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1 Mathematics

1.1 Determine the one-sided Laplace transform of the following signals.

0, t<0
a) u(t) = { >0’ , where A is a constant.

= { , where A is a constant.

u(t) = e 2 for t > 0.
d) u(t) = cos 5t for ¢t > 0.

Express the following in U(s), the Laplace transform of u(t).

e) u(t)

f) a(t), when u(t) =0 for t <O0.

g) u(t)

h) (t), when u(t) =4(t) =0 for t <O0.
i) u(t—"T)

1.2 Consider the differential equation
9(t) + 2y(t) = u(t)
a) If u(t) is constant then ¢(t) &~ 0 when time goes to infinity. What value will y(¢) approach as t — oo if u(t) = 5?

b) Determine the transfer function relating U(s) and Y'(s) for the differential equation above.

1.3 Determine the general solution of the differential equation

d3y d2%y dy
45Y 4 59 4 9y = 3sin(2t
a PhAqe Toq T = 3sin()

1.4 Below, differential equations that describe dynamic systems are given together with system inputs and initial conditions.
Use the Laplace transform to determine the system outputs.

a)
d2 dy
—J 49y =
dt2+3dt+ y = o(t)
t
o(t) = 0, <0
1, t>0
dy
L) =y(0) =0
b)

y(t) +y(t) = u(t)
u(t) =1+sint

y(0)=0

1.5 Write the following complex numbers in polar form, that is, determine their absolute value and argument.

a) 1+1i
14i
b) 5i(14-v/3i)
Write the following complex numbers on rectangular form:

c) 2¢'s



1.6

1.7

1.8

1.9

1.10

1.11

1.12

d) 5e7im

A system has amplification 100. What is the amplification expressed in decibel (dBgg)? What is the amplification
corresponding to 20 dBsg, —3 dBgg, 0 dByg, —10 dB2g, and 10 dByg respectively?

Verify that the following rule for inversion of 2 x 2 matrices holds.
A= air a2 —~ Al 1 a22 —ai2
21 Q22 a11G22 — A12a21 \—021  A11
Determine eigenvalues and eigenvectors of the matrix

A

Il

o
w
o

Determine a transformation matrix T, such that T-1AT is a diagonal matrix, where
1 6 0 =3

A:§ -1 5 -1
-2 -2 7

Characterize the range space and null space of the matrix A by specifying bases for them. Find the rank of the matrix.

— W O N
O = =
— W~ N
— N O =

What are the time functions corresponding to the Laplace transforms below? What values will the time functions
approach as time goes to infinity?

a)

b) .
Fls) =53

c) .
P =

The water level, y, in a tank is modelled by the differential equation

9(t) +y(t) = 2(t)

where z denotes the inflow. The inflow is a function of a valve position, which in turn is controlled by the electric control
signal u. The relation between control signal and flow is given by the differential equation

5(t) + 2(t) + 2(t) = u(t)

What differential equation relates the water level y to the control signal u?



2 Dynamic Systems

Figure 2.1a

2.1 A common component in a control system is a DC-motor. A schematic picture of the motor is shown in Figure The
motor is characterized by a number of physical relationships as will now be explained. The rotating axis is described by

JO = —f0+ M,

where 6 is the angle of rotation, M is the torque, J is the moment of inertia of the load and f is the frictional coefficient.

The interplay between rotor and stator is given by
M =Fk,i and v= kvé

where 7 is the anchor current, k, a proportional constant characteristic for the motor, v is voltage induced by the rotating
axis and k, is a proportional constant. The input voltage u is the control signal and 6 is the output.

a) Use the equations above and Kirchhoff’s voltage law to write a differential equation that relates w and 6. The
inductance L, can be neglected.

b) Determine the transfer function of the system from wu to 6.

¢) Study the behavior of the system by calculating § when u is a step.

r e u Yy
T @—* K Amp Motor

Figure 2.2a

2.2 A servo system for positioning of a tool in a tooling machine is depicted in Figure In Figure [2:2B] the poles of
the closed loop system are plotted for different values of the gain K. Find (without calculations), for each of the step
responses in Figure the corresponding value of K used when generating the step response.
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Figure 2.2b

Step 3 Step 4

Figure 2.2c. All comparable axes have equal scaling.

Screw

Roller

— ld 1dy =g Plate

Figure 2.3a

2.3 Consider the simple model of the roller depicted in Figure To obtain a simple model we describe the relationship
between the position of the screw and the thickness of the sheet d; directly after the rollers as a first order transfer
function

_ B

~ 1+sT

G(s)

To determine the constants 8 and T we register the effect of a sudden change in the position of the screw. The units
used in the model are chosen such that a unit step will make an appropriately sized input for identification purposes,
and that is the input used in the experiment for which the resulting thickness profile d;(¢) is shown in Figure In
production the thickness cannot be measured directly behind the rollers for practical reasons, and instead the thickness
dy(t) is measured L length units after the rollers. Find the transfer function from the position of the screws to the
thickness ds. The sheet moves with speed V.
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2.4 The step response of the following system
1
G(s) = ¥———
() s2+s+1
is shown as the dashed line in each part of Figure 2.4a]
a) The step response of the system
1
G = —-—-
(s) s2+as+1

is shown as the solid line in the left of Figure Determine if @ > 1 or a < 1.

b) The step response of the system
b2
G(s) = 0
() s2 + bs + b2
is shown as the solid line in the right of Figure 2.4al Find b.

/)
o

0 5 10 0 5 10
t [s] t [s]

Figure 2.4a. Dashed: original system. Solid left: part a). Solid right: part b).

2.5 Pair the step responses and pole-zero diagrams in Figure [2.5a]

2.6 Consider the systems

1 1
Gals) = s24+2s54+1 G(s) = s24+04s+1

1 1
GC(S):sz—l—&s—l—l GD(S):52—|—5+1

4
Ginls) = 5242544

a) Use MATLAB to plot the step responses of the systems. Find 7, (rise time), Ty (settling time) and M (overshoot)
for the five step responses.

b) Compute the poles of the systems Ga(s), Ge(s), Gc(s), Gp(s), and Gg(s) respectively.

¢) How is the location of the poles related to the properties of the step responses?



Pole-zero map Step response

Im
A
Re /——
I Im
B >
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Figure 2.5a. All comparable diagrams have equal scaling. In the pole-zero maps, imaginary and real parts have equal scaling, X marks
poles, and o marks zeros.



2.7 Consider a system with the transfer function
as+1

G(s) = ————

(5) s2+2s+1

Compute and plot the step response of the system for some different values of « in the range —10 < a < 10. How are
the properties of the step response affected by the location of the zero of the system?

2.8 Consider a system described by the model Y (s) = G(s)U(s) as shown in Figure Given G(s), how is the step
response computed? How can the step response be determined using experiments?

