

EQ2440: Visual Based In-Flight File
Transfer

Team Green 2013

Ahsan Mahmood
Brice Lavorel
Hanwei Wu

Jia Wang
Lukas Jornitz

Yasin El Guennouni

Supervisor: Per Zetterberg
Assistant: Iqbal Hussain

2

3

Abstract
This paper describes a way to transfer files between two smart phones without using radio

transmission. Instead the information is sent using the screen on one phone and received

using the camera of the other phone. The project started with using the standard QR code.

However the standard was not followed completely, several tweaks were implemented in

order to make the communication handle larger amounts of data, run faster and be more

robust. To encode more data to the QR code color codes were used; this made it possible to

encode 3 times more data.

The final system was run on Samsung Galaxy S3 phones using Android 4.2. In the final

model a file that is up to 754 kilobytes can be transmitted with lowest error correction.

Keywords Visual channel, QR code, Android implementation

4

Table of Contents

Abstract ... 3

Introduction ... 8

1.1 Background .. 8

1.2 Problem Description ... 9

Theory ..11

2.1 Communication System ..11

2.2 QR Codes ...11

2.2.1 Symbol Versions and Sizes ..12

2.2.2 Finder Pattern ...12

2.2.3 Separators ..12

2.2.4 Timing Pattern ..12

2.2.5 Alignment Patterns ...12

2.2.6 Encoding Region ..13

2.2.7 Error Correction Coding ..13

2.2.8 Quiet Zone..13

Method ...14

3.1 Encoding ...14

3.1.1 Data Analysis ...14

3.1.2 Data Encoding ..14

3.1.3 Error Correction Coding ..17

3.1.4 Structure of Final Message ...18

3.1.5 Placement in Matrix ..19

3.1.6 Masking ..21

3.1.7 Format and Version Information ...22

3.1.8 Placement of Version Information in QR Code ...24

3.1.9 Placement of Format Information in QR Code ..25

3.1.10 Summary for Generating Single QR Code ..26

3.1.11 Colored QR Codes ...26

3.1.12 Multiple Codes ..27

3.1.13 Multiple QR code data structure ...29

3.2 Decoding...29

3.2.1 Binarization ...30

5

3.2.2 Locate the Finder Pattern and the Affine Transformation33

3.2.3. Decode the Version & Format Information ...35

3.2.3 Locate the Alignment Patterns ..36

3.2.4 Reading of the Code ...37

3.2.5 Colored Code ...38

3.2.6 Multiple Decoding ...38

Implementation ...40

4.1 Environment ..40

4.1.1 Software ...40

4.1.2 Hardware ..40

4.2 Encode ...40

4.2.1 UML for Encoding ...43

4.3 Decode ...44

4.3.1 UML for Decoding ...45

Results/Discussion ...48

Data rate ...48

Conclusion ...53

Bibliography ...54

Appendix A [8] ..55

Appendix B ...56

6

7

Acknowledgement

We would like to take the chance to thank Per Zetterberg for making this course possible. He

has also been great support during the course as well, always coming to the lab and seeing if

everything is going as planned. We would also like to thank our project assistant Iqbal

Hussain for giving us feedback and insights on different areas in the project. We would also

want to thank the other groups for the pleasant time spent in the lab.

8

Chapter 1

Introduction

1.1 Background
The ban of devices using radio transmitters on board aircrafts is well known in some parts of

the world. The common excuse is that the radio transmitters may interfere with the flight

instruments such as the navigation system. But the main reason, according to the Federal

Communications commission is that it interferes with networks on the ground [1]. Most base

stations on the ground are slightly tilted forward in order to enable users close to the base

station service. However, the antennas that are commonly used have a front and a back lobe,

tilting the front lobe forward makes the back lobe rise up [2]. If the passengers onboard have

their cell phones on they will connect to many base stations on the ground and disorder the

operator’s cell plans. The airline companies are creating new solutions to the problem by

offering the passengers services as Wi-Fi on board [3]. However the services are limited and

sometimes also expensive to use.

In this report a method that does not use the common radio transmission techniques will be

described, and by doing so the ban of radio transmitters will be worked around.

In this system a visual based file transfer will be carried out, using the screen on one phone

as a transmitter and the camera on another phone as a receiver. This method avoids any

use of frequencies that might interfere with other systems, whether it is in the aircraft or on

the ground.

In order to enable quick and reliable communication the Quick Response Code (QR Code)

will be used. The main advantages with QR code are that it can store large amounts of data,

both alpha numeric characters and in binary bits, [4] and it also runs very fast. Besides from

that it has error correction; which makes the solution very robust. This makes it possible to

read the code even if a part of it is missing or is unclear.

9

1.2 Problem Description
The layout of the problem solved in this project is illustrated in Figure 1. Initially the data is

broken down into small pieces on the transmitter side and each piece is encoded into a QR

image. Then these images will be displayed on an Android device at a certain rate.

On the other end of the system, namely the receiving end, the QR codes are read by the

camera on another Android device and saved onto its SD card. Further the received images

will be processed to decode the message and then combined in order to recover the initial

file.

Figure 1: Flow chart of the system

10

11

Chapter 2

Theory

2.1 Communication System

In this project the system can be seen as a communication system with all the different parts

included. The phone that is displaying the QR code is the transmitting part and the other

phone using camera to read codes is the receiver. The system utilizes a visual channel

which is the screen. There is also noise that disturbs the signal, this is caused by reflections

and shadows on the screen

2.2 QR Codes

Each QR Code symbol should be constructed of encoding region and function patterns,

namely finder, separator, timing patterns, and alignment patterns. Function patterns should

not be used for encoding the data. The symbol should be surrounded by a quiet zone border.

Figure 2 illustrates the structure of a Version 7 QR Code symbol.

