
Web Speech API

Julius Adorf

KTH Royal Institute of Technology, Stockholm

May 27, 2013

Abstract

This technical report describes the current state of
the Web Speech API, which provides a JavaScript
interface for speech analysis and speech synthesis to
web applications. The focus lies on measuring the
performance of Google’s speech recognition web ser-
vice that is behind the experimental API implemen-
tation in the Chromium browser. To this end, sen-
tence correctness and word accuracy is measured us-
ing the TSP speech database with more than 1400
recordings of the Harvard sentences. The report also
puts the Web Speech API into historical context and
speculates about future prospects. A practical use-
case is given that demonstrates how the API can be
used in a web application. Supplemental data and
the use-case is published online.

1 Introduction

The Web Speech API is designed for speech analy-
sis and speech synthesis. It allows web users to send
speech input to web applications. The web appli-
cations use the Web Speech API to transform the
speech into text. While mobile phone users have be-
come used to a speech as a new input method, it is
currently uncommon to see voice-controlled web ap-
plications.

There are good reasons why speech input in web ap-
plications might be beneficial for users. First, open-
ing the field for a new input method enhances acces-
sibility. Just like BrailleTouch enables visually im-

paired users to type without looking [1], speech in-
put might provide a convenient means of alternative
input. Second, speech is a hands-free input method.
Just imagine a web application that uses hand ges-
tures as input. Hand gestures conflict with stan-
dard mouse and keyboard control, whereas speech
and hand gestures can be easily combined. Third,
users have become more and more used to speech in-
put on mobile phone applications and might demand
that competing web applications have the same capa-
bilities. In these times, the distinction between desk-
top applications, web applications, and mobile phone
application blurs. This development is mirrored on
the market of electronic devices, ranging from note-
books with touchscreen via tablet computers of dif-
ferent sizes to a wide range of mobile phones. In such
an environment, web applications that accept a wide
range of input methods might gain an edge over com-
petitors. In summary, speech input in the web might
enhance the experience of individual users, might al-
low web applications to use multiple input methods,
and might add what the user already expects.

The Web Speech API is an experimental JavaScript
API. The experimental nature is a reason why the in-
troduction so far has remained mostly speculative. A
core feature of the API is that the speech recognition
itself is largely transparent to the web developer. the
actual speech recognition is delegated to a web ser-
vice. The web developer does not directly interact
with the web service but rather communicates with
the user agent through events. It is the responsibil-
ity of the user agent to implement the interface and
the communication between the user agent and the
speech recognizion web service.

1



The Web Speech API is developed by the W3C
Speech API Community Group. The initiative is
open to everyone but it appears that it is largely
driven by two companies: Google and Openstream.
It is a recent initiative and the specification draft
awaiting final commitments was published only in
October 2012. There is a vendor-specific implemen-
tation of the API draft available in Chromium with
version 25 or newer, despite of the specification nei-
ther being finalized nor belonging to a W3C Stan-
dards track.

This report evaluates both the Web Speech API and
the speech recognition service used by Chromium by
default. Section 2 delves into the history of the API
and what influenced the design decisions. Section 3
describes the API itself. Section 4 looks at the cur-
rent browser support. Section 5 attempts to measure
the performance of the speech recognition web service
used by Chromium. Section 6 adopts the technology
and presents a web application with speech input. Fi-
nally, Section 8 goes full circle and speculates about
future developments in how speech recognition might
change the world of web applications.

2 History

Work on the Web Speech API can be traced back at
least to the end of 2011. developed The Speech API
Community Group currently comprises 32 members.
Most of the members who specified their affiliation
on their profile pages on the community wesite are
Google employees (see Table 1). Given that there are
at least five Google members in the group, it seems
likely that Google has a particular interest in such an
API.

3 API Specification

This section discusses the Web Speech API itself.
First, its scope is explained. Then, its design is pre-
sented. Finally, the supported features are listed.
The latter part is of particular interest for both API

Google 5

Openstream 3

Others 14

N/A 10

Total 32

Table 1: Affiliations within the Speech API Commu-
nity Group.

users and the providers of web services for speech
recognition because the functionality that is exposed
by the interface also needs to be implemented by the
web service.

The Web Speech API covers both speech analysis
and speech synthesis. In other words, it supports
the conversion of speech to text and vice versa. The
API is purely in JavaScript, which is currently one
of the predominant client-side scripting languages of
the web.

