every second, to decode it and to put all the
decoded messages together. For that we need to work with parallel computation using
Threads. There are finally 5 threads.

Thread 1: the Ul Thread
This is the main Thread. It manages the graphic interface and the callbacks on the messages.

Thread 2: the Preview Thread
This Thread manages the camera. It is saving a new picture when a one is called.

Thread 3: the PictureManager Thread

This Thread manages the queue of picture, it regulates the calling of picture to the Preview
Thread and manages the states of the decoding.

Thread 4: the Decoder Thread

This Thread manages the decoding of a picture. It is called by the PictureManager and return
the results to the last Thread (MessageManager).

38

Thread 5: the MessageManager Thread

This Thread manages the queue of decoded message and manages to put them in the good
order. It also gives the order to end the decoding when all the codes have been decoded.

Ul Preview
A .
The final complete Put the picture Call for a
The state of t.he message in queue :
decoding Order to stop new picture
When message completed
MessageManager » PictureManger

A

Ask for a new

Returns the picture to decode
decoded message

Decoder |«

Give a new
picture to decode

Combining of decoded messages

Each time the decoder finish to decode a code, it returns the decoded message to the
message manager which verifies the markers, at the beginning of the message, to be sure
that the message follows the protocol. It also checks the frame number, the total frame and
the length of the message to put every message in the good order.

Frame indication

It is possible to check the frame number put in the QR code, before reading data, so if the
code has already been decoded, we don’t need to decode it to avoid useless calculation.

Synchronized Transmission

The transmission is not synchronized. The communication is only in one direction, so the
encoder doesn’t know what the situation of the decoder is.

But there is an option to synchronize the communication. With this option, the decoder emits
a flash when it finished to decode the actual code and the encoder detects the flash with its
light sensor, so it can change of code.

This solution is slower but avoids missing code.

39

Chapter 4

Implementation

4.1 Environment

4.1.1 Software

» Matlab 2012b. The initial tasks of encoding and decoding where implemented in Matlab.
The message was encoded in Matlab and the uploaded to the Smartphone, and then another
PC running Matlab encoded the message.

* Eclipse SDK version 3.8.0. The Android application was supposed to be written in Java.
As Eclipse is a supported platform by Google it was used in this project.

* Android Software Development Toolkit. This toolkit contains some needed drivers and
hardware platforms.

4.1.2 Hardware

» Smartphone’s. The application have been run and tested on Samsung Galaxy S3 phones
running Android Jelly Bean 4.2 as operating system.

» Computers. Four Dell laptops running Windows 7 have been used to write all the codes.

4.2 Encode

As there are a transmitter and receiver part, two phones have to be used, one for each
purpose. Different graphical interfaces were implemented for each one.On the transmitter
side the application gives the option to choose a text file that will be transferred and the user

40

can type in the name of the file. It also has a button to start the transmission. The
transmission will begin only after a file has been selected.

¥ D B [P Dy Bh o]
. Data2QRs # Data20Rs

Cancel

Start Start

Group GREEN Encoding Group GREEN Encoding

Figure 20. Launch the application, the GUl is Figure 21. Input the file name by pressing Menu.
displayed above. The file can be
transmitted by pressing 'Start’ .

[n,
2 Preferences
QR Code preferences

Error correction level

Encble colored QR-codes

Force a version

Select version

Encble +lash

Figure 22

On the preference screen one can
select version, Error correction
level, colored QR-codes and flash. If
nothing is selected a default values
will be used.

P

=
Eh o)

Data2QRs

Figure 23
The application while transmitting codes

42

4.2.1 UML for Encoding

Encoding
- VETSion
QRCodeConfig QRCode =
sp start_stop_button number mask
i flazh -

el . blocksize_m_1

loadPref() textVisw N

enCreate() start_displaying H

onStart() gridueus active

onResume() guiTriggerThread o

enPause() encedingThread E

onSharedPreferenceChanged(} context nbr_pic

saveValueOfList() gui_active msg_len
i sto -

savelntinString () P filename

savelnt() filename ins

savelalue() sensorManager - G

getPrefs() lightSensor) He

getint() listener main enc Encoding()
. §]
etBoolean() lightQuantity getVersion(}
getString0 fikev(} onCreate(} load_file()
onResume(} Enc:cl_ding(}
onPause()
. (’: create_qr_code()
init_flash(} start()
cnCreateOptionsMenu() fill_color_masks()

. L _|)
onOptionstemSelected() check_dieplaying_status(}
start_encoding() cumbi;e Hs() -
start_gui() = §