Figure 2: Structure of a Version 7 QR Code symbol [9]

12

2.2.1 Symbol Versions and Sizes
There are forty versions of QR Code symbols from 1 to 40. Version 1 measures 21 * 21

modules, Version 2 measures25 *25 modules and so on, increasing by the factor of 4

modules. For Version 40 which contains 177 *177 modules.

2.2.2 Finder Pattern
At the upper left, upper right and lower left corners of the symbol there are three Position

Detection Patterns. The width ratio of each Position Detection Pattern is 1:1:3:1:1 as

illustrated in Figure 3. The Finder pattern is used to rapidly find the QR Code symbol in the

field of view.

Figure 3: Ratio of the finder pattern [10]

2.2.3 Separators
A one-module wide Separator is placed between the Position Detection Pattern and

Encoding Region, as illustrated in Figure 1; the Separators are constructed of all light

modules.

2.2.4 Timing Pattern
Timing Patterns consist of a one module wide row or column of alternating dark and light
modules, starting and ending with a dark module. The horizontal Timing Pattern is at row 7 of
the symbol between the Detection Patterns; the vertical Timing Pattern similarly is at column
7 of the symbol between the Position Detection Patterns. They enable the symbol density
and version to be determined and provide datum positions for determining module
coordinates.

2.2.5 Alignment Patterns
The Alignment Patterns consist of three superimposed concentric squares which are
constructed of dark 5* 5modules, light 3*3 modules and a single central dark module. The
number of Alignment Patterns depends on the version of symbol. They easily enable to
detect the symbol at the good position.

13

2.2.6 Encoding Region
This region should contain the data, error correction codeword, version Information and
Format Information.

2.2.7 Error Correction Coding
The error correction codeword will be generated using a method called Reed-Solomon Error
correction.

2.2.8 Quiet Zone
Quiet zone nominally should be light modules. And this region surrounds the symbol on all

four sides. The quite zone enables the QR code to be distinguishable from the background.

14

Chapter 3

Method

3.1 Encoding

3.1.1 Data Analysis
Standard QR Codes include several modes to allow characters to be converted into symbol

characters in efficient ways. In this project, only byte mode is used as it can encode any file

type. The next step is to select the required Error Correction Level. If the user has not

specified the symbol version to be used, select the smallest version that will accommodate

the data.

3.1.2 Data Encoding
In this project, 8-bits mode is used to encode the data then split the resulting bit stream into

8-bit codeword. Pad Characters have to be added so as to fill the number of data codeword’s

required for the version if the data is not enough for that version.

 8-Bit/Byte Mode

In this mode, one 8 bit codeword directly represents ASCII value of the input data as shown

in Table 1.

15

Table 1: ASCII values

Terminator
The end of data in the symbol is signaled by the Terminator sequence 0000. This may be

omitted if the data bit stream completely fills the capacity of the symbol, or abbreviated if the

remaining capacity of the symbol is less than 4 bits. The message bit stream should then be

extended to fill the data capacity of the symbol corresponding to the Version and Error

Correction Level.

Bit Stream to Codeword Conversion
The resulting message bit stream should be divided into 8 bits codeword. If the final

codeword is not exactly 8 bits in length, it shall be made 8 bits long by padding 0. Then

message bit stream should be extended to fill the capacity of simple, by the addition of the

Padding Codewords 11101100 and 00010001 alternately. In certain versions of symbol, it

may be necessary to add 3, 4 or 7 Remainder Bits (all zeros) to the end of the message in

order exactly to fill the symbol capacity.

EXAMPLE: (for Version 1-H symbol)

Input data: 012345

1. Convert data to its binary value:

16

0 00000000

1 00000001

2 00000010

3 00000011

4 00000100

5 00000101

2. Connect the binary data in sequence:

00000000 0000000100000010000000110000010000000101

3. Add Character Count and mode Indicator to binary (10 bits for version 1-H):

No. of input data characters: 6 00000110

Mode indicator: 0100

4. Add padding bit and divided it into each 8 bits.

00000110 01000000 00000000 00010000 00100000 00110000 01000000 01010000

To encode a sequence of input data in a given mode, the steps defined in sections 2.2.1 to

2.2.3 shall be followed.

Table 2 defines the Mode Indicators for each mode. Table 3 defines the length of the

Character Count Indicator,

17

3.1.3 Error Correction Coding

The error correction codeword will be generated using a method called Reed-Solomon Error

correction.

Steps of Polynomial Long Division

The steps for polynomial long division are:

1. Find the appropriate term to multiply the divisor. The result of the multiplication should

have the same first term as the dividend.

2. Subtract the result from the dividend. Repeat steps 1 and 2 until it is no longer possible to

multiply by an integer, or in other words, it would be necessary to multiply by a fraction. The

number at the bottom of is the remainder.

Galois Field Arithmetic
GF (256) contains the numbers from 0 to 255. Mathematical operations in GF (256) are

cyclical, meaning that if a number is larger than 255, it will be necessary to use modulo

operation to get a number still in the Galois Field.

In the Galois Field, negative numbers have the same value as positive numbers, so:

-n = n.

In other words, always use the absolute value of the numbers involved in Galois Field

arithmetic. This means that addition and subtraction within the Galois Field is the same thing.

18

Generator Polynomial

The generator polynomial is a polynomial that is created by multiplying (x - α0) ... (x - αn-1)

where n is the number of error correction codeword that must be generated.

Generating Error Correction Codeword
Divide the Message Polynomial by the Generator Polynomial, after dividing the two polynomials,

there will be a remainder. The error correction codeword are the coefficients of the remainder.

3.1.4 Structure of Final Message

Now the data codeword and their corresponding error correction codeword should be

available. As mentioned in the previous step, larger QR codes requires one to break the data

codeword into smaller blocks, and generate error correction codeword separately for each

block. When this is the case, the data blocks and error correction codeword must be

interleaved according to table 4. Interleaving for data and error correction codewords are

carried out separately. For each part, one codeword is taken from each block and interleaved

with corresponding codewords from the other blocks. If the number of codewords in blocks is

different, then the initial blocks should have lesser number of codewords. Number of

codewords in error correction blocks is always the same.