_— ] G —

Figure 2.8a

2.9 Figure shows the step response of a system Y (s) = G(s)U(s). The input step has amplitude 1. Use the figure and
determine

a
b
c
d

Steady state value.
Overshoot M in % of the final value.
Rise time T;.

Settling time 7.

— ~—— Y~ ~—

1.6 £
1.4
1.2

0.8
0.6
0.4
0.2

~
~

t [s]

Figure 2.9a

2.10 Figure shows the step responses of four different systems. Combine each step response with a transfer function
from the alternatives below.

Transfer function Poles Zeros |G(0)]
G1(5) = saet100 —1+10i 1
Ga(s) = 75 -2 1/2
Gs(s) = 0520002000 - | 10, —5 £ 8.7i | —10410i | 2
Gu(5) = wrmostionery | —2 5 8.7 1
Gs(s) = (wrmstiooery | —3 —5 £ 8.7 2
Go(s) = s tiooery | —2 DE8T 2
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Figure 2.10a. All comparable axes have equal scaling.

Acid process flow \\ /( NaOH solution

e

O

‘ Flow with desired pH

Figure 2.11a

2.11 In the continuously stirred tank, see Figure an acid process flow is neutralized by adding a concentrated NaOH
solution. The acid process flow has a tendency to vary its pH with time, which gives undesired variation of the pH in
the outflow. In an effort to reduce these variations one has decided to use control.

a) Classify the different signals as input, output, and disturbance signal.

b) Draw a block diagram of the system with a control strategy.
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g2, CA 2

2.12 Two flows with different concentrations of a chemical component A are mixed in a continuously stirred tank, see
Figure The volume can be assumed constant, V = 1 m?.

a) During a stationary period the values of the concentrations and flows are, Ay =10 kmol/m?, ¢; = 1.0 m3/min,
Cho = 4.0 kmol/m® and ¢5 = 0.5 m® /min. What are cx (t) and ¢(t) during this period?

b) Write down the dynamical balance equation for component A. State all your assumptions. Is the dynamical model

linear?

c¢) Assume that ca 1 changes value from 1.0 kmol/m? to 1.2 kmol/m? at ¢t = 0. Show that the expression for ca (t)

can be written as

ca(t) = ko + k1 (1 — e_t/T>

Determine the constants ko, k1 and 7.

1
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Figure 2.13a

2.13 The distillation plate, see Figure has the following variables:

L; - Liquid flow from plate 4 (kmol/min)

Vi - Steam flow from plate ¢ (kmol/min)

M; - Amount of liquid on plate ¢ (kmol)

x; - Mole fraction of the most volatile component in the liquid on plate 7.

y; - Mole fraction of the most volatile component in the steam from plate 3.

Assumptions:



- Perfect mixing of liquid on the plate.
- Binary separation
- y; is in equilibrium with x;.

- The equilibrium is described by
ax;

vi= 1+ (= 1)z

a) Write the two differential equation that describes M;(t) and x;(t).

b) Linearize the model under the assumption that the change of the mass on the plate is zero.

2.14 Tentamenstal 2009-12-15 Upg. 1d
Berdkna overforingsfunktionen fran U(s) till Y'(s) for systemet i figur

Fi(s)

(;1 [‘s] —b-(+:)—b- ;g [‘s]

Figure 2.14a

Solution

2.15 Tentamenstal 2009-12-15 Upg. 1d
I denna deluppgift ska vi studera de sex Gverforingsfunktionerna

s+1 -5 s+1
Gal)= ooy =iy GO = i
1 1 9
Gols) = =, Ce) = gt OF = Srem e

I Figur syns de sex stegsvaren for 6verforingsfuktionerna ovan. Para ihop réatt stegsvar och 6verféringsfunktion.
Skalorna pa bade x-axlarna (tid) och y-axlarna (utsignal) ar lika for alla figurerna. Rétt svar ger +1p, fel svar ger —1p,
och inget svar ger Op.

Motivera noga! (Ej fullstindig motivering raknas som felaktigt svar.)

10
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3 Feedback Systems

Valve
X -
Inflow
u
PID- h o Tank h
controller 1 m?
1 v
href
Pump
Figure 3.1a

3.1 A feedback system for level control is shown in Figure where all variables denote variations from a working point.
The flow to the tank is given by the valve position and the outflow from the tank by the flow v(¢) via the pump. The
transfer function from valve opening u to the flow x is denoted Gy (s).

a) Determine the important signals of the system and draw a block diagram of the whole system. Use mass balanc
to determine a transfer function for the tank.

b) The transfer function of the valve is
ky
1+ Ts

To find k, and T a unit step change in u has been applied. The step response is shown in Figure [3.15] Determine
the constants k, and T.

Gy(s)

2 R m—
~ //;
154
/
8
! /
0.5 |
0
0 5 10 15 20 25 30
¢ [s]
Figure 3.1b

¢) Compute the transfer functions from h.er to h and from v to h and verify that they have the same poles.

*That the change in tank level is proportional to the difference between inflow and outflow.

12



d) Assume that we use proportional control, that is, F'(s) = K. How large gain, K, can we select if we want all poles
of the closed loop system to be in the area shown in Figure

e) Assume that a disturbance is introduced in the outflow v in the form of a unit step. How large will the level error
due to the disturbance be in steady state with control according to d)?

f) How large will the steady state level error due to the disturbance be with a PI controller?

Figure 3.1c

3.2 Consider the tank system in Problem [3:1]

a) Assume that proportional control with gain K = 1 has been selected. Which poles will the closed loop system
have?

b) Consider a PD controller
dh
= —Kph— Kp—
U P D
Assume that Kp = 1 and calculate a value of Kp so the damping ratio of the closed loop poles will be greater than
1/+/2. This corresponds to the grey area in Figure Poles in this region corresponds to an overshoot of less

than 5% (the overshoot may also be affected by the zeros).

3.3 While working in space an astronaut has to be able to move. Necessary force is obtained by letting out gas from
thrusters. For such a positioning control system the control law
dy
u=Ki(r—y) — K1 Ko—
1( Y) ey
is used, where u = thruster force, » = set point for the astronaut’s position and y = the actual value of the astronaut’s
position. Draw a block diagram of the system, and use physics (Newton’s law) to make a model of the astronaut. Also
determine K7 and K5 such that

o If the set point r(¢) = ¢ there has to be a time Ty so that |r(t) — y(t)| < 1 for t > Tp.

e The damping ratio of the closed loop system will be 0.7. The mass of the astronaut is assumed to be 100 kg,
equipment included.