_gui() i convert_2d_bitmap(}
start_threads() format_info()
show_popupi) S
- _IJ pup() version_info()
sta .
. (‘f print boolean(y
sto . y
Py . inzertalignmentinfol)
onAccuracyChanged() finding_pattern(}
onSensorChanged() S -
ged) timing_information ()
frame_info()
Data_ErrorCorrection_Module
Encoding ,
Type version2
version
ol Dbt idata RSencoder Galois
number_mask byte2bit() [Eelomgl nbr_err_corr_word equivalent_value
=) - nbr_eblock_t RSencoder() Galois() =
blocksize_m_1 padding(} nbr_of_blocks Y) alois()
N R o & generate_polynom_generator() clone()
H - polynom_generator(} toString()
total cod N
RS - encode() toByte()
encode() i)
A nbr_eblock d = == \ﬂfﬂ'ﬁ\ :SNU\"O
B . desired_length _Ug(f
nbr_pic N o [inv()

I add()
:::ﬁ;r:: Data_ErrorCorrection_Module(} DI’Ud(E‘
ios Mes=zage() div() !
in data en reed_solomon() T M(i

- Interleaving() EiOrTeOny .
Hs) . ., table pow powi()

— Data_into_Matrix_Mask(} addr)
Encoding() Evaluate_mask() table o)
get\ersion() prod(}
load_file() Mt
Encoding(} Mask10 | [Mask111 | | Maskooo Polynom prodiv()
create_gr_code()
start() Mask110() | [Mask111() | |Maskooog) addSa() 00 | eoqusiwrs
fill_color_masks(} MaskGenerator value() value() value() addssi)
combine_Hs() e add33()

k() b
convert_2d_bitmap(} maski) m Mask Mask001 copy(}
format_info(} myDataArea Mask101 index copvi} Linear
"'E_ri"”;—":f”(} DataArea waskio1() [P values M ﬂls"nm 0 shift) good
B 0 ; _ ") 0
inr;lrtATI?g ::1nent|nfu(‘ area value() . el ;Z;T: rProd() resolved
Y) generate() i
finding_pattern() a;:;;z:f;(\ = scalarProd OP(} :2[7:::::“5
R .) o |
timing_information() value() Maski0D Mazko11 Masko10 scalarDiv(} Linzar()
frame_info(} L scalarDiv OP{} o d”‘
Waski000| |Maskoiig) | |Maskoto0) add() iSZ;E(({
value() value() value() add OP() o df‘
. prod(} resolved()
version nbr_solutions()
10} _)
Format e Version ::t 0P} =olutions()
actualFormat fr actual/ersion L solutions()
actualDistance : N evaluation(} -
Frame(} actualDistance byteZqall) peeudo_resolution()
Format() Frame(} Version() byteqall} switchRow ()
Format(}) codeWord() Version() bvte2aall) addProdivRow ()
Format() spread() Version() 2 : findNonNull()
y) galZbyviel)
Format(} decode() o
codeWord() dist - version() toString(}
) | |distanced) lengthQR()
codeWordSpread() deWord?)
correctionLevel() codel Ur\(”
maskPattern(} ELEEY) o
. patternsLocalization(}
mask(}
. messagelength(}
compare())
N nbrinterieavingBlock()
compare(}) N
applySpreadc) nbrCorrectionByte()
N N nbrCorrectionByte(}
insert(} nbrEachinterieavingBlock()
decode(} inseri() g Y
N . insert(}
distancel)
decode()
distance(}

getSuitableVersion()

43

4.3 Decode

H Am14:10

Flashing between frames |+

Check frame number

@ o dwmio

7. OR Encoder

Use colored QR code

Stop Decode

Figure 24 GUI of decoding application

Figure 24 is the graphical user interface of the decoding android application. The right part
shows the options that can be selected. ‘Flashing between frames’ is used for synchronous
mode. ‘Check frame number’ is used in asynchronous mode. The third option allows to
decode black and white or colored codes.

44

4.3.1 UML for Decoding

RSdecoder

rsDecoder

PreviewPicture

reader
decoder | Decoder

frame

Preview decoder mas
preview Mask
praview
preview
Frame
MainActivity grhecede | QRDecode
pi eManager [
— E messagelanager.
i N MessageManager
PictureManager _ e g g
pictures messages
ThreadManager

Figure25: UML of decoding

format

Format

finders:

Interleaver version | Version || , version Patterns
) . patterns.
interleaver Version yersion
DataAreal gatasrea
transform
Reader transform | AffineTransform

Finders

MEmo

finders

CircleMemory

45

Principal Classes

MainActivity : Main class of the application, it initiates the activity and the other classes

Preview : Manages the phone’s camera, the preview and creates PreviewPicture objects

QRDecode : Manages the all algorithm calling the other classes

Decoder : Manages the decoding of one PreviewPicture, apply the binarization

PictureManager : Manages the Queue of PreviewPicture, ask for new PreviewPicture and
regulates the time between two PreviewPicture.

