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Abstract

We create a voice recognition system which classi�es sound segem-
nts as one of the four following Swedish vowels: A, I, O and Ä. The
purpose of this is to create a voice controlled game where you can
use the four mentioned vowels to control the game. We use formant
frequencies as features for the vowels and manage to get a decent clas-
si�cation rate of 85%, but we have too litle data to truly create a
voice independet system that can classify vowels. Given more data
you should be able to get the system up to at least 95%.
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1 Introduction

The overarching goal for this project was to create a voice controlled appli-
cation where you could use the sounds of long vowels to perform some simple
tasks, i.e. the user will make a continuous sound of a vowel and you the use
the recognized vowel to generate a signal to some application.

The application of choice is the game Sokoban. Sokoban allows the player
to move up, down, left and right, as such we need to be able to distinguish
four vowels from each other in order to be able to play the game of Sokoban.
To win the game you have to push a set of boxes onto a set of goals but it's
possible for the player to push a box so that they lock the game and can not
win,

In order to play Sokoban we will also need to have a very precise rec-
ognizer, both in regards to eliminating noise as well as classifying vowels,
since moving in the wrong direction may cause the player to lose the game
by ending up in a deadlock.

2 Method

2.1 Features

Since we only wish to recognize vowels/sounds for our application we don't
really have any need for lexical or language models so the focus will be on
feature extraction and decoding of said features. A well studied feature for
vowels is formants which we will use to classify sounds as vowels.

A formant can be described as the concentration of energy around around
a frequency, i.e, the strength of the frequency [2], and the frequency with the
highest energy is called the �rst formant, the second highest concentration of
energy is called the second formant and so on. We will be using the �rst three
formants for vowel recognition since the higher formants are more speaker
dependent [2]).

Since we only need to select four vowels for recognition to play the game
of Sokoban we can try and do so by looking on previous research about
formants and try to make an initial guess about which four vowels should be
easiest to build a classi�er for.

Vowel I Y U O E Ö Å Ä A
Phonetic i y 0 u e ø o æ 6

Table 1: The table shows which vowels the phonetic transcriptions in �gure
1 corresponds to.

Figure 1 shows an image from a study about swedish vowels [1] and it
shows how the �rst and second formant changes over time as the vowels
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Figure 1: The image shows how the �rst two formants for Swedish vow-
els change over time. The image is from a study by Ingegerd Eklund and
Hartmut Traunmüller [1]

are pronounced. In the study they �nd that vowels Ä and A isn't as prone
to changes in formant frequencies while they are pronounced as the other
vowels. While our recognition system isn't meant to classify pronunciation
of vowels, i.e. just saying a vowel, but instead classify sound segments of
a continuous sound signal, i.e. �sounding� a vowel. However, a reasonable
guess is that the sound signal for A and Ä is more stationary in terms of
formant frequencies than the other vowels and as such they should be easy
to distingusih. The other two best candidates for vowel recognition ought to
be I and O since they seem to be pretty stationary as well but are also far
from A and Ä in the �rst and second formant as well as each other.

We use windows of a 100 milliseconds of captured audio from which we
extract the mean formants from and use as feature vector for that audio
segment. The larger the segments of captured audio the more robust our
system should be to noise or intra speaker variation since such variation
should get averaged out. Of course, the larger the time segment we capture
and classify, the larger the delay will be for the user.

2.2 Classi�er

To classify the vowels we will use a gaussian multivariate mixture model for
each vowel. We will �t a mixture of gaussians to each vowels �rst three
formants using the Expectation maximization algorithm. Our initial guess
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for the mixture positions are estimated using the k-means algorithm and
then we run the expectation maximization algorithm to optimize it. We're
using a mixture of gaussians, instead of just one gaussian, to better be able
to capture speaker variation between the vowels. Our gaussians only use
diagonal covariance matrices to estimate the formants. Assuming that the
formant frequencies are independent of each other is probably not true but
by just using diagonal covariance matrices we should get better generalisa-
tion capabilities since we won't be as prone to over�tting our model on our
training data as if we used full covariance matrices and since we don't have
that much training data we need good generalisation if we wish our vowel
recognition to be speaker independent.

Since the frequencies for the �rst three formants can range up to several
thousand Hertz we need to scale down the values. Firstly because the initial
k-means algorithm has to perform decently and secondly because we wish to
avoid under�ow errors. If we have covariance matrices with too large values
the probability density functions will approach close to zero and we may get
under�ow errors.