Je

Controller Hydraulic cylinder

Yref (:) € e\ 1 Yy
+ F(s) +\E/ ms2 + ds

Figure 3.4a

3.4 Figure shows the block diagram for a hydraulic servo system in an automatic lathe (Swedish: svarv). The output
signal y(t) represents the position of the lathe tool (Swedish: svarvstdl), yret(t) is the desired position of the lathe tool,
m is the mass of the tool slide (Swedish: verktygsslid) and the hydraulic piston (Swedish: kolv), d is the viscous damping
of the tool slide, F'(s) is the transfer function for the controller, f. is the cutting power.

13



a) How large, in steady state, is the error e(t) between the actual value of the lathe tool and its desired reference
value, when there is a step disturbance in the cutting power f.(¢)? The controller is assumed to be an amplifier
with a constant gain F(s) = K.

b) How is this error changed if the amplifier is replaced by a PI controller with transfer function F(s) = K7 + Ka/s?

3.5 Consider the system
0.2

Y(s)=G(s)U(s) = (82+3+i)(3+0.2)

U(s).
a) Suppose G(s) is controlled by a proportional controller with gain Kp, that is,
U(s) = Kp(R(s) — Y (s)).

Use MATLAB to compute the closed loop system, and to plot the step response of the closed loop system. Choose
some values for Kp in the range 0.1 to 10. How are the properties of the step response affected by Kp? What
happens with the steady state error when Kp increases? Is it possible to obtain a well damped closed loop system
and small steady state error using proportional control?

b) Let us now introduce integration in the regulator and use
1
U(s) = (Kp + K17)(R(s) = Y(s)).

Put Kp = 1 and try some values of K7 in the range 0 < K1 < 2. How are the step response and the steady state
error affected by the introduction of the integrating part and the value of K7

¢) Finally we will introduce the differentiating part in the regulator and use

1 KDS
U(s) = (K Ki—-
(5) = (Kp + Is+sT—|—1

)(B(s) = Y (s))-

Since true differentiation is difficult to implement, the derivative part is approximated by 1{(@; (This will low-pass

filter the error signal before differentiation.) Put Kp = 1, K1 = 1 and T = 0.1 and try some values of Kp in the
range 0 < Kp < 3. How does the D-part affect the step response of the closed loop system?

__:9>—>GM$

Figure 3.6a

3.6 Draw a root locus with respect to K for the system in Figure with Go(s) given below. For which values of K are
the systems stable? What conclusions on the principal shape of the step response can be drawn from the root locus?

a) A Ferris wheel (Swedish: Pariserhjul):

 K(s+2)
Gols) = ST 105 1+ 3)
b) A Mars rover:
K
Go(8) = ————
(s) s(s?2 +2s+2)
¢) A magnetic floater:
Go(s) = Kls +1)

s(s—1)(s+6)

3.7 Consider the servo system in Figure [3.7a] with a DC-motor. Suppose that the angular velocity can be measured with a
tachometer and let the control law be as in the block diagram. Let 7 = 0.5 and k = 2.
a) Draw the root locus with respect to K for the system without the tachometer feedback (that is, o = 0).
b)
c) Draw the root locus with respect to K for o = 1/3.
d)

Draw the root locus with respect to K for a = 1.

Let K =1 and draw the root locus with respect to a.

14



3.8

eref+: +@_~ K 1f87’ 9 é -

o]

Figure 3.7a

Figure 3.8a

Discuss, using the results from a), b), ¢), and d), what is gained by using the tachometer.

Consider an aircraft where the pitch angle 6 is controlled by the elevator deflection (Swedish: hdjdroderutslag) 0, see
Figure Let w be the angular velocity, .

w=40.
If we consider small deviations from a reference value 6y, we get the transfer function from J to w for a specific aircraft

as
s+ 1

(s+4)(s—3)
This model is valid when the aircraft is flown with a large 8y. The elevator (Swedish: hdjdroder) is driven by a hydraulic
servo amplifier with the transfer function

Ga(s) =

10
s+ 10

Gi(s) =
from elevator command e to 6.

a) What happens with w if one gives a constant elevator command d,.¢? Motivate!

b) The angular velocity w is measured and a control law is used so that the input d,ef to the servo amplifier is
K(wref — OJ).

Draw root locus with respect to K. For which values of K is the system stable?

c¢) Is there any value of K such that the closed loop system is stable and all poles are real?

oref

Figure 3.9a

3.9 The block diagram in Figure shows a cascade controlled DC-motor where K; > 0 and K > 0.

a) Draw root locus with respect to K for the characteristic equation of the closed loop system. For which Ky > 0
are the closed loop system asymptotically stable?

b) How is the stability requirement on Ky affected by the size of the velocity feedback K77



3.10 We want to control the temperature of an unstable chemical reactor. The transfer function is

1
(s+1)(s—=1)(s+5)

a) Use a proportional controller and draw a root locus with respect to the amplification K. Calculate which K in the
compensator that stabilizes the system.

b) Use a PD controller. The control law is given by

de
=K Tp—
U (6 +1p dt)
where e is the error. Let Tp = 0.5 and draw a root locus with respect to K. For which values of K does the

controller stabilize the system?

JF\{ s(s+2)
+
Yt a Ym fZ\Jr
s+ a \Z/ Measurement
noise

Figure 3.11a

3.11 Consider the system in Figure In a realistic situation what you really measure is not y(¢) but a signal y,,, (¢) which
is the sum of y(t) and measurement noise. To avoid that the control is based on noisy measurements one uses ys(t)
instead of y, (¢). The signal y¢(t) is ym(t) filtered through the low pass filter

a
s+a

a) First we assume that the measurement noise is negligible. Choose k¥ = 6. Draw a root locus for the closed loop
system with respect to the time constant of the low pass filter 1/a. Find for which a > 0 the system is stable.

b) Use k = 6 and assume that the noise is a high frequency sinusoid. The amplitude of ys when
Ym(t) = sin(10¢)

is used as a measurement of how effective the noise reduction is. What is the smallest value you can obtain (after
transients) by choosing a suitable a. We also want y to tend to the steady state value 1 when r(t) is a unit step.

3.12 Figure shows the root locus for the characteristic equation of a P-controlled process G with respect to the gain K.
In Figure four step responses for the closed loop system with different values of K are shown. Match the plots in
Figure [3.12D] with the K-values below. Justify your answer.

K=4 K=10 K=18 K=50

16
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Figure 3.12a. Starting points are marked X and end points o.

Step C Step D

Figure 3.12b. All comparable axes have equal scaling.

3.13 Consider a system with the transfer function

gn—1 +b18n72 +.-by,
s"taps" 4ty

G(s) =

that has all zeros strictly in the left half plane. Show that such a system always can be stabilized by

u(t) = —Ky(t)

if K is selected large enough.