MessageManager : Manages the Queue of decoded messages put the messages together

PreviewPicture : Contains the values of a picture, can be black and white or colored

Reading QR code classes

Reader : Manages the all reading QR code in a binarized picture.

Finders : Research and sort the finding patterns

AffineTransform : Calculate the parameters of the affine transformation apply it.
Patterns : Research the alignment patterns.

DataArea : Gives the position, in the QR code, where is the message.

Mask : Gives the value of the mask in a given position in the QR code.

Information Classes
Version : Decodes and encodes the version and gives any information linked to the version.
Format : Decodes and encodes the format and gives any information linked to the format.
Frame : Decodes and encodes the frame number.

Message Treatment Classes

Interleaver : Apply the interleaving and the RSDecoder on a decoded message.
RSDecoder : Apply the Reed-Solomon algorithm decoding on a given message.

Utile Classes
Queue<E> : Manages a queue of any sort of elements.
ThreadManager : Abstract class creating and managing a Thread to run a loop action and

control its start and stop.
CircleMemory : Manages an array of integer to be used like a fixed length queue

46

= = Galois Polynom
ecoder E
equivalent_value Linear
nbr_corr_err — ood addSS()
B Galois() g "
RSdecoder() clone(} e addSS
\ syndroms y) addS5()
g:i:j:tg syndroms() tostring() nbr_equations copy(}
- ! 0 |toByte() equations nbr_params L
find_error_localization() lsNE-ItI(‘[r Linear(} copyl)
log() f 0o lsGuudE‘ Shit()
" b zeros()
imw() . resohve() .
RSencoder solutions scalarProdi}
nbr_err_corr_word add() resolved() scalarProd OP(}
== polynom_generator prod(I nbr_solutions() =
RSencoder() div() i sulu_tiunslj} scalarlivy)
generate_polynom_generator() I - ! solutions(} scalarDiv OP()
) Inv(} add(}
putynum_generatur(; powi} peeudo_resolution() add 0P
encudetf add() switchRow() rod()
encode() prodr] addProdivRow ()} rest(}
d'n.rg}. \ findMenMNull() rest OFF)
prodiv() gvaluation(}
byteZgal(y
bvte2gall}
bvte2gall)
galZbwtel)
toStringl}
GaloisConst
table pow
table log

Figure 26: Reed Solomon UML

Classes

GaloisConst : Abstract class containing all the information on Galois field in static.
Galois : Class which represent a Galois number in the field Galois(256)

Polynom : Class of static function to manage Galois array like polynomial

Linear : Class to resolve a linear equation system on Galois field

RSDecoder : Manages the Reed-Solomon decoding on a given message
RSEncoder : Manages the Reed-Solomon encoding on a given message

47

Chapter 5

Results/Discussion

Data rate

e Test the function using Matlab.

1000 T T T T T T T
X:14
¥:900.3

hite/n

Figure 27: Encode rate for each version

By inputting different data 10 times, calculate the average time which is taken to generate
the QR code for each version. From the figure above, we can see, the high version doesn’t r
enhance data rate that is due to the Matlab delay of R-S algorithm.

48

The decode data rate for each version when the QR code is rotated.

2000
2500 |
- 2000 -
% 1504 -
1M} -
500
nﬂ
Figure 28: Decode data rate for each version with ideal images
as0
o0 |
VAN AN
| T -
- £ 5 = %

Figure 29: Decode data rate for each version with rotated images

49

» Compare the decode data rate of each version when the QR code is disturbed by the
external inference with the ideal curve

M) T T T T T

idera|
rotated picture

T

Figure 30: Decode data rate for each version

Test the function using Java.

« By inputting different data 10 times, calculate the average time which is taken to
generate the QR code for each version.

x 10%

bits/s

Q
] =} 10 15 20 25 30 35 40
wersion

Figure 31: Encode data rate for each version

50

The decode data rate for each version.

bihie

L L L L L L L
1] o 10 15 >0 25 3 E - A0
VESSMMEY

Figure 32: Decode data rate for each version

The data rate of the total system (encode +decode+system channel (1secs)).

bt

Figure 33: Data rate for each version

The data bit can achieve 9-10 kbps when we use version 40.