Determine how many blocks are required for the data interleaving.

The error correction table in Appendix B shows how many data blocks are required for

each version and error correction level.

Table4: Interleaving [8]

19

3.1.5 Placement in Matrix

 If the data and error correction codeword are interleaved, and the final string of bits is

obtained, then the next step is to put them in the QR code matrix along with the required

function patterns.

Put the Finder Patterns into the Matrix

First, put the finder patterns into the matrix. The finder pattern (shown below) consists of an

outer black square that is 7 modules by 7 modules, an inner white square that is 5 modules

by 5 modules, and a solid black square in the center that is 3 modules by 3 modules.

Figure 4: Finder pattern in modules [7]

QR code scanners can search for this ratio of light to dark modules to detect the finder

patterns and correctly orient the QR code for decoding. The finder patterns are always

placed in the top left, top right, and bottom left corners of the QR code, no matter which

version is in use.

Add the Separators into the Matrix

The separators are lines of white modules, one module wide, that are placed beside the

finder patterns to separate them from the rest of the QR code. The separators are only

placed beside the edges of the finder patterns that touch the inside of the QR code. For

example:

20

Figure 5: White separators surrounding the finder patterns [7]

Add the Alignment Patterns into the Matrix

QR codes that are version 2 and larger are required to have alignment patterns. An

alignment pattern, shown below, consists of a 5 module by 5 module black square, an inner

3 module by 3 module white square, and a single black module in the center.

The locations at which the alignment patterns must be placed are defined in the alignment

pattern locations table in Annex A.

Add the Timing Patterns into the Matrix

The timing patterns are two lines, one horizontal and one vertical, of alternating dark and

light modules. The horizontal timing pattern is placed on the 7th row of the QR code between

the separators. The vertical timing pattern is placed on the 7th column of the QR code

between the separators. The timing patterns always start and end with a dark module.

Alignment patterns may overlap timing patterns because their light and dark modules always

coincide with the light and dark modules of the timing patterns.

Add the Dark Module and Reserved Areas

The dark module must be added, and there are areas of the matrix that must be reserved for

the format and version bits, which will be added later.

Place the Data Bits

The data bits are placed starting from the bottom-right of the matrix and proceeding upward

in a column that is 2 modules wide. When top of the column is reached, continue with the

next 2-module column to the left and continues downwards. Whenever edge of a column is

21

reached, move on to the next 2-module column and change direction. While moving

upwards/downwards, first place on right part of the 2-module column and then in the left part.

If a function pattern or reserved area is encountered, the data bit is placed in the next unused

module.

3.1.6 Masking

A mask pattern decides which modules are dark and which are light according to a particular

rule. The purpose of this step is to modify the QR code to make it easy to scan for a QR code

reader.

The Mask Patterns

Each mask pattern uses a formula to determine whether or not to change the color of the

current bit. The coordinates of the current bit are put into the formula, and if the result is 0,

then the opposite bit at that coordinate is used.

Here is the list of the mask pattern formulas:

Mask Number

0 (row + column) mod 2 == 0

1 (row) mod 2 == 0

2 (column) mod 3 == 0

3 (row + column) mod 3 == 0

4 (floor(row / 2) + floor(column / 3)) mod 2 == 0

5 ((row * column) mod 2) + ((row * column) mod 3) == 0

Figure 6: Placement of data bits [7]

22

6 (((row * column) mod 2) + ((row * column) mod 3)) mod 2 == 0

7 (((row + column) mod 2) + ((row * column) mod 3)) mod 2 == 0

Determining the Best Mask

Note that the entire matrix (including function patterns and reserved areas) is evaluated,

even though the masking is only applied to data and error correction modules. For the

purpose of evaluation, the reserved areas are considered to all be light modules, not dark

modules.

The four penalty rules can be summarized as follows:

Table 5: Mask [7]

• The first rule gives the QR code a penalty for each group of five or more same-colored

modules in a row (or column).
• The second rule gives the QR code a penalty for each 2x2 area of same-colored modules in

the matrix.
• The third rule gives the QR code a large penalty if there are patterns that look similar to the

finder patterns.
• The fourth rule gives the QR code a penalty if more than half of the modules are dark or light,

with a larger penalty for a larger difference.

Mask pattern results in the lowest penalty score is the mask pattern that must be used for the

final output.

3.1.7 Format and Version Information

Format Information consists of 15 bits. First two bits represent the error correction level and
next three represent the mask used for encoding. The remaining 10 bits are used for error
correction of the format information. The first two bits for different error correction levels are
classified as:
01  Level L
00  Level M
10  Level Q
11  Level H

23

Version Information consists of 18 bits. First 6 bits represent the version of used QR symbol
while remaining 12 bits are used for error correction. Version information is used only if
version>6.

Generate Error Correction Bits for Format String and Version string

When five bits for the format string are available, then they are used to generate ten error

correction bits. This step uses BCH Error Correction, but it is a little easier because in this

case it is just required to generate ten error correction bits.

Get the Generator Polynomial

When generating the format string's error correction codeword’s, then it is suggested by the

QR code specification to use the following generator polynomial:

X10 + x8 + x5 + x4 + x2 + x + 1

This can be converted to a binary string by only taking the coefficients of each term. The

coefficient of x10 is 1, the coefficient of x9 is 0 since x9 is not present in the polynomial. In

other words, the binary string that represents the generator polynomial for this step is

10100110111

Calculate the Error Correction Bits

The next step is to divide the format string bits by the generator polynomial. To do this, first

create a 15-bit string by putting ten 0s to the right of the format string. Now remove any 0s

from the left side, and then the division is performed.

The steps for division are:

1. Pad the generator polynomial string on the right with 0s to make it the same length as the

current format string.