17
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Figure 3.14a

3.14 We want to control the level in a lake by controlling the flow using flood gates, see Figure The relationship
between changes in the level of the lake, ha, and changes in the flows, gin,A and gout,a, is given by

 (Aha) =

dr A) = Gin,A Gout,A

where A is the area of the lake. In order to try to keep the level of the lake constant the flows through the lake are
controlled at the inflow such that

ddam, & = K (et A — ha)

where hyef,a is the reference value. The reservoir that controls the outflow is controlled so that goys is constant, that is,
Gout,A = 0. Since it takes time before a change in ggam gives a result in ¢, we have

din,A = qdam,A(t - T)

where T' = 0.5 hours. How large can the quotient K /A be at the most before the system becomes unstable?

R L

Figure 3.15a

3.15 A system G(s) is controlled using feedback with a proportional controller according to Figure

a) For K = 1, the open loop system K G(s) has the Nyquist diagram according to (i), (ii), (iii), or (iv) in Figure|3.15b|
Is the closed loop system stable in each case? G(s) has no poles in the right half plane.

b) If K > 0, for which values of K are the different closed loop systems stable?

3.16 a) Draw the Nyquist curve for an integrator G(s) = 1/s.
b) Draw the Nyquist curve for the double integrator G(s) = 1/s.

18
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Figure 3.17a

3.17 The system G(s) is asymptotically stable and has the Nyquist curve in Figure It is controlled using feedback
according to Figure 3.170]

a) For what values of K (K > 0) is the closed loop system asymptotically stable?
b) Determine the steady state error, e, as a function of K if y,. is a unit step.

¢) Assume that G is controlled using an I controller according to Figure For what values of K is the closed
loop system stable?

19
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Figure 3.17b

Yref € K Yy
(D G(s)

Figure 3.17c

3.18 Consider the DC-motor
Ti(t) + 9(t) = u(t)

It is controlled by
u(t) = K(r(t—=T) —y(t-T))

Here 7 and T are positive constants. K is slowly increased until the system oscillates with the angular frequency w = 1.
K is then set to 33% of this value. After a while the system starts to oscillate again, now with the angular frequency
w = 0.5. This is due to the fact that the time delay T has changed to T;. Can the parameters 7, T', and 71 be decided
from these data? If so determine 7, T" and T7.

Yre € Y
—;@— F(s) G(s)

Figure 3.19a

3.19 A system G(s) is to be controlled using the regulator

K
s+1

F(s) =

according to the Figure The controller has positive gain K that, however, is not completely known. For what
values of K is the closed loop system asymptotically stable? The Nyquist curve for G(s) is given in Figure [3.19b

4 Im

Figure 3.19b

3.20 The Nyquist curve for the system G(s) = B() can be seen in Figure Determine which one of the root loci in

A(s)
Figure that matches
A(s)+ KB(s) =0

for this system.

20
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Figure 3.20b. Starting points (K = 0) are marked X, and end points (K — 0o0) are marked o. All diagrams have equal scaling.

3.21 The system with input v and output y has the controller

_1
s(s+1)

- b082 —+ bls —+ b2
S

U(s) = F(s)(R(s) = Y(s)) F(s)

How should the coefficients of F' be chosen to achieve pure P, pure I and pure D control respectively?

3.22 The equations for the P, PI, and PID controllers to be used in this problem are given in Problem [3.5]

a) Let the system
0.2

(s24+s+1)(s+0.2)

Y(s) =G(s)U(s) = U(s)

be controlled by a proportional controller with gain Kp. Use MATLAB to plot the root locus with respect to Kp
of the characteristic equation of the closed loop system. For which values of Kp > 0 is the closed loop system

asymptotically stable?

In Problem [3.5] we found that the step response was slow but well damped for small values of Kp, while it became
faster but more oscillatory when Kp was increased. For large values of Kp the system became unstable. We also
found that the steady state error was reduced when Kp was increased. Can these results be interpreted using the

plot of the root locus?

21



b)

Now assume that the system is controlled by a PI controller where Kp = 1. Plot the root locus of the characteristic
equation, with respect to K, and determine for which values of K1 > 0 the closed loop system is asymptotically
stable.

Problem [3.5] showed that an integrator eliminates the steady state error. A small value of K gives a large settling
time, while a too large value gives an oscillatory, and perhaps unstable closed loop system. Give an interpretation
of these results using the root locus.

Finally, let the system be controlled by a PID controller where Kp =1, K1 =1 and T' = 0.1. Plot a root locus of
the closed loop characteristic equation, with respect to Kp > 0, and relate the behavior of the root locus to the
simulation result in Problem that is, that the derivative part increases the damping of the closed loop system,
but a too large Kp will give an oscillation with a higher frequency, and finally an unstable closed loop system.

3.23 Consider the system

3.24

a)

Y (s) = G(s)U(s) = e +0-12)(S 703 Uls).

Use MATLAB to plot the Nyquist curve of the open loop system when G(s) is controlled by a proportional regulator.
Try some different values of Kp and find for which Kp the closed loop system is asymptotically stable. Compare
your results with those from Problem [3.22p.

Assume now that the system is controlled by a PI controller where Kp = 1. Investigate how K7 affects the Nyquist
curve and determine for which values of K7 the closed loop system is asymptotically stable. Do you get the same
results as in Problem [3.22b?

Finally test a PID controller with Kp =1, K1 =1 and T = 0.1 (cf Problem How is the Nyquist curve affected
by the value of Kp?

Assume that the system
0.4
Y(s)=G(s)U(s) = U(s
(5) ()U(s) (s2+s+1)(s+0.2) (s)
is controlled by a proportional controller where Kp = 1. Use MATLAB to make a Bode plot of the open loop system
and determine w, (gain crossover frequency), w, (phase crossover frequency), ¢ (phase margin) and A,, (gain
margin) respectively. Compute the closed loop system and plot the step response.

Now let Kp = 2.5. How does the change of Kp affect we, wp, ¢m, and Ay 7 Simulate the step response of the
closed loop system and plot the result. How have the properties of the step response changed?

How much can Kp be increased before the closed loop system becomes unstable? How does this value relate to the
value of Ay, that was obtained for Kp = 17 Compute and plot the step response of the closed loop system for this
value of Kp. How does the closed loop system behave in this case?

3.25 A system is controlled by a PID controller,

U(s) = (Kp + Ké + Kps)E(s)

In Figure four step responses from a unit step for the parameter triples

Kp=1 Ki=0 Kp=0
Kp=1 Ki=1 Kp=0
Kp=1 Ki=0 Kp=1
Kp=1 Ki=1 Kp=1

are shown. Match each one of the parameter triples to one of the step responses. Justify your answer!