Due to the Matlab slow calculate speed, date rate is not that perfect when going to the
high version. However, java could reach the high data rate.

The qualities of the QR CODE image have influence on the bit rate of decoding part.

To reach the best data rate, we need to use the version as high as possible.

51

Data rate of the android application

o Data rate of the application with different error correction level and
asynchronous/synchronous mode.

50
«= Rate (kbits/sec dB) With

=@ Rate (kbits/sec dB) With

40 T oee— Flash ECL 3
35 ‘*’ﬁ == Rate (kbits/sec dB) No
Flash ECL 2
30
=== Rate (kbits/sec dB) No
25 Flash ECL 3
15 20 25 30 35

Figure 34: Data rate for each version

25

20 /I/—\ == Rate (kbits/sec) With Flash
. ECL2

=@-Rate (kbits/sec) With Flash
ECL3

10

—=+=Rate (kbits/sec) No Flash

’A. ECL2

=== Rate (kbits/sec) No Flash
O T T T T 1 ECL 3
15 20 25 30 35

Figure 35: Data rate for each version

Rate (kbits/sec)
With Flash No Flash
Version ECL2 ECL3 ECL 2 ECL3
15 5,693 3,440 9,583 6,281
20 7,443 4,078 15,609 10,442
25 10,713 5,047 21,328 14,738
30 9,417 5,952 22,453 16,282
35 8,399 5,058 17,736 14,092

Table 11: Data rate for each version

Chapter 6

Conclusion

A system that utilizes other means than usual radio frequencies has been implemented in
this project. The method that has been developed uses modified black/white or color Quick
Response codes.

A basic prototype was implemented in MATLAB, but the final system that runs on Android
was developed in Java. The smart phones used in this project were Samsung Galaxy S3’s.

The final model enables a file transfer of any type (image, audio, text and others). It is using
8 bits for frame number information which means maximum of 256 frames can be transmitted
in one session. With this system, maximum possible size of the file that can be transmitted is
approximately 754 Kb with the lowest error correction level. More frames can be transmitted
by using more bits for frame number information. Data rate of up to 22.45kbits/sec is
achieved with this system.

Two approaches were implemented for this visual based communication system i.e.,
asynchronous and synchronous. Synchronized transmission was more reliable but higher
data rates were achieved with asynchronous mode.

53

Bibliography
[1] Federal Communication Commission “Using Wireless Devices on Airplanes”http

[2]L. Ahlin, J. Zander and B. Slimane.Principles of Wireless Communications.Studentlitteratur
2006

[3] http://www.norwegian.com/uk/travel-information/travel-services/wifi/

[4]1“7 Benefits of QR Codes for Content Marketing or Inbound
Marketing”http://seamlesssocial.com/7-benefits-of-gr-codes-for-content-marketing-or-
inbound-marketing/

[5] J. Bernsen, “Dynamic thresholding of grey-level images,” in International Conferenceon
Pattern Recognition, 1986, pp. 1251-1255.

[6] J. Zhou, Y. Liu, and P. Li, “Research on binarization of qr code image,” in
MultimediaTechnology (ICMT), 2010 International Conference on. IEEE, 2010,
pp.1-4.

[7] “ISO/IEC Information technology - Automatic identification and data capture techniques -
Bar code symbology - QR Code,” 2000.

[8] QR Code Tutorial
“http://www.thonky.com/qr-code-tutorial/”

54

http://www.norwegian.com/uk/travel-information/travel-services/wifi/
http://seamlesssocial.com/7-benefits-of-qr-codes-for-content-marketing-or-inbound-marketing/
http://seamlesssocial.com/7-benefits-of-qr-codes-for-content-marketing-or-inbound-marketing/

Appendix A [8]

Version Number of Row/Column coordinates of center module
Alignment
Patterns
1 0 -
2 1 6 18
3 1 6 22
4 1 6 26
5 1 6 30
6 1 6 34
7 6 6 22 38
8 B 6 24 42
9 B 6 26 46
10 6 6 28 50
11 B 6 30 54
12 6 6 32 58
13 6 6 34 62
14 13 6 26 46 66
15 13 6 26 48 70
16 13 6 26 50 74
17 13 6 30 54 78
18 13 6 30 56 82
19 13 6 30 58 26
20 13 6 34 62 90
21 22 6 28 50 72 94
22 22 6 26 50 74 98
23 22 6 30 54 78 102
24 22 6 28 54 20 106
25 22 6 32 58 84 110
26 22 6 30 58 26 114
27 22 6 34 62 90 118
28 33 6 26 50 74 98 122
29 33 6 30 54 78 102 126
30 33 6 26 52 78 104 130
31 33 6 30 56 82 108 134
32 33 6 34 &0 26 112 138
33 33 6 30 58 86 114 142
34 33 6 34 62 90 118 148
35 46 6 30 54 78 102 126 150
36 46 6 24 50 76 102 128 154
37 46 6 28 54 80 108 132 158
38 46 6 32 58 84 110 136 162
39 46 6 26 54 32 110 138 166
40 46 6 30 58 86 114 142 170