The Web Speech API is event-based, which fits in
well to the rather callback-heavy style of coding with
JavaScript. Calls to the API are handled by the user
agent which in turn takes charge of all communication
with a web-based speech recognition service. This of
course requires that the user agent implements the
API. The event-based architecture allows programs
to asynchronously process speech. Events are also
used to report intermediate speech recognition results
which is convenient because it allows programs to
give almost immediate feedback to the user. Speech
recognition can be interrupted at any time, which is
convenient because it relieves the web developer of
extra work in the event handler routines.

In order to be able to serve users all over the world,
the API must support different languages. It is pos-
sible to set the language for speech recognition. By
default, the language is defined by the locale settings
of the user agents. The language has to be speci-
fied a-priori to speech recognition. Hence, it must be
known in advance which language is expected. It is
not possible to freely mix languages.

The API defines ways to adapt the speech recognition

2



system for specific tasks. A grammar can be given
to the speech recognition system. The system can
possibly take advantage of the constraints given by
the grammar for improved speech recognition. It is
written in the specification that the grammar format
is still subject to discussion and not yet finished.

Intermediate or final recognition results are given in
the form of several candidate sentences, each associ-
ated with a certain confidence value. The most likely
transcription is listed first. The API distinguishes
between parts of a transcription that are preliminary
and parts that are final. This is useful when look-
ing at intermediate results while speech recognition
is ongoing.

Finally, privacy issues need to be mentioned. As the
Web Speech API shall not be abused in order to spy
on the user by secretly listening to microphone input,
the user needs to be asked for permission first. This
problem becomes apparent in the use case presented
in Section 6.

4 Browser support

Currently, there are five popular browsers Google
Chrome, Mozilla Firefox, Microsoft Internet Ex-
plorer, Safari, and Opera in use [2]. However, only
Google Chrome (version 25+) has experimental sup-
port of the Web Speech API. The Web Speech API
is not a W3C Standard. Given the experimental na-
ture, the symbols in the implementation are vendor-
prefixed at the time of writing, and the code using the
Speech API in Chromium currently looks like this:

var rec = new webkitSpeechRecognition();

recognition.onresult = function(event) {

// ...

};

recognition.start();

// ...

Figure 1: A web page by Google that demonstrates
the Web Speech API. The user can dictate words,
and the recognized words are displayed in the text
area while the user is dictating.

5 Evaluation

The usefulness of the Web Speech API is limited by
the performance of the underlying web service that
performs speech recognition. The performance of
this web service is evaluated in this section. First,
the solution for the the technical challenges are ex-
plained because it is not straight-forward to use the
Web Speech API for other purposes than user input.
Then, the experimental setup and the dataset are de-
scribed. Finally, the results are discussed.

5.1 Technical preparations

The Web Speech API allows users to record audio
from the microphone, which is then sent via a HTTPS
POST request to the speech recognition web service.
The result can then processed within the limits of
a JavaScript application running in the Chromium
browser. For evaluational purposes it is advantageous
to access the web service directly such that recorded
audio data from files can be passed to the web service
and the results processed without the restrictions of
the browser’s sandbox. The solution is therefore to
open a HTTPS connection, upload the audio data
via a POST request and retrieve the recognition re-

3



sults for further processing. The source code of the
Chromium project provides all necessary information
for constructing such HTTPS requests. There are ar-
ticles on the web that describe the necessary steps [3].
It is not clear how Google is positioned towards this
particular hack of its speech recognition web service.

5.2 Benchmark dataset

The TSP Speech Database [4] serves as a benchmark
in this evaluation. It is one of the few annotated
speech recognition datasets that is available in the
world wide web at no cost 1. The database contains
more than 1400 utterances from 12 male and 12 fe-
male speakers. In total, there are 720 sentences dis-
tributed over 72 lists of 10 sentences each. This list is
known as the Harvard sentences [5]. The recordings
were performed in an acoustic anechoic room and de-
signed to have a low noise level. All sentences are in
English, and most of the speakers were adult native
speakers. The reader is highly recommended to listen
to some of the recordings in order to fully appreciate
the quantitative evaluation that follows.

5.3 Experimental setup

This section describes the experimental setup and
equips the reader with what is necessary to interpret
the results presented in Section 5.4. Concretely, this
section explains how the dataset is sent to the web
service and how the recognition results are compared
to ground truth.