2. XOR the padded generator polynomial string with the current format string.

3. Remove 0s from the left side of the result.

One has to be careful since it is needed to divide the polynomials until the resulting format

string is 10 or fewer bits long. Therefore, before each division step, a check to make sure

that the current format string is 11 bits or longer is done.

The Version Information areas are the 6* 3 module block above the Timing Pattern and

immediately to the left of the top right Position Detection Pattern Separator, and the 3* 6

24

module block to the left of the Timing Pattern and immediately above the lower left Position

Detection Pattern separator

Example:

Version number: 7

Data: 000111

BCH bits: 110010010100

Format Information module pattern: 000111110010010100.

 Figure 7: Version information [8]

3.1.8 Placement of Version Information in QR Code

There are two rectangular areas where the version information string must be placed: one on

the bottom-left and other on the top right. We are using two blocks for redundancy as both

contain the same information.

Bottom Left Version Information Block

The dimension of bottom left version information block is 3×6. The following table explains

how to arrange the bits of the version information string in the bottom-left version information

area. The 0 represents the RIGHT most (least significant) bit of the version information string,

and the 17 represents the LEFT most (most significant) bit of the version information string.

25

Table 6 [7]

Top Right Version Information Block

The dimension of the top right version information block is 6×3. The following table explains

how to arrange the bits of the version information string in the top-right version information

area. The 0 represents the right-most (least significant) bit of the version information string,

and the 17 represents the LEFT most (most significant) bit of the version information string.

Table: 7 [7]

3.1.9 Placement of Format Information in QR Code

Format information is placed around the first finder pattern module. Redundant information is

split into half and placed around other finder patterns. The 0 represents the right-most (least

significant) bit of the format information string, and the 14 represents the LEFT most (most

significant) bit of the format information string.

26

 Figure 8: Format Information in QR Symbol [8] Table 8: Format Information [8]

3.1.10 Summary for Generating Single QR Code

• Determine which encoding mode to use
• Encode the data
• Generate error correction codeword’s
• Interleave blocks if necessary
• Place the data and error correction bits in the matrix
• Apply the mask patterns and determine which one results in the lowest penalty
• Add format and version information

3.1.11 Colored QR Codes

In order to achieve higher data rates, colored QR codes in RGB color space were used. In

this way, it was possible to transmit three QR codes at the same time.

For generating colored codes, the only difference from the normal case is that instead of only

using black and white pictures, three pictures (red, green and blue) is used. These pictures

are added together resulting in one colored code having eight possible colors for

transmission.

The easiest way to add capacity to your code is to add color to it which enables you transmit

them together. As QR code does not have to be standard black and white in order to be

scanned. It is possible to embed multiple colors and apply a color gradient without affecting

scan ability. The only rule of thumb is that the dark modules are placed on a colored

background.

27

Figure 9: Colored QR codes and combined color QR code (bottom right)

3.1.12 Multiple Codes

If we need to transmit a file which length exceeds the capacity of the single QR-code, the file

is divided into smaller blocks depending upon the capacity of single QR code. And these

blocks are transmitted sequentially. Two different approaches have been implemented in this

project:

1) Asynchronous Transmission

In this approach, multiple QR codes are displayed on the screen of one cell

phone at a specified rate. After short interval, codes are updated and

transmitter is not synchronized with the receiver.

28

2) Synchronous Transmission

Synchronous transmission relies on the acknowledgement from the receiver.

When the receiver decodes one code, it sends a flash in order to acknowledge

correct reception. The transmitter, upon reading the flash, updates the next

code on the screen.

A new protocol has been implemented for communication of multiple codes. Frame number

information is put around the first finder block that aids the decoder in reading multiple

frames. If the receiver has already decoded a particular frame then it ignores decoding of the

same code and hence improving the performance of the system. Frame number information

consists of 24 bits. 8 bits are used for frame number while remaining are used for error

correction of frame number information.

Generate Frame Number Information
The Bose-Chaudhuri-Hocquenghem code was used for error correction of frame number

information. The polynomial whose coefficient is the data bit string should be divided by the

generator polynomial. The coefficient string of the remainder polynomial should be appended

to the data bit string to form the (24, 6) BCH code string.

Placement of Frame Number Information in Matrix

Figure 10: Frame number

The frame number information is divided into two blocks and placed around the first
(top left) finder pattern. Each sub block contains 12 bits. 0 is the least significant
while 23 is the most significant bit of the frame number information block. Table 9 and
Table 10 illustrates these bits.

29

 Table 9 Table 10

3.1.13 Multiple QR code data structure

 The structure of the data message is visible in the figure below:

Figure 11: Data message structure

Now the data codeword and their corresponding error correction codeword should be known,

as illustrated above. To transmit multiple QR Codes, a new protocol was implemented. The

final message starts with 4 bits mode indicator which is followed by 8/16 bits character count

that shows how many data bits there are in the message. Then there is a unique 4 bits frame

indicator and a total frame number which shows how many frames that are used to transmit

file followed them. The data part and padding part are also the same as single QR code data.

3.2 Decoding

Decoding of QR codes begin with the application of essential image processing techniques

followed by the reading algorithm.

30

The task of the image processing includes location of the finder pattern, alignment patterns,

and to do the affine transformation to the picture in the segments divided by the alignment

pattern.

3.2.1 Binarization
The first step in decoding is to make the picture readable. In order to do is the picture has to

be binarized, from different gray levels into black and white. We implemented the following

methods for binarization and compared their performances. The results suggested Otsu

Method as our preferred choice.

 Figure 12: Original image Figure 13: Binarized image

Static Thresholding

This is the basic method for converting grayscale images to black and white picture. In this

method a threshold is chosen manually and pixels having grayscale value greater than the

threshold are set to white while remaining are set to black. This method is very fast but it

does not give good results especially when there is non-uniform light across the image.