Formant i e y ä ö u a å o
F1 321 407 318,5 683,5 476,5 357 612,5 403 347
F2 2281 2326 2153,5 1695,5 1750,5 1791,5 957 695 678,5
F3 3317,5 2961,5 2936,5 2623,5 2531 2525,5 2719,5 2692 2543

Table 2: The table lists formant averages frequencies for Swedish vowels.
The values are from a study by Ingegerd Eklund and Hartmut Traunmuller
[1]

Formant i ä a o Average (Hz)
F1 321 683,5 612,5 347 491
F2 2281 1695,5 957 678,5 1403
F3 3317,5 2623,5 2719,5 2543 2800,875

Table 3: The table lists formant averages frequencies for Swedish vowels
I,Ä,A and O and their average. The values are from a study by Ingegerd
Eklund and Hartmut Traunmulle [1]

Table 3 shows estimated means for the �rst three formants. Since we only
need a rough scale down of the formants to get an initial decent estimate for
k-means and just wish to scale down the formant vectors to avoid under�ows
we can apply a scaling vector of (1/500, 1/1400, 1/2800) to get the formants
feature vector down into small values of similar range.
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2.3 Noise reduction

To reduce the chance of recognizing noise as vowels we threshold input audio
based on the probability distribution function value so that we ignore formant
vectors that lie on the tails of the gaussian mixtures. The threshold values
are manually set to eliminate just the most obvious cases and the threshold
value depends on the probability density functions for the mixtures which in
turn depends on how much we have scaled down the values for the formants.
But since we only wish to eliminate the tails the exact choice of threshold
the threshold value is not so important as long as it's not so large that we
cut o� areas where real data occurs.

2.4 Voice control

Even though we record and classify all input sound in 100 ms segments we
can't send a control signal every 100 ms since that would make it very hard
for the user to have any �ne control over the character movements. So even
though we generate a new vowel every 100 ms we only send a signal to the
application if 500 ms have passed since the last signal was sent. We decrease
the time between signals from 500 ms to 100 ms by a 100 ms each time the
new signal is the same as the previous signal though so that the generated
movement signals get sent faster and faster as vowels are detected to allow
the user to still move the character quickly in one direction.

3 Results

The data we have on which we can evaluate the accuracy of our gaussian
mixture model classi�er on consists of 50 samples of each vowel from �ve
di�erent speakers, i.e. we have 1000 samples total. Each sample is a 100
millisecond recording of a vowel recorded using the same microphone and
environment. In table 4 you can see the gender of each speaker. In table 5 you
can see the percentage of correcly classi�ed vowels when we do crossvalidation
by training on all but one speaker and testing on the speaker we didn't train
on.

Speaker Sp1 Sp2 Sp3 Sp 4 Sp5
Gender Male Male Female Male Male

Table 4: This table shows speaker gender since there's some variation among
female and male speakers.

When using three formants, like we planned from the start, we �nd that
we can't capture the speaker variation very well between the speakers as we
increase the number of mixtures. In fact, using fewer mixtures is better for
us if we look at the trend the percentage of correct classi�cations seems to
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Mixtures Sp1 Sp2 Sp3 Sp4 Sp5 Average
1 87% 76% 90% 76% 80% 81,8%
2 83% 72,5% 88,5% 75% 74,5% 78,7%
4 84,5% 70% 86,5% 89% 67% 79,4%
8 72,5% 72% 87% 78,5% 67% 75,4%

Table 5: The table shows the percentage of correctly classi�ed vowels when
we do cross validation in relation to how many mixtures we're using. The
features used are the �rst three formants.

follow as can be seen in table 5. Most of the errors consists of confusing the
vowel A with Ä or confusing O with A. An 80% classi�cation rate, which
we get as best on average, is clearly not good enough for a voice controlled
software.

When training on all the data and evaluating on all the training data we
get at least 90.8% correct for just one mixture though as seen in tabe 6. We
should not be in any danger of over�tting the model to the training data,
since we're using just one mixture as well as using diagonal covariance matri-
ces over full covariance matrices, it's quite obvious that we lack enough data
to create a speaker independent classi�er, there's just too much variation
between the speakers.

Mixtures 1 2 4 8
Correct 90,8% 95,1% 96,4% 97,4%

Table 6: The percentage of correct classi�cations when training on all the
data and testing on all the data for three formants.

Since we can't create a speaker independent system just using the limited
data we have we will try to reduce the number of formants we use for features
from three to two. Having a lower dimensional feature space should reduce
the speaker variation some. In table 7 you can see the percentage of correctly
classi�ed vowels when doing cross validation using two formants and in table
8 you can see the results of testing and training on all the data.