The basic idea is rather simple: each sentence in the
TSP Speech Database is separately sent to the speech
recognition web service. It appears that the web ser-
vice accepts audio data in the FLAC [6] format. Con-
version from the wave-encoding of the dataset to the
FLAC encoding required by the web service is loss-
less, which is fortunate for the purpose of evalua-
tion. In order not to bombard the Google web ser-
vice (don’t be evil to put it the Google way), the
sentences are sent to the web service over a period

1This is a student report without funding.

edit cost

insertion 7

deletion 7

substitution 10

Table 2: The edit operation costs used by default
in the sequence alignment function of the Hidden
Markov Model Toolkit.

of 24 hours, which corresponds to one sentence per
minute. The returned transcriptions are finally com-
pared to ground truth. Results are reported on a
sentence level and on a word level.

Reporting results on a sentence level is straight-
forward. Here, it is enough to see whether a tran-
scribed sentence and the corresponding test sentence
match. However, reporting becomes more compli-
cated on a word level because the speech recognizer
might transcribe words that were not spoken (inser-
tion), might not transcribe words that were spoken
(deletion), or confuse words (substitution).

This evaluation uses sequence alignment in order to
compare the results on the word level. The Leven-
shtein edit distance between the transcribed sentence
and the test sentences is computed. This edit dis-
tance is the minimum cost for word insertions, word
deletions, and word substitutions that align the tran-
scribed sentence and the test sentence. From the op-
timal alignment, we can compute the word accuracy
Wacc. Let N denote the number of words in the test
sentence. Let D be the number of deletions, S the
number of substitutions, and I the number of inser-
tions in the optimal alignment. Then, the word ac-
curacy Wacc is computed by:

Wacc =
N −D − S − I

N
(1)

Differences in case, whitespace, and punctuation are
not taken into account. The punctuation problem
is for example treated in [7], but not part of this
evaluation. The value of the word accuracy measure
for evaluational purposes is subject of discussion in
the literature [8].

4



Table 2 lists the costs used in this evaluation
– the same costs as the Hidden Markov Model
Toolkit (HTK) [9] uses by default. The word accura-
cies reported in this evaluation can be directly com-
pared to the word accuracies reported by the HTK
command-line tool HResults.

5.4 Results

The results of the experiments are first discussed on
a sentence level, and then on a word level. Details are
given in two tables in the appendix. Table 4 shows
the results broken up by speakers, whereas Table 5
groups the results by list.

Only a minority of all spoken sentences is recog-
nized correctly, where correctly means that the test
sentence and the transcribed sentence match in ev-
ery single word. From a total of 1444 spoken sen-
tences, 306 sentences are correctly recognized. In
other words, 21% of the spoken sentences are rec-
ognized without insertion, deletion, or substitution
errors. Whether the speaker is male (21% correct) or
female (20% correct) makes no real difference. 32% of
the 66 sentences spoken by the two children are rec-
ognized, but a conclusion can hardly be drawn given
the small sample size.

Altogether, the speech recognizer has difficulties with
many of the sentences. The sentences are difficult, at
least when judged by a human listener. They sound
uncommon and are sometimes difficult to understand
for non-native English speakers. How this relates to
the difficulty level for machine understanding is out of
scope of this work. However, here is an example from
list 69 where the speech recognizer performs partic-
ularly poorly (five substitutions and one insertion):
the sentence "the steady drip is worse than a

drenching rain" was mistaken for "the city trip

is worth the trenching rain". Table 3 presents
ten randomly selected spoken sentences and the cor-
responding speech recognition results. Both good
and bad results can be seen.

On the word level, results look brighter than on a
sentence level. The speech recognizer correctly rec-

ognizes 8540 words out of a total of 11540 spoken
words. This means that 74% of all spoken words are
correctly recognized. In contrast to the percentage
of correct words, the word accuracy takes insertions
into account. However, only the number of insertions
is low and the overall word accuracy of 73% does not
differ much from the percentage of correctly recog-
nized words. The word accuracy does not really dif-
fer between males (74%) and females (72%). Again,
the only two children scored higher (83%).

The detailed statistics are reported in Table 4 and Ta-
ble 5. Both table present the same data, but grouped
differently.

The speakers in Table 4 are identified by a two-letter
combination, where the first letter indicates whether
the speaker is a male (M), a female (F), or a child (C).
The genders of the two children are not reported. The
second column in lists the number of sentences spoken
by the respective speaker. Most of the speakers spoke
exactly 60 sentences, but due to some mistake in the
dataset acquisition [4], some recordings got lost.