Otsu Method

In this method, we iterate through all the possible values of thresholds and choose the one

that minimizes intra-class variance i.e. for each threshold; we find the measure of spread for

pixel levels each side of the threshold and then find the weighted sum of both calculated

variances.

31

2 2 2

within class F F B Bw w    

Where, Fw is weight of the foreground,

Bw is the weight of the background

2

F is the variance of foreground

2

B is the variance of background

A faster approach for minimizing intra-class variance is to maximize inter-class (between-

class) variance.

2 2 2 2()between class within class F B F Bw w        

Where, F is the mean value of foreground,

 B is the mean value of background

Barnes’s Method

This algorithm was published in 1986 in [5]. In comparison to Otsu uses it local thresholds.

This means that the algorithm runs each threshold calculation for a sub square of the original

image. This sub-square is commonly referred to as b2 with b set to 31 as default. This sub-

square is inspected for each pixel.

For this sub-square the ideal threshold is approximated by the mean value of the maximum

and minimum pixel intensity within it. In short mathematical form it can be represented as

follows:

where b(x,y) is the output binary image (or sub-image) and g(x,y) is the input image as

compared with the threshold T(x,y). This method works well as long as the contrast

difference in the sub divided window is large enough. An always associated problem with

local thresholding is the calculation time. If it is increased b, it will give better results but also

a higher computation time. In addition a high resolution photo from the camera is used and

32

the calculation is made on a mobile device. In the next section an algorithm is proposed

which is adapted to working on QR codes.

Modified Sauvola’s Algorithm by J. Zhou and Y. Liu

This adapted method [6] was proposed in 2010. It is one of the first methods trying to use the

assumption that black:white should be 1:1 in the picture (due to masking). Sauvola’s method

is used for document processing and needs a huge amount of time for calculation. It

estimates the threshold as:

. (,)
(,) (,)[1 (1)]

std dev x y
T x y mean x y k

R
  

where R by default is 128 and k is 0:5. The method is extremely effective but the default

parameters are used for document processing.

Due to masking the image, only containing the QR code without the quiet zone, has the

same amount of white and black pixels. Therefore k = 0:5 is proposed in the paper. For R, it

is a value around D/3, where D is the maximum of image width and height. R can be a bit

smaller for an image where the QR code won’t fill up the whole image. The proposed value

can be calculated using the QR features [7, 6].

With these values Savola’s method is used. For each pixel the threshold is calculated by

using the b-square around it. If the pixel(x,y) to be binarized is located at the border of the

image, the square is filled up with black pixels.

Comparison

We compared the execution times of all of the above algorithms and drew the following

conclusion:

- Static Thresholding -- Fast but unreliable (~40ms)

- Otsu Algorithm -- Fast and reliable (~200ms)

- Barnes’s Algorithm -- Reliable and slows (~2sec)

- Modified Sauvola’s Algorithm by J. Zhou and Y. Liu -- Excellent results but slow (over 10

sec)

33

3.2.2 Locate the Finder Pattern and the Affine Transformation

Rows Search
When the picture is readable the first step is to locate the finder patterns located in three of

the four corners [5]. This position detection pattern consists of a black-white-black-white-

black sequence with the ratio of 1:1:3:1:1, this is the distance between A and B in the Figure

below. In order to find this pattern in the picture the rows are read and the value is put into an

array of five. As an example if the first pattern is:

[3, 4, 5, 1, 16].

This means that we have three black pixels in a row and then four white pixels etc. To see if

the pattern is found, the middle value is divided by three and compared to the remaining

values (in the example 3, 4, 1, 16), to see if the pattern is found. Otherwise the procedure is

repeated until there is a match. To save memory, instead of making a new array the current

array is just shifted to the right, placing the new value to the left (in the example in the place

of the 3).

Figure 14

Research of the Center
When we have a match, we take the center of the matching sequence and we verify if ht

sequence [1,1,3,1,1] is matched on the column. If it matches, we save the center of every

matching sequence on the row in the black neighbor. And we do the same for the column.

We have the result (red: centers of row matching, yellow: centers of column matching):

34

Figure 15

Now we can calculate the parameter of the line which goes through the red point and the line

which goes through the yellow point and we are able to calculate the cross point of the two

lines which is a very good estimation of the center of the finder pattern.

To finish we save the center of the pattern, the total number of point (red + yellow) and the

estimate size of the finder pattern.

Avoid too Many Calculation

To avoid calculating the same pattern several times, we indicate the area where we have

already researched a pattern so we can avoid these areas when the procedure of research

of [1,1,3,1,1] is running.

Determine the Finder Pattern
We can determine more than 3 finder patterns in the picture, so we only have to keep the

best one. For that we keep the finder patterns which have the biggest number of point (see

above: red+yellow).

Determine the Orientation of the Picture
After finding the three best finder patterns, we need to put them in the good order to have the

good orientation of the QR code. The first step is to find the top left finder pattern. For that we

calculate the scalar product between the three vectors created by the three points that we

have just found. Because the angle between the two vectors around the top left finder pattern

is a multiple of 90º, the scalar product of the vectors should be the closest from zero.

So we need now to put the two other points in the good order, for that we just need to verify

the orientation of the orthogonal coordinate center in the top left point and set by the two

other points.

Calculate the Length

We need now to evaluate the size of the QR code in number of module :

35

Figure 16

In addition, we know the length of a QR code has the form: , so we can select the

better result in function of the previous calculation.

The Affine Transformation

When the three finder pattern points are obtained and the length of the QR code is known,

we can determine an affine transformation to transform the relative coordinate in the QR

code (x1,y1), into the real coordinate in the picture (x2,y2). The affine transformation is carried

out according to the following equation.

3.2.3. Decode the Version & Format Information

Case of a QR Length Inferior or Equal to 41

In this case, there is no information about the version in the QR code, so we determine it with:

The version will be between 1 and 6.