Mixtures Sp1 Sp2 Sp3 Sp4 Sp5 Average
1 87% 76% 91,5% 92,5% 77,5% 84,9%
2 81,5% 80,5% 88,5% 88% 90,5% 85,8%
4 83,5% 83% 90% 92% 85% 86,7%
8 81% 79% 87,5% 91,5% 91,5% 86,1%

Table 7: The table shows the percentage of correctly classi�ed vowels when
we do cross validation in relation to how many mixtures we're using. The
features used are the �rst two formants.
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Mixtures 1 2 4 8
Correct 91% 95,6% 96,8% 97,5%

Table 8: The percentage of correct classi�cations when training on all the
data and testing on all the data for two formants.

For the two �rst formants we don't have have as much speaker varia-
tion since we have a more stable average between the speakers instead of a
decreasing average as seen when comparing table 5 and table 7. When com-
paring table 2 and table 4 we see that we don't really have any change in
performance when testing on the training data so we probably don't need the
third formant to distinguish between our four vowels among these speakers.

Next we test how well our thresholding of noise based on the probability
density function of our gaussian mixtures work using the �rst two formants
as our feature vectors. We do this by adding 200 samples of noise data to
the test samples when doing cross validation, so we have 200 samples of
vowels and 200 samples of noise for each cross validation. The noise consists
of silence and speaker noise, such as throat clearing and lip smacking. The
percentage of correct classi�cations of sounds as vowels and the percentage
of incorrect classi�cations of sounds as noise, when using a threashold of 0.01
to cut of the tails, can be seen in table 9 and table 10 respectivly.

Mixtures Sp1 Sp2 Sp3 Sp4 Sp5 Average
1 95% 95,2% 96,8% 94,8% 94,8% 95,32%
2 97,5% 98,5% 96,8% 97,6% 97,5% 97,58%
4 96,5% 97,5% 98,7% 94,2% 98,9% 97,16%
8 94,2% 97,5% 92,4% 93,8% 93,5% 94,28%

Table 9: The table shows the percentage of correct classi�cations of sounds
as vowels, i.e. the precision.

Mixtures Sp1 Sp2 Sp3 Sp4 Sp5 Average
1 4,5% 0,5% 20,7% 0% 0% 5,14%
2 2,5% 1% 20,4% 0% 2% 5,18%
4 3,5% 1% 20,5% 3,1% 5,3% 6,68%
8 3,1% 1% 22,6% 2,1% 0% 5,76%

Table 10: The table shows the percentage of incorrect classi�cations as noise,
i.e. the percentage of the data classi�ed as noise that is vowels.

When looking at table 10, which shows the percentage of vowels threash-
olded as noise, we clearly see that speaker three deviates from the other
speakers in the number of vowels thresholded away as noise. The primary
thresholded vowel is I where almost all of them are removed as noise. Since
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speaker three is the only female speaker we apparently dont capture the
vowel I just using gaussian mixtures �tted to male speaker data. In table 11
we can see the percentage of correct classi�cations of sounds as vowels and
the percentage of incorrect classi�cations of sounds as noise when training
and testing on all the data.

Mixture 1 2 4 8
Correct 94,79% 97,51% 98,95% 93,46%
Incorrect 0% 2,01% 5,26% 0%

Table 11: Table shows the percentage of correct classi�cations as vowels and
the percentage of incorrect classi�cations as noise when training and testing
on all the data.

4 Discussion

When selecting our four vowels to use for classi�cation we chose them initially
based on how distinguishable they were in the �rst and second formant,
because of this the third formant became pretty much useless. However, if
we would need more than four vowels wed probably need the third formant
to distinguish more vowels, for example I and E are quite close in the �rst
and second formant but di�er in the third formant if you look at the means
in table 2. As its now we dont have enough data to capture the third formant
well and it just introduces errors in our classi�er if we try to train a speaker
independent classi�er.

Threasholding the probability density function to remove noise works
reasonably well. We had pretty much a 95% correct classi�cation rate and
threasholded away 5% of the vowels as noise. The 95% classi�cation rate
as vowels is good enough for our purpose and a 5% lose of vowels is also
acceptable. That we had a 85% correct classi�cation rate inbetween the
vowels, when doing cross validation, is more troublesome since there is too
much confusion between vowels.

However, looking at the test data in table 8 we should be able to build a
speaker independent classi�er if we just had more data. We were able to get
95% correct classi�cations when we just used two mixtures for �ve speakers
so we should be in no danger of having over�tted our classi�er to our data
which suggests that with more data we should be able to reach higher than
85%.

5 Conclusions

To distinguish the vowels A, I, O and Ä we �nd that just using the �rst two
formants works better than using the �rst three formants when you have
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a small dataset to train on and you wish to have a speaker independent
system. More data will probably not make the third formant more useful
when trying to distinguish these four vowels, but it will become useful when
trying to distinguish more vowels since some vowels overlap a lot in the �rst
and second formant.
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