The recordings of the sentences in the TSP Speech
Dataset are organized in the 72 lists of the Harvard
sentences. Table 5 groups the results by list. While
most of the sentences in each list were spoken exactly
twice (once by a male and once by a female), the lists
1–6, 14, and 25–30 are irregular.

The last six columns of Table 4 and Table 5 have the
same interpretation. The third column lists the per-
centages of sentences that are correctly recognized.
The fourth column lists the number of words (N) in
the test sentences. Columns five, six, and seven re-
port the number of insertions (I), deletions (D), and
substitutions (S), respectively. The last column pro-
vides the word accuracies obtained from the previous
four columns using Equation 1.

6 Use Case

It was stated in the introduction that speech input
might be beneficial to web applications. This section
presents the particular use case of a simple to-do list

5



Test sentence Transcribed sentence Wacc

He wrote his name boldly at the top of the sheet. he wrote his name boldly at the top of the sheets 90%

Tend the sheep while the dog wanders. 1000 the dog wanders 42%

The slush lay deep along the street. this Leslie Depot Long Street 14%

Their eyelids droop for want of sleep. O’Reilly’s group for want to sleep 28%

Time brings us many changes. time brings us many changes 100%

The cup cracked and spilled its contents. the cup cracked and spilled its contents 100%

Pages bound in cloth make a book. pages: found in cloth make a book 85%

Green moss grows on the northern side. remind girls in the northern side 42%

Hoist the load to your left shoulder. push to look to your left shoulder 57%

The source of the huge river is the clear spring. the source of the huge River is the clear spring 100%

Table 3: Ten randomly selected speech recognition results.

Figure 2: A simple to-do list application that features speech as an alternative input method.

6



application, and along with it some practical experi-
ences that were gathered during implementation and
experimentation.

The simple to-do list application (see Figure 2) al-
lows the user to add to-do items to a list. These to-
do items can be moved between several lists by drag
and drop. Speech input is particularly beneficial for
such an application. Perfect accuracy is not required
because to-do lists are personal. Humans can easily
recover the meaning of their own to-do items even if
they contain a misspelling or a wrong word due to
a mistake made by the speech recognizer. This can
often be observed with users of pen and paper to-
do lists. The written items are often almost illegible
and incomprehensible without further context. As
soon as the context disappears, the to-do item has
usually also lost its importance. However, speed is all
that matters because to-do lists are intended to make
the user more productive, not the other way round.
Given that error correction plays less a role in such a
context, the hope is that speech recognition software
becomes accurate enough that speech input is faster
than keyboard input. The reader is invited to test the
to-do list application on www.dropandforget.com.

Assuming that the users are surfing with Google
Chrome 25+ (or Chromium), adding the speech in-
put feature to the to-do list application is simple for
developers. The only necessary change to the HTML

page is to add the attribute x-webkit-speech to the
input text field. Using Chrome 25+, the downside
of this approach is that no interim results are shown
in the input text field so that the user has to wait
for the final result until he or she finished speaking.
The upside is that the user is given feedback about
the volume level while speaking and that no separate
permission dialog needs to be taken care of.

An alternative approach to implementing speech in-
put for Chromium is to access the Web Speech API
directly. This enables instant feedback for the user,
who can see the current maximum likelihood solu-
tion while speaking. However, this approach has a
major downside with the current browser implemen-
tation because the user has to grant the web applica-
tion permission every time the user wants to initiate

speech input. Future browser implementations might
feature a more sophisticated scheme for granting web
application permissions to access the microphone.

7 Future

Research in speech recognition has been ongoing for
a long time. Recently, it seems that the concept of
Deep Neural Networks (DNN) has caused new dy-
namics in this field. Judging from the publications by
Google Research, by Microsoft Research, by IBM Re-
search and by the University of Toronto, Deep Neural
Networks are reasons to hope for a leap forward.

These four research institutions recently published
a paper that describes how Deep Neural Networks
(DNN) were successfully used by the respective re-
search groups to improve acoustic modeling [10]. The
authors describe a novel generative pre-training stage
as the key feature for the success, and as a reason
why multi-layer networks gained interest after a long
time of Hidden Markov Models with Gaussian Mix-
ture Models dominating speech recognition research.
In the pre-training stage, layers of the DNN are tuned
without using the target values in the training set. It
is good to see two approaches competing in speech
recognition research.