Case of a QR Length Superior or Equal to 45

In this case, we read the version information in the QR code:

36

Figure 17

The version will be between 7 and 40.

Format Information

The format information is simply read around the finder patterns as explained in the encoding
part.
 ‘

3.2.3 Locate the Alignment Patterns

The Goal of the Alignment Patterns
After the finder pattern locations are found, the alignment patterns have to be located in the

symbol to operate a better reading because a simple affine transformation is not enough to

correct the perspective deformation of the QR code. Using the affine transformation is a good

way to read the information around the finder patterns but for the rest of the QR code more

precision will be needed.

Localization of the Alignment Patterns
For the top left, top right and bottom left positions, we will take the finder patterns. For the

other, we approximate the location of the alignment patterns based on the standard and we

are making a research in a local area of the two dimensional shape of the alignment pattern:

37

Figure 18: Alignment pattern

3.2.4 Reading of the Code
Next it is time to read the code. This is done in two steps:

 First, we read all the information applying the mask and avoiding useless areas.

Second, we read the previous reading in the good order

Useless Area

First, we determine the area where the information is useless, like the different patterns, the

version information, the timing line, etc. And the useful information will be in the rest of the

QR code:

Figure 19

Reading and Applying the Mask

With the previous area, we can read all the information and apply the XOR mask at the same

time using the Format information. We finally put it in a new array.

Snake Reading and Recombination of the Blocks
We can, now, aboard the second step by reading the previous array in the good order like in

the encoding. After that, we recombine every block of byte in the good order in the goal to

apply the Reed-Solomon algorithm for the decoding.

Reed-Solomon decoding

The Reed-Solomon algorithm for decoding operates in different steps:

38

- First Step: this algorithm is a linear encoding, so it checks if the message is in the

alphabet. If yes, the message hasn’t been deformed by the transmission.

- Second Step: in the case that the message is not in the alphabet, the algorithm tries

to locate the errors in the message. For that, it resolves a linear system on the Galois

Field to find a polynomial. The root of it gives it the position of errors.

- Third Step: the algorithm resolves a last linear system to find the correction link to the

position of an error.

3.2.5 Colored Code
For decoding the colored QR codes, we just need to separate the three colored channel of

the picture (red, green and blue) and we treat each channel separately like if it was a simple

QR decode. We finally need to put the three decoded messages together to have the final

message.

For the localization of the different patterns, we just need to do it for one of the channels and

the two others have the same.

3.2.6 Multiple Decoding
For the multiple decoding, we need to decode several colored or standard QR code in real
time. The emitter plots a code on its screen and updates it every second with the next code.
The receptor needs to take a picture at least every second, to decode it and to put all the
decoded messages together. For that we need to work with parallel computation using
Threads. There are finally 5 threads.

Thread 1: the UI Thread
This is the main Thread. It manages the graphic interface and the callbacks on the messages.

Thread 2: the Preview Thread

This Thread manages the camera. It is saving a new picture when a one is called.

Thread 3: the PictureManager Thread
This Thread manages the queue of picture, it regulates the calling of picture to the Preview
Thread and manages the states of the decoding.

Thread 4: the Decoder Thread
This Thread manages the decoding of a picture. It is called by the PictureManager and return
the results to the last Thread (MessageManager).

39

Thread 5: the MessageManager Thread
This Thread manages the queue of decoded message and manages to put them in the good
order. It also gives the order to end the decoding when all the codes have been decoded.

Combining of decoded messages
Each time the decoder finish to decode a code, it returns the decoded message to the
message manager which verifies the markers, at the beginning of the message, to be sure
that the message follows the protocol. It also checks the frame number, the total frame and
the length of the message to put every message in the good order.

Frame indication
It is possible to check the frame number put in the QR code, before reading data, so if the
code has already been decoded, we don’t need to decode it to avoid useless calculation.

Synchronized Transmission
The transmission is not synchronized. The communication is only in one direction, so the
encoder doesn’t know what the situation of the decoder is.
But there is an option to synchronize the communication. With this option, the decoder emits
a flash when it finished to decode the actual code and the encoder detects the flash with its
light sensor, so it can change of code.
This solution is slower but avoids missing code.

UI

PictureManger

Decoder

MessageManager

Preview

Call for a

new picture

Put the picture

in queue

Ask for a new

picture to decode

Give a new

picture to decode

Returns the

decoded message

The final complete

message The state of the

decoding Order to stop

When message completed

40

Chapter 4

Implementation

4.1 Environment

4.1.1 Software

• Matlab 2012b. The initial tasks of encoding and decoding where implemented in Matlab.

The message was encoded in Matlab and the uploaded to the Smartphone, and then another

PC running Matlab encoded the message.

• Eclipse SDK version 3.8.0. The Android application was supposed to be written in Java.

As Eclipse is a supported platform by Google it was used in this project.

• Android Software Development Toolkit. This toolkit contains some needed drivers and

hardware platforms.

4.1.2 Hardware

• Smartphone’s. The application have been run and tested on Samsung Galaxy S3 phones

running Android Jelly Bean 4.2 as operating system.

• Computers. Four Dell laptops running Windows 7 have been used to write all the codes.

4.2 Encode

As there are a transmitter and receiver part, two phones have to be used, one for each

purpose. Different graphical interfaces were implemented for each one.On the transmitter

side the application gives the option to choose a text file that will be transferred and the user

41

can type in the name of the file. It also has a button to start the transmission. The

transmission will begin only after a file has been selected.

Figure 20. Launch the application, the GUI is Figure 21. Input the file name by pressing Menu.
displayed above. The file can be
transmitted by pressing 'Start' .

42

Figure 22 Figure 23
On the preference screen one can The application while transmitting codes
select version, Error correction
level , colored QR-codes and flash. If
 nothing is selected a default values
 will be used.