55

Appendix B

c
i)
=
%)
r%k
o = O
rro
= o= N - — |™ N~ o ©
W om "o |Ho|NO |t O | O [(HAY [N < [N w0 |0 < NEHA A |I~MNA|[dA®M [N [N [O
N o © I < < [00) o < N o N 0 o
N~ 0 < < 0 — ™ 0 o N © o o) ©) © ™ o) n
T - N < © ® — — = — o\ ~ ™ %) ™ < < L0 Te] ©
[
=]
=
%)
rmwk
O = O
rro
= 0= - 0 (O N~ N~
w o m —O |0 |NO |[NO [N <O IS AN NS [([NO | © oA [NA|[dAA|[dAA | -
0 N o N < o [o0) o o 0 [oe) < ©
™ N © o I © o ™ © o N © I5%s) N © o < o <
(@4 - I3\ ™ o) N~ o — — — — N N N ™ ™ < < e} o)
c
i)
=
%)
r%k
O = O
=58 o -
W om "o |do |HO |NnO | oo |NN|[Nm[HS | N Ao LT LLO~NAHA T (M
o o o © 0 © o o 0 0 <t
o © © © 0 < N © | ™ 0 ~ o)) - < © o ™ ©
= - — ~ ™ < © ~ 0 — — — — — N N N ™ ™ ™
c
i)
=
%)
r%k
o = O
=52
W om Ao |HO |HO |HO | NO | NO |NO [NO [N AN ey N O[O || (O A|[AWL [™
< o N < [o0) o ©
o o) o © © o [oe) o o o © o I3 ™ < © ®© »
— ~ | - 3N ~ ™ < < © r~ © o — — — - - - |
he)
- 5
_8 2
8E - Ioe) © o © © o © o © To) o N~ o o) o)
O S« O |O © < < N © » %) © < o © N N < N o o ©
Fcoo |N ™ © o — — — I3 N (%) ™ < o) o) © N~ ®© 15%e) o
c
i)
N
o o — N ™ < o) © N~ 0 o
> - N ™ < o) © ~ 0 o — — — — — — — — — —

56

20 1079 224 |5 416 | 13 600 |5 700 |10
3 3 15 15
21 1150 224 | 4 442 | 17 644 | 6 750 | 6
4 0 17 19
22 1252 252 |7 476 | 17 690 | 16 816 |34
2 0 7 0
23 1358 270 | 5 504 | 14 750 |14 900 |14
4 4 11 16
24 1468 300 | 6 560 |14 810 |16 960 |2
6 6 11 30
25 1582 312 | 4 588 | 13 870 |22 1050 | 13
8 8 7 22
26 1700 336 | 2 644 | 4 952 |6 1110 | 4
10 19 28 33
27 1822 360 | 4 700 |3 1020 | 26 1200 | 28
8 22 8 12
28 1915 390 | 10 728 | 23 1050 | 31 1260 | 31
3 3 4 11
29 2045 420 | 7 784 |7 1140 | 37 1350 | 26
7 21 1 19
30 2179 450 | 10 812 | 10 1200 | 25 1440 | 25
5 19 15 23
31 2317 480 | 3 868 | 29 1290 | 1 1530 | 28
13 2 42 23
32 2459 510 | 17 924 | 23 1350 | 35 1620 | 35
0 10 10 19
33 2605 540 |1 980 |21 1440 | 19 1710 | 46
17 14 29 11
34 2755 570 | 6 1036 | 23 1530 | 7 1800 | 1
13 14 44 59
35 2870 570 | 7 1064 | 26 1590 | 14 1890 | 41
12 12 39 22
36 3028 600 | 14 1120 | 34 1680 | 10 1980 | 64
6 6 46 2
37 3190 630 | 4 1204 | 14 1770 | 10 2100 | 46
17 29 49 24
38 3356 660 | 18 1260 | 32 1860 | 14 2220 | 32
4 13 48 42
39 3526 720 | 2 1316 | 7 1950 | 22 2310 | 67
20 40 43 10
40 3700 750 | 6 1372 | 31 2040 | 34 2430 | 61
19 18 34 20

57

58