3.26 Assume that a DC-motor of the type described in Problem is controlled by a proportional controller, that is,

)

b)

u(t) = Kp(@ref — 9)

Write down a block diagram for the control system. Compute the closed loop transfer function and determine how
the poles of the closed loop system depend on the control gain Kp. Discuss what this means for the behavior of
the system for different values of Kp.

Determine the transfer function from the reference signal to the error. Let the reference signal be a step and a
ramp respectively and determine what the control error will be in steady state in these two cases.
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C D

Figure 3.25a. Four step responses. All comparable axes have equal scaling.

Figure 3.25b

c¢) Let the controller be a PI controller. What will the steady state error be in this case if the reference signal is a

ramp?

3.27 Determine the transfer function for the loop gain and the closed loop system for the control system given by the block

diagram in Figure
r u Yy
]-i—
-1
—

Figure 3.27a

ﬁ
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Figure 3.28a

3.28 Figure shows a block diagram of a control system. Determine the transfer function

a) of the loop gain,
b
c

d

of the closed loop system from R(s) to Y (s),
from the disturbance N(s) to the output Y'(s),

—_ ~— — ~—

from the reference signal R(s) to the error signal E(s).

3.29 Consider again the control system in Figure with n = 0 and

1

A PR P

a) Assume F(s) = K. Determine the steady state control error when r(¢) is a step.

b) Determine a regulator F'(s) such that the steady state error is zero when r(t) is a step.

¢) Assume F'(s) = 1. Determine the poles and zeros of the closed loop system.
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3.30 The system
1

YO = G661

U(s)

is controlled using PID feedback
1
U(s) = (Kp + Klg + Kps)(R(s) —Y(s))

Figure shows the step responses for the following four combinations of coefficient values. Combine the step
responses and coefficients.

(1) Kp=4 Ki=0 Kp=0
(2) Kp=4 K =3 Kp=0
(3) Kp=4 Ki=1 Kp=0
(4) Kp=4 K =0 Kp=4

C D

Figure 3.30a. Four step responses. All comparable axes have equal scaling.

Ft,in, Tt in
I . Fc,inv TC,in
Tank -
‘/tv Tt
F., T,
i— - Cooler

~\ Ft7Tt

Figure 3.31a. Process consisting of a tank and a cooler. Input flows have a “y” subscript, while outputs have no such subscript since
they are also the same as the quantities found inside the tank or cooler.

3.31 Continuously stirred tanks have an extensive use in chemical processes. They are often supplied with some sort of heat
exchange system. If the tank is used for a chemical or biochemical reaction it is often important to keep a certain
temperature to obtain desired productivity. A continuously stirred tank with a common type of heat exchange system
is shown in Figure The tank is surrounded with a heating/cooling layer in which a liquid flows through in order
to heat or chill the liquid in the tank.

a) Determine the important signals of the system. Suggest a control strategy based on feedback and draw the block
diagram.
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3.32

3.33

3.34

b) To be able to construct and evaluate different controllers it is necessary to have a process model. Determine a
dynamical model for this system. Assume that the volumes in the tank and in the heat exchange system are
constant.

¢) Linearize the model. (Stationary values: T;* = 50.0 °C, T} = 75.0 °C.)

d) The parameters of the model are as follows

pe = pc = 1000.0 kg/m® ¢f; =P =4.2kJ/kg°C U =672 kJ/°Cmin
F,=01m%/min F.=02m*/min V,=10m> V,=10m?3
Tiin = 10.0°C  Tej, = 95.0 °C

Determine the transfer function from flow in the heat exchange system to the temperature in the tank.

e) Let the system be controlled by a P controller. Draw the root locus for the system.

Consider a continuously stirred tank with a cooling system. In the tank a component A reacts to form component B in
an exothermic reaction. This reaction is unstable, but possible to stabilize with feedback. A model for the purpose of

control has been established 1
Y(s)= ——7—U
() s2+2s—3 ()

where y(t) is the temperature in the tank and u(t) is the cooling flow.

a) Show that the system is unstable.
b) Prove that the system can be stabilized by a P controller.

Bacterial growth is described by the equation ¥ = puy where y is the amount of bacteria and p is a positive constant.
Assume that we have a control signal u available that affects the speed of growth so that

y=py+u

One can then use a P controller v = K (r —y) where r is a reference signal. For which K-values will the system approach
an equilibrium?

Tentamenstal 2009-06-10 Upg. 2

Givet systemet
s+2

=G

a) Antag att systemet aterkopplas med en P-regulator med forstiarkning K,

0 < K < oo. Rita rotort och ange for vilka viarden pa K som det aterkopplade systemet &r stabilt. Markera ocksa
i rotorten det val av poler som ger snabbast mojliga stegsvar utan svingningar.

b) Antag att man istéllet anvinder en PI-regulator

u(t) = Kpe(t) + K /O e(r)dr

Rita rotorten med avseende pad Ky, 0 < K5 < 00, dad Kp = 4.
¢) Vilka kvalitativa skillnader finns det mellan stegsvaren for de aterkopplade systemen i uppgift a) och b)?
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4 Frequency Description

4.1 A mercury thermometer can be described with high accuracy as a first order linear time invariant dynamic system. The
input is the real temperature and the output is the thermometer reading. In order to decide the transfer function in
a thermometer it is placed in liquid where the temperature is varied as a sinusoid. The obtained result is shown in
Figure Find the transfer function of the thermometer.

T T
; Period = 0.314 min

Figure 4.1a

- - __>=__-__

Figure 4.2a

\I/re (& u 1) )\
—L(2)y~ F(s) Gils) || Guls)

Figure 4.2b

4.2 We want to keep a ship on a given course, ¥, with an automatic control system using the rudder angle §. See Figure[4.24]
If w denotes the angular velocity of the ship,

w=" (4.1)

the following differential equation is valid for small values of w and ¢,
Tldj = —w -+ K15 (42)

where T7 = 100 and K7 = 0.1. The desired course, ¥,ef, and the measured course, ¥, are fed in to the auto pilot, which

gives the signal u to the rudder engine. Figure shows a block diagram of the auto pilot. The auto pilot has the
transfer function
142

1+

s}

F(s)=K , a=0.02,b=0.05

[SIVY
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while G, is given by
1

Ge(s) = 1oy

Ty = 10

and Gy(s) is defined by and (£.2).

a) Make a Bode plot for the transfer function FG,Gy, for K = 0.5.

b) At the testing of the auto pilot we do the following experiment. The gain of the auto pilot K is increased until the
control system oscillates with constant amplitude. At what value of K does this occur? What is the period time
of the oscillation?