43

4.2.1 UML for Encoding

44

4.3 Decode

Figure 24 GUI of decoding application

Figure 24 is the graphical user interface of the decoding android application. The right part

shows the options that can be selected. ‘Flashing between frames’ is used for synchronous

mode. ‘Check frame number’ is used in asynchronous mode. The third option allows to

decode black and white or colored codes.

45

4.3.1 UML for Decoding

Figure25: UML of decoding

46

Principal Classes

MainActivity : Main class of the application, it initiates the activity and the other classes

Preview : Manages the phone’s camera, the preview and creates PreviewPicture objects

QRDecode : Manages the all algorithm calling the other classes

Decoder : Manages the decoding of one PreviewPicture, apply the binarization

PictureManager : Manages the Queue of PreviewPicture, ask for new PreviewPicture and

regulates the time between two PreviewPicture.

MessageManager : Manages the Queue of decoded messages put the messages together

PreviewPicture : Contains the values of a picture, can be black and white or colored

Reading QR code classes

Reader : Manages the all reading QR code in a binarized picture.

Finders : Research and sort the finding patterns

AffineTransform : Calculate the parameters of the affine transformation apply it.

Patterns : Research the alignment patterns.

DataArea : Gives the position, in the QR code, where is the message.

Mask : Gives the value of the mask in a given position in the QR code.

Information Classes

Version : Decodes and encodes the version and gives any information linked to the version.

Format : Decodes and encodes the format and gives any information linked to the format.

Frame : Decodes and encodes the frame number.

Message Treatment Classes

Interleaver : Apply the interleaving and the RSDecoder on a decoded message.

RSDecoder : Apply the Reed-Solomon algorithm decoding on a given message.

Utile Classes

Queue<E> : Manages a queue of any sort of elements.

ThreadManager : Abstract class creating and managing a Thread to run a loop action and

control its start and stop.

CircleMemory : Manages an array of integer to be used like a fixed length queue

47

Figure 26: Reed Solomon UML

Classes

GaloisConst : Abstract class containing all the information on Galois field in static.

Galois : Class which represent a Galois number in the field Galois(256)

Polynom : Class of static function to manage Galois array like polynomial

Linear : Class to resolve a linear equation system on Galois field

RSDecoder : Manages the Reed-Solomon decoding on a given message

RSEncoder : Manages the Reed-Solomon encoding on a given message

48

Chapter 5

Results/Discussion

Data rate

 Test the function using Matlab.

Figure 27: Encode rate for each version

By inputting different data 10 times, calculate the average time which is taken to generate

the QR code for each version. From the figure above, we can see, the high version doesn’t r

enhance data rate that is due to the Matlab delay of R-S algorithm.

49

• The decode data rate for each version when the QR code is rotated.

Figure 28: Decode data rate for each version with ideal images

Figure 29: Decode data rate for each version with rotated images

50

• Compare the decode data rate of each version when the QR code is disturbed by the

external inference with the ideal curve

Figure 30: Decode data rate for each version

 Test the function using Java.

• By inputting different data 10 times, calculate the average time which is taken to

generate the QR code for each version.

Figure 31: Encode data rate for each version

L

version Total
number
of
codeword

L Error
correction
Blocks

M Error
correction
Blocks

Q Error
correction
Blocks

H Error
correction
Blocks

1 20 7 1
0

10 1
0

13 1
0

17 1
0

2 38 10 1
0

16 1
0

22 1
0

28 1
0

3 64 15 1
0

26 1
0

36 2
0

44 2
0

4 94 20 1
0

36 2
0

52 2
0

64 4
0

5 128 26 1
0

48 2
0

72 2
2

88 2
2

6 166 36 2
0

64 4
0

96 4
0

112 4
0

7 190 40 2
0

72 4
0

108 4
2

130 1
4

8 236 48 2
0

88 2
2

132 2
4

156 2
4

9 286 60 2
0

110 2
3

160 4
4

192 4
4

10 340 72 2
2

130 1
4

192 2
6

224 2
6

11 398 80 2
2

150 4
1

224 4
4

264 8
3

12 460 96 2
2

176 2
6

260 6
4

308 4
7

13 526 104 4
0

198 1
8

288 4
8

352 3
12

14 575 120 1
3

216 5
4

320 5
11

384 5
11

15 649 132 1
5

240 5
5

360 7
5

432 7
11

16 727 144 1
5

280 3
7

408 2
15

480 13
3

17 809 168 5
1

308 1
10

448 15
1

532 17
2

18 895 180 1
5

338 4
9

504 1
17

588 19
2

19 985 196 4
3

364 11
3

546 4
17

650 16
9

20 1079 224 5
3

416 13
3

600 5
15

700 10
15

21 1150 224 4
4

442 17
0

644 6
17

750 6
19

22 1252 252 7 476 17 690 16 816 34

51

• The decode data rate for each version.

Figure 32: Decode data rate for each version

• The data rate of the total system (encode +decode+system channel (1secs)).

 Figure 33: Data rate for each version

• The data bit can achieve 9-10 kbps when we use version 40.

.

• Due to the Matlab slow calculate speed, date rate is not that perfect when going to the

high version. However, java could reach the high data rate.

• The qualities of the QR CODE image have influence on the bit rate of decoding part.

• To reach the best data rate, we need to use the version as high as possible.

52

Data rate of the android application

 Data rate of the application with different error correction level and

asynchronous/synchronous mode.