8 Conclusion

In summary, this report reviewed several aspects of
the Web Speech API. The history and the affiliated
companies were presented. The API itself and the
limited browser support were discussed. Google’s
speech recognition web service was evaluated. A
small demo application showed how the API can be
used. Current research at influential companies and
university departments was reviewed in order to get
an idea where research is heading.

As the reader may verify by him- or herself, as the
evaluation showed, and as it is well-known, there is
much room for improvement for speech recognition

7

www.dropandforget.com


systems. However, they are already sufficiently ro-
bust for many applications and are readily adopted
by the users. Giving web developers an easy-to-use
speech API helps spreading the technology.

This report contributed to both the field of speech
recognition and web development. Recent state-of-
the-art technology has been evaluated on the pub-
licly available TSP Speech Dataset. Efforts have been
taken to make the experiments repeatable and the
results comparable. The dataset used for evaluation
was difficult enough to pose a challenge for Google’s
speech recognition web service. A use-case was pre-
sented that shows how the Web Speech API can be
applied in practice.

Mostly, this report focused on the speech analysis
part of the API. The speech synthesis has not given
much attention and is part of future work. The Web
Speech API and the speech recognition technology is
expected to advance continuously. It will be interest-
ing to see how the speech recognition system performs
in future versions. Optionally, improvements can be
monitored by running the evaluation again at a later
point of time.

References

[1] B. Frey, C. Southern, and M. Romero, “Brail-
leTouch: Mobile Texting for the Visually Im-
paired,” in Proceedings of the 2011 Interna-
tional Conference on Human-Computer Interac-
tion, 2011.

[2] w3schools.com, “Browser Statistics.”
http://www.w3schools.com/browsers/

browsers_stats.asp. accessed on 2013-05-22.

[3] Mike Pultz. http://mikepultz.com/2011/03/

accessing-google-speech-api-chrome-11,
2011. accessed on 2013-03-18.

[4] P. Kabal, “TSP Speech Database,” tech. rep.,
McGill University, 2002.

[5] H. R. Silbiger and J. L. Sullivan, “IEEE Recom-
mended Practice for Speech Quality Measure-
ments,” IEEE Transactions on Audio and Elec-
troacoustics, vol. 17, no. 3, pp. 225–246, 1969.

[6] “Free Lossless Audio Codec.” http://flac.

sourceforge.net. accessed on 2013-03-18.

[7] A. Gravano, M. Jansche, and M. Bacchiani,
“Restoring Punctuation and Capitalization in
Transcribed Speech,” in Proceedings of the 2009
IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 4741–4744,
2009.

[8] Y.-Y. Wang, A. Acero, and C. Chelba, “Is Word
Error Rate a Good Indicator for Spoken Lan-
guage Understanding Accuracy,” in IEEE Work-
shop on Automatic Speech Recognition and Un-
derstanding, pp. 577–582, 2003.

[9] “Hidden Markov Model Toolkit.” http://htk.

eng.cam.ac.uk. accessed on 2013-03-18.

[10] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mo-
hamed, N. Jaitly, V. Vanhoucke, P. Nguyen,
T. Sainath, and B. Kingsbury, “Deep Neu-
ral Networks for Acoustic Modeling in Speech
Recognition,” IEEE Signal Processing Maga-
zine, vol. 29, no. 6, pp. 82–97, 2012.

A Appendix

The appendix lists the detailed results obtained in
the evaluation in Section 5. Supplemental material is
published on the web.

8

http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://mikepultz.com/2011/03/accessing-google-speech-api-chrome-11
http://mikepultz.com/2011/03/accessing-google-speech-api-chrome-11
http://flac.sourceforge.net
http://flac.sourceforge.net
http://htk.eng.cam.ac.uk
http://htk.eng.cam.ac.uk


Speaker Sentences Correct Words Ins. Del. Sub. Wacc

CA 60 33% 466 4 5 65 83%

CB 6 17% 49 1 2 9 75%

FA 60 23% 466 3 21 79 77%

FB 60 8% 467 4 35 120 65%

FC 60 20% 475 8 32 83 74%

FD 60 18% 478 2 35 88 74%

FE 58 24% 461 4 23 84 76%

FF 60 23% 484 4 25 84 77%

FG 60 17% 456 2 52 122 62%

FH 60 15% 481 6 48 131 61%

FI 60 20% 495 3 31 102 72%

FJ 60 35% 497 0 15 65 84%

FK 60 15% 503 3 43 126 65%

FL 60 27% 480 6 25 102 73%

MA 60 22% 466 3 35 89 72%

MB 60 28% 467 1 19 84 78%

MC 60 15% 475 3 35 96 71%

MD 60 37% 478 4 12 62 84%

MF 60 13% 484 7 33 114 68%

MG 60 22% 456 2 27 82 75%

MH 60 25% 481 5 12 89 77%

MI 60 23% 495 8 25 92 74%

MJ 60 10% 497 3 46 144 62%

MK 60 12% 503 1 35 101 72%

ML 60 23% 480 4 32 84 76%

Table 4: Results of the evaluation grouped by the 24 speakers. See Section 5 for a detailed description of
how to interpret this table.