¢) Uyt is allowed to vary as a sinusoid
U,e(t) = Asinat

where A = 5° and a = 0.02. When the movements of the ship have stabilized we have
U(t) = Bsin(ft + ¢)

What values do B, 3, and ¢ have if K = 0.57

LIY
= i 5
e
/
/ A~
/ Re
\ ~— /
/
Figure 4.3a

4.3 a) In Figure the Nyquist curve for a system is shown. Draw the Bode plot for the same system. The scale on the
w-axis is not important, as long as the amplitude and phase curve are in agreement.

b) Draw a diagram for the poles and zeros for the system. The relative placement is important, not the scale.

4.4 Figure shows the step responses (when the input is a unit step) and Bode gain plots of four different systems, in
no particular order. Identify the pair of plots that belongs to each system. That is, for each step response, find the
corresponding Bode gain plot (amplitude curve). Motivate your answer by pointing out a set of unique features for each
system.
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4.5

Study the amplitude curves of the Bode plots for the systems and find the static gain and bandwidth of the systems.

Step response

A N
0

TR B i
0

c T/
0

p 7T/ 7
0

Time

Bode plot

Frequency

Figure 4.4a. All comparable diagrams have equal scaling.

1
Cale) = oy

1
GC(S) = 52+55+1>

4
Ginls) = 5242544

a) Consider the transfer functions Ga(s), Gg(s), Go(s), Gp(s), and Gg(s) in Problem [2.6]

1
Gls) = s24+04s+1
1
GD(S):SQ+S+1

In cases when it is relevant find also the resonance frequency and resonance peak.

b) Describe qualitatively (without formulas) the relationships between T} (rise time) and wg (bandwidth) and between

M (overshoot) and M, (resonance peak) respectively?

4.6 A system has the transfer function

What is the output (after transients) when the input is

4.7 For the systems below the input is chosen as u(t) = sin(2t). Determine the output signal y(t) after transients have faded

u(t) = 2sin(2t — 1/2)

away, provided that it exists.

1 U(s)

= D) (@s+D)
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d) Y(s) = <7 Uls)

4.8 A system is described by Y (s) = G(s)U(s). Figure shows u(t) = sin(wt) and the corresponding output y(t) (after
all transients have faded away) for the frequencies w = 1, 5, 10, and 20 rad/s (from top to bottom).

a) Determine the gain (|G(iw)|) and phase (arg G(iw)) for the system for each value of w.
b) Determine the gain values in dBgy (201og;,(|G(iw)])).
¢) Sketch the Bode plot using the values determined above.

1

————
05 "
' -7
0F———=
05
1

0.5 i N 2N
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\
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Figure 4.8a. u(t) = sin(wt) (solid) and y(t) (dashed).

4.9 Combine the transfer functions below with the Bode plots in Figure

1 _ 6(s+1)
Gils) = s @) = G2+ 3)
Gsls) = %’ Gals) = s(s{i— 1)
Gs(s) = o gs 5 (poles: —1+i2)
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I 1t
Bode gain A Bode gain B

R 1+ <
Bode gain C Bode gain D

1 — " o
Bode gain E

Figure 4.9a. All diagrams have equal scaling.

4.10 Figure [77] shows the Bode gain plots and step responses of four different systems, in no particular order. Identify the
pair of plots that belongs to each system. That is, for each Bode gain plot (amplitude curve), find the corresponding
step response. Motivate your answer by pointing out a set of unique features for each system.

4.11 The pH in a biochemical reactor is controlled by addition of a base. The transfer function G(s) from added base to pH
for the open system has been determined by experiments to be

1.7

G(s) = (s+1)(0.7s + 1)(0.5s + 1)

In a attempt to control the pH the control structure shown in Figure is employed

a) Make a Bode plot for the transfer function G(s).

b) Assume that a P controller is used (F'(s) = K). At what value of K does the pH start to oscillate with constant
amplitude?
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Bode plot Step response

Frequency Time

Figure 4.10a. All comparable diagrams have equal scaling.

2L (D)~ F(s) | Gs)

Y

T_

Figure 4.11a

4.12 Consider the biochemical reactor in Figure It is desirable to control the concentration of biochemical material cx
(output y) by manipulating the dilute flow gg (input w). A model of this system can be described as

26753

V() = 30571

U(s)

where the time delay reflects the time it takes to measure the biochemical concentration. The bode digram of the system

is shown in Figure [£.125]

a) For which values of K is a P controller going to stabilize the system?

b) Construct a controller which has the crossover frequency wcq = 0.1 and no steady-state error.

4.13 Tentamenstal 2010-10-19 Upg. 1la
D& man applicerar insignalen
u(t) =sin(2t), t>0

pa ett forsta ordningens system

§(t) + ay(t) = bu(t),  y(0) = wo

far man utsignalen
y(t) = 2sin(2t — w/4).

Bestdm systemparametrarna a och b samt initialvardet .

31



|G (iw)

arg G(iw)

0.5

0.2
0.1
0.05

0°

—90°
—180°
—270°
—360°

O E—=X

N

Figure 4.12a

1073

1072 107! 10°
w [rad/s]

Figure 4.12b
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5 Compensation

Controller Motor Mechanical resonance
Wref 0.1 4 w
—_— F
+92> (s) (s+0.1)(s+0.5) s2+04s+4
Figure 5.1a

5.1 The block diagram for speed control of a DC-motor is shown in Figure Find a compensator F'(s) such that the
following specifications are fulfilled.
e The system should be twice as fast as for F(s) = 1, but with the same damping as for F'(s) = 1.
o If wyer is constant, |wyef — w| /wres should be less than 5%.

e The controller should not be unnecessarily sensitive for high frequency disturbances and the open loop system’s
low frequency amplification should not be larger than necessary.

X—D

He

‘A

Figure 5.2a

5.2 The outflow temperature € in the liquid A can be controlled in a heat exchanger by controlling the flow of the liquid B
by a valve with the setting denoted u. See Figure Measurements have been made using a sinusoidal input v and
the gain and phase shift have been measured at different frequencies. The results are given in the following table.

Frequency [rad/s] | Gain | Phase shift
0.05 1.37 —67°
0.1 0.80 —106°
0.2 0.34 —153°
0.3 0.18 —185°
0.4 0.11 —210°

a) Make a Bode plot for the system.

b) What is the largest crossover frequency possible to achieve when using proportional control and wanting a phase
margin of at least 50°7

¢) Suggest a compensator that doubles the speed compared to b) and still keeps the phase margin.

5.3 A hydraulic system with a valve and a piston is described by the following linearized transfer function
ku/A
s(5 + 20 +1)
wg wo

G(s) =

where A is the area of the piston and k, the hydraulic gain.
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5.4

5.5

5.6

5.7

5.8

a) Make a Bode plot for the system when wy = 150 rad/s, ¢ = 0.1, and k, /A = 20.

b) What is the smallest value of the ramp error that can be achieved using proportional control if we want an amplitude
margin of 2?7 What is the crossover frequency in this case?