 Figure 34: Data rate for each version

 Figure 35: Data rate for each version

Version

Rate (kbits/sec)

With Flash No Flash

ECL 2 ECL 3 ECL 2 ECL 3

15 5,693 3,440 9,583 6,281

20 7,443 4,078 15,609 10,442

25 10,713 5,047 21,328 14,738

30 9,417 5,952 22,453 16,282

35 8,399 5,058 17,736 14,092

 Table 11: Data rate for each version

25

30

35

40

45

50

15 20 25 30 35

Rate (kbits/sec dB) With
Flash ECL 2

Rate (kbits/sec dB) With
Flash ECL 3

Rate (kbits/sec dB) No
Flash ECL 2

Rate (kbits/sec dB) No
Flash ECL 3

0

5

10

15

20

25

15 20 25 30 35

Rate (kbits/sec) With Flash
ECL 2

Rate (kbits/sec) With Flash
ECL 3

Rate (kbits/sec) No Flash
ECL 2

Rate (kbits/sec) No Flash
ECL 3

53

Chapter 6

Conclusion

A system that utilizes other means than usual radio frequencies has been implemented in

this project. The method that has been developed uses modified black/white or color Quick

Response codes.

 A basic prototype was implemented in MATLAB, but the final system that runs on Android

was developed in Java. The smart phones used in this project were Samsung Galaxy S3’s.

The final model enables a file transfer of any type (image, audio, text and others). It is using

8 bits for frame number information which means maximum of 256 frames can be transmitted

in one session. With this system, maximum possible size of the file that can be transmitted is

approximately 754 Kb with the lowest error correction level. More frames can be transmitted

by using more bits for frame number information. Data rate of up to 22.45kbits/sec is

achieved with this system.

Two approaches were implemented for this visual based communication system i.e.,

asynchronous and synchronous. Synchronized transmission was more reliable but higher

data rates were achieved with asynchronous mode.

54

Bibliography

[1] Federal Communication Commission “Using Wireless Devices on Airplanes”http

[2]L. Ahlin, J. Zander and B. Slimane.Principles of Wireless Communications.Studentlitteratur

2006

[3] http://www.norwegian.com/uk/travel-information/travel-services/wifi/

[4]“7 Benefits of QR Codes for Content Marketing or Inbound

Marketing”http://seamlesssocial.com/7-benefits-of-qr-codes-for-content-marketing-or-

inbound-marketing/

[5] J. Bernsen, “Dynamic thresholding of grey-level images,” in International Conferenceon
Pattern Recognition, 1986, pp. 1251–1255.

[6] J. Zhou, Y. Liu, and P. Li, “Research on binarization of qr code image,” in
MultimediaTechnology (ICMT), 2010 International Conference on. IEEE, 2010,
pp.1–4.

[7] “ISO/IEC Information technology - Automatic identification and data capture techniques -
Bar code symbology - QR Code,” 2000.

 [8] QR Code Tutorial
 “http://www.thonky.com/qr-code-tutorial/”

http://www.norwegian.com/uk/travel-information/travel-services/wifi/
http://seamlesssocial.com/7-benefits-of-qr-codes-for-content-marketing-or-inbound-marketing/
http://seamlesssocial.com/7-benefits-of-qr-codes-for-content-marketing-or-inbound-marketing/

55

Appendix A [8]

56

Appendix B

version Total

number
of
codeword

L Error
correction
Blocks

M Error
correction
Blocks

Q Error
correction
Blocks

H Error
correction
Blocks

1 20 7 1
0

10 1
0

13 1
0

17 1
0

2 38 10 1
0

16 1
0

22 1
0

28 1
0

3 64 15 1
0

26 1
0

36 2
0

44 2
0

4 94 20 1
0

36 2
0

52 2
0

64 4
0

5 128 26 1
0

48 2
0

72 2
2

88 2
2

6 166 36 2
0

64 4
0

96 4
0

112 4
0

7 190 40 2
0

72 4
0

108 4
2

130 1
4

8 236 48 2
0

88 2
2

132 2
4

156 2
4

9 286 60 2
0

110 2
3

160 4
4

192 4
4

10 340 72 2
2

130 1
4

192 2
6

224 2
6

11 398 80 2
2

150 4
1

224 4
4

264 8
3

12 460 96 2
2

176 2
6

260 6
4

308 4
7

13 526 104 4
0

198 1
8

288 4
8

352 3
12

14 575 120 1
3

216 5
4

320 5
11

384 5
11

15 649 132 1
5

240 5
5

360 7
5

432 7
11

16 727 144 1
5

280 3
7

408 2
15

480 13
3

17 809 168 5
1

308 1
10

448 15
1

532 17
2

18 895 180 1
5

338 4
9

504 1
17

588 19
2

19 985 196 4
3

364 11
3

546 4
17

650 16
9

57

20 1079 224 5
3

416 13
3

600 5
15

700 10
15

21 1150 224 4
4

442 17
0

644 6
17

750 6
19

22 1252 252 7
2

476 17
0

690 16
7

816 34
0

23 1358 270 5
4

504 14
4

750 14
11

900 14
16

24 1468 300 6
6

560 14
6

810 16
11

960 2
30

25 1582 312 4
8

588 13
8

870 22
7

1050 13
22

26 1700 336 2
10

644 4
19

952 6
28

1110 4
33

27 1822 360 4
8

700 3
22

1020 26
8

1200 28
12

28 1915 390 10
3

728 23
3

1050 31
4

1260 31
11

29 2045 420 7
7

784 7
21

1140 37
1

1350 26
19

30 2179 450 10
5

812 10
19

1200 25
15

1440 25
23

31 2317 480 3
13

868 29
2

1290 1
42

1530 28
23

32 2459 510 17
0

924 23
10

1350 35
10

1620 35
19

33 2605 540 1
17

980 21
14

1440 19
29

1710 46
11

34 2755 570 6
13

1036 23
14

1530 7
44

1800 1
59

35 2870 570 7
12

1064 26
12

1590 14
39

1890 41
22

36 3028 600 14
6

1120 34
6

1680 10
46

1980 64
2

37 3190 630 4
17

1204 14
29

1770 10
49

2100 46
24

38 3356 660 18
4

1260 32
13

1860 14
48

2220 32
42

39 3526 720 2
20

1316 7
40

1950 22
43

2310 67
10

40 3700 750 6
19

1372 31
18

2040 34
34

2430 61
20

58