9



Table 5: Evaluation results grouped by the 72 lists. See Section 5 for a detailed description of how to
interpret this table.

List Sentences Correct Words Ins. Del. Sub. Wacc

1 31 10% 251 3 4 59 73%

2 32 53% 257 0 7 25 86%

3 30 27% 243 0 15 37 79%

4 30 27% 219 2 15 40 73%

5 30 23% 228 0 9 37 79%

6 30 13% 225 6 11 39 74%

7 20 30% 172 1 8 29 77%

8 20 5% 162 0 10 30 75%

9 20 20% 140 1 8 32 71%

10 20 10% 154 0 16 43 62%

11 20 20% 148 0 4 37 71%

12 20 25% 158 3 8 33 72%

13 20 15% 158 2 16 27 71%

14 21 10% 167 1 9 37 71%

15 20 15% 154 4 11 35 67%

16 20 15% 158 2 15 33 68%

17 20 20% 166 2 10 26 76%

18 20 30% 154 0 6 24 80%

19 20 20% 152 2 2 29 78%

20 20 30% 164 0 6 22 83%

21 20 40% 166 0 13 22 80%

22 20 45% 158 0 7 15 86%

23 20 20% 158 2 8 36 71%

24 20 10% 158 2 11 26 75%

25 10 40% 81 0 2 7 87%

26 10 30% 73 0 2 9 86%

27 10 10% 78 0 6 17 70%

28 10 10% 81 0 1 18 76%

29 11 27% 89 3 12 23 59%

30 8 25% 68 1 2 12 78%

31 20 25% 166 0 7 33 77%

32 20 25% 156 3 11 35 69%

33 20 5% 158 0 18 40 62%

34 20 20% 162 4 6 31 74%

35 20 20% 168 2 8 31 76%

Table 5 – continues on the next page

10



Table 5 – continued from the previous page

List Sentences Correct Words Ins. Del. Sub. Wacc

36 20 15% 158 2 8 28 75%

37 20 5% 156 0 17 40 63%

38 20 30% 148 0 11 27 74%

39 20 50% 144 1 6 15 85%

40 20 5% 152 3 14 37 64%

41 20 15% 156 0 17 37 65%

42 20 10% 156 0 14 48 60%

43 20 10% 156 5 7 34 69%

44 20 20% 156 1 13 39 64%

45 20 20% 158 0 11 35 71%

46 20 15% 168 4 10 51 60%

47 20 30% 164 1 8 23 80%

48 20 25% 160 0 11 38 68%

49 20 25% 178 0 4 22 84%

50 20 35% 168 2 13 31 73%

51 20 45% 168 1 5 19 85%

52 20 5% 164 3 16 52 55%

53 20 15% 144 1 8 30 73%

54 20 5% 168 4 10 40 67%

55 20 30% 176 0 9 30 79%

56 20 25% 162 1 7 36 72%

57 20 5% 162 1 16 47 62%

58 20 25% 186 1 10 39 73%

59 20 20% 156 0 9 23 80%

60 20 30% 152 0 10 34 72%

61 20 20% 164 0 11 33 72%

62 20 10% 166 2 17 31 70%

63 20 10% 178 0 7 44 71%

64 20 15% 164 1 9 38 68%

65 20 10% 160 0 24 41 59%

66 21 19% 182 1 10 40 72%

67 20 20% 162 1 9 30 75%

68 20 30% 156 1 11 29 74%

69 20 0% 158 6 14 46 57%

70 20 10% 186 1 14 38 73%

71 20 50% 150 0 3 17 87%

72 20 40% 148 1 6 26 80%

11


	Introduction
	History
	API Specification
	Browser support
	Evaluation
	Technical preparations
	Benchmark dataset
	Experimental setup
	Results

	Use Case
	Future
	Conclusion
	Appendix