¢) Suggest a compensator such that the ramp error decreases 15 times at the same time as the crossover frequency,
phase margin and amplitude margin will be the same as in b). Due to physical constraints in the implementation,
this regulator has to have finite amplification at all frequencies.

Orot e u km 0
+@ Fls) s(1+ sTp)(1 + sT0)

Figure 5.4a

Figure shows a position servo including a DC-motor. The extra time constant 7, is due to the inductance in the
winding of the motor, which is usually not taken into account. The parameter values are k,, = 10, T, = 0.1 and
T, = 0.01. We want the servo to fulfill the following specifications:

e Rise time < 0.1 s.
e Overshoot < 10%.
e The steady state error at step in ..t should be zero.
e The steady state error when 6, is a ramp with slope 10° /s should be less than 0.1°.
Suggest a compensator such that the specifications are fulfilled. (Clue: Suppose that the relationship between rise time,

overshoot, and other specifications are the same as for a second order system, that is, according to Figures and
in Solution (the figures can also be found in Glad&Ljung).)

In Figure we have arranged step responses and open loop and closed loop (feedback with —1) Bode plots for five
different systems. Identify the three plots that belong to each of the five systems, one open loop and one closed loop
Bode plot and one step response. Motivate your answer by pointing out one unique feature for each system.

A DC-servo is described by the block diagram in Figure where 77 = 50 ms is a mechanical time constant, k,, = 10
is a proportional constant, 75 = 25 ms is an electrical time constant, and 7" = 10 ms is an amplifier time constant. The
system is tested with F'(s) = 1 and we find that the dynamic properties are satisfactory but that the system is somewhat
too slow. Find an F'(s) so that the closed loop system is twice as fast as for F(s) = 1, without increasing the overshoot.
F(s) should also give a closed loop system which fulfills the following accuracy demands:

o |0 — Oref| <0.001 rad in steady state when 6, is constant.
e When 6, is a ramp with slope 10 rad/s we should have |6 — 0,¢¢] < 0.01 rad in steady state.

The amplitude curves and the phase curves in Figure have been measured for a system without poles in the right
half plane. The system is controlled using feedback according to Figure Use the Nyquist criterion to decide for
which values of K the closed loop system is stable (K > 0).

A block diagram for a control system with time delay is shown in Figure The system G has no poles in the right
half plane.

a) G has a Bode plot according to the plot in Figure m Determine for what values of the time delay T the closed
loop system is stable.

b) The same as in a), but for the plot in Figure [5.8¢
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Bode plot Bode plot Step response

Open loop system Closed loop system Closed loop system

1—

0° —
-180°

0°
-180°
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-180°

0°
-180°

Frequency Frequency Time

Figure 5.5a. All comparable diagrams have equal scaling.
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h—— F
+@ (s) 1+ sT s(1 + sT1)(1 + sT3)

Figure 5.6a

Figure 5.7a
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w [rad/s]
Figure 5.7b

e—sT

Gl (8)

Figure 5.8a

Figure 5.8b

Figure 5.8c
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z _1_@—6* F(s) - Amplifier Motor 4

Figure 5.9a

5.9 A servo system based on a DC-motor has to be designed. A block diagram for the system is given in Figure [5.9a] By
measuring the phase shift and the gain at different frequencies the Bode plot for the motor, see Figure [5.9b has been
determined. The amplification is a system of the first order, that is, it has the transfer function

ka

GA(S) = s—i—a'

In order to find the constants kx and a, a unit step experiment has been carried out on the amplifier, giving the output
shown in Figure [5.9¢

a) Find the constants ka and a from Figure Also draw the Bode plot for the open loop system, that is, the
system from u to y.
b) Find a compensator F(s), such that the closed loop system fulfills the following demands:

o The system has to be 5 times as fast as when using F(s) = 1.
o The overshoot should not be larger than for F(s) = 1.

10"
310
<
s 10
1072
10
-90° —_—
/5\ ”””” 0T ”\\;;\ ””” T T rrT1I T o T
-\TE/ ,,,,,,, _L \‘K,\;~ I
W -180° T
E‘D ,,,,,,,,,,,,,,,,,,,
s e
-270°
10 107! 10°
w [rad/s]
Figure 5.9b
_—
0.4 /
>
0.2
0
0 2 4 6 8 10 12
t [s]
Figure 5.9¢
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Figure 5.10a

5.10 A system G(s) can be split into two sub-systems
1
G(s) = Gr(s)

according to Figure The Bode plot for G(s) is given in Figure Find a compensator for the system G(s)
such that the following is fulfilled:

e The phase margin for the compensated system is 40°.

e The closed loop system is twice as fast as what is possible to achieve using proportional control with a 40° phase
margin.

e The steady state error when the reference signal is a ramp is 1% of the corresponding error with proportional

control and 40° phase margin.

— 10—1 N
3 yA
&
1072 S
AN
. 0° R N IR
E‘O -90 N
< R EE e EE T e B S R —>\<;;~
,,,,,,,,\_<; -
-180° —
1072 107! 10° 10! 102

w [rad/s]

Figure 5.10b

5.11 The Bode plot for a system is given in Figure [5.11a]

a) Draw the Nyquist curve of the system.

b) Assume that the system is controlled using the proportional feedback

For which K > 0 is the closed loop system asymptotically stable?

¢) Assume that we choose K = 2 in the proportional controller in problem b). What will the steady state error be
when r(t) = 10¢?

d) Assume that y(t) is delayed T seconds. How large is T allowed to be in order for the system to still be asymptotically
stable with K = 27
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Figure 5.11a

5.12 a) A plot of the amplitude curve of a stable transfer function G,(s) is given in Figure Choose one of the

following alternatives regarding the stability of the closed loop system ] +(é :
o

1. It is stable.
2. It is not stable.

3. Impossible to determine given these facts only.

b) Repeat for the transfer function whose amplitude curve is given in Figure [5.12b] Justify your answers carefully.

—  10°
3
$
~ 1071
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=
O
20
[

1072 107! 10° 10! 102
w [rad/s]

Figure 5.12a
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Figure 5.12b
5.13 Consider the relation
Y(s) = G(s)U(s)
where
725

G(S) = (s+ 1)(s+2.5)(s + 25)

a) Assume that the system is controlled by

where F(s) = 1. Find we, wp, ¢m, and A, for the loop gain.

b) Compute a regulator such that the open loop system fulfills the following requirements:
(i) we=5
(ii) ¢m > 60°
and the closed loop system fulfills:
(iii) eg =0
Draw the Bode plot of the compensated open loop system and check that the requirements are satisfied. Simulate
the closed loop system for a step in the reference signal and plot the step response. Check that the requirement on
the steady state error is satisfied.
¢) Draw the amplitude curve of the Bode plot of the closed loop system with and without the compensator. Describe
how the properties of the closed loop system have been changed by the compensation.
d) Simulate the control error when the reference signal is a ramp and the regulator designed in b) is used. Is the

stationary error zero?

5.14 When using microorganisms in production it is important to keep the oxygen concentration at a certain level to get
maximum productivity. There are many ways to control the amount of dissolved oxygen, in this example we will use the
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speed of stirring as the controlled signal. The transfer function from the stirrer speed Na to the oxygen measurement

Opa becomes (linearized model)
b e 5T

G =
(S) s+ T1 1+ ST2
The parameters 7 = 25, To = 20 s and b = 0.02 remain constant with change in stirrer speed while 77 can vary from
0.02s7! to 0.224 s7! as the stirrer speed increases from 400 r/min to 1200 r/min. A Bode plot for G(s) is given in
Figure Construct a controller, for the 1200 r/min case, which has a crossover frequency w. = 0.2 rad/s, a phase
margin ¢, = 60° and no steady-state error.

10°

107!

|G (iw)]
&

1072

10°®
0° T rr———
-90° T TN
-180° T HH— ] I
-270° T T
_3600 8 A 7\‘”” U

1073 102 107! 10° 10!
w [rad/s]

a
9
B
3

arg G(iw)

Figure 5.14a. Solid line: 400 r/min. Dash-dotted line: 1200 r/min.

5.15 A read/write head of a hard disk is mounted on a mechanical arm which is moved by a motor. The system from motor
input voltage to the angle of the arm is modelled by
5 0.05

. U
T1s+1 s(ms+1) ()

Y(s) =

where Y and U are the Laplace transforms of the output and input respectively. The numerical values of the constants
are 71 = 1073 och 75 = 0.05. The Bode plot of the system is given in Figure

a) To begin with, assume that the arm is controlled using proportional feedback,

What are the step and ramp error coefficients (often referred to as ey and e;)? For what values of K are they
defined?

b) Compute a controller,
U(s) = F(s)(R(s) = Y(s))

for the same system, such that the resulting system fulfills the following requrements:
o e=0
o e; <0.001
¢ we = 100 rad/s
o m > 50°

5.16 Tentamenstal 2009-06-10 Upg. 3
Processer hamtade fran kemisk industri kan ofta forenklat beskrivas av ett férsta ordningens system med tidsférdrojning.
Ett exempel pa ett sadant system &r
2
G(s) = o—0-255
() s+1
Man bérjar med att reglera systemet med en P-regulator med K = 1/y/2. Fasmarginalen for detta fall ir acceptabel

men systemet blir for langsamt.
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Figure 5.15a

For att uppratthalla produktkvalitén kraver man att utsignalens véirde stationirt inte avviker mer &n 5% procent fran
det konstanta borvérdet.

Bestdm en regulator F(s) sa att skirfrekvensen fordubblas jamfort med P-regleringen ovan, samt att de stationéira
kraven uppfylls. Systemet skall ha samma fasmarginal som vid den rena P-regleringen.

5.17 Tentamenstal 2011-06-10 Upg. 4
Betrakta ett system med 6verforingsfunktion

k1
(s+a)(s+b)(s+c)
dér k; =100, a = 3, b = 6 och ¢ = 100. Bodediagrammet for G(s) visas i Figur

G(s) =

a) Designa en fasavancerande och fasretarderande kompenseringslank for G(s) s& att skdrfrekvensen blir 30 rad/s,
fasmarginalen blir 40°, och statiska felet da referenssignalen &r ett enhetssteg blir noll.

b) Antag nu att det finns en tidsfordrojning i systemet si att oppna systemets verkliga 6verforingsfunktion ges av
G°(s) = G(s)e T2, For vilka viirden pa Ty ér slutna systemet stabilt d& regulatorn fran Uppgift a) anvinds?

¢) En regulator har nu designats for G(s) och forstédrkningen for det resulterande slutna systemet G.(s) aterges i

Figur |5.17b] For att reducera 6versvingen da steg i referenssignalen appliceras infors ett forfilter Fi.(s) = T
TS

s& att overforings-funktionen fran referens till utsignal blir G2(s) = G.(s)F,(s).

Uppskatta det minsta vardet av 7 som kommer att paverka systemets snabbhet vid steg i referenssignalen.
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6 Sensitivity and Robustness

r=20 e U 1 Y
(:)—> K Y
+ s(s+1)| +

Figure 6.1a

6.1 Consider the control system in Figure where v(t) is a sinusoidal disturbance, v(t) = sin(¢). Compute the absolute
value of the sensitivity function at w = 1 rad/s as a function of K. How must K be selected if the amplitude of y(t)
shall be less than the amplitude of v(¢) at this frequency?

() Fs) | Gls)

Figure 6.2a

6.2 Assume that we have constructed a controller F'(s) for the model G(s), see Figure such that there is no steady
state error when the reference signal is a step. Let the real system be given by

GO(s) = (s + 1)G(s)

and assume that G°(s) — 0, s — oo. Also assume that the amplitude curve of the closed loop system has no resonance
peaks and decreases, at least and asymptotically, with 20 dBsg/decade for frequencies over the bandwidth. What is the
highest possible bandwidth we can use for the closed loop system in Figure while at the same time guaranteeing

stability?
4 Im
-1
‘ >
Re
Go
Figure 6.3a
v
+

+@— Go T@_"_g

Figure 6.3b

6.3 Figure shows a Nyquist diagram for the loop gain G,. Show in a figure for what frequencies (that is, for what part
of the Nyquist curve above) additive disturbances on the output are amplified in the sense that the output amplitude
of the control system in Figure is larger than the disturbance amplitude.
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Figure 6.4a

6.4 Consider the control system in Figure The true system, denoted G°(s), is modeled as

1
G P—
()=S0
The controller 10
F(s) = ”s

gives an asymptotically stable closed loop system with the model G(s). Now assume that the system is given by
G°(s) = G(s)(1 + Gals))
where it is known that Ga(s) has no poles in the right half plane, and that

0.9
V14 w?

Can we be sure that the closed loop system is asymptotically stable?

Ga(iw)] <

6.5 A process is described by the model G(s), while the process in reality has the transfer function
GO(s) = e*TG(s)
a) Draw the absolute value of the inverse of the relative model error, that is,

_
|Ga(iw)|

b) Assume that we design a controller F'(s) starting with the model G(s). How large may

‘ F(iw)G(iw)
1+ F(iw)G(iw)

be at most, in order to guarantee asymptotic stability of the closed loop system for all values of T, when the
controller F(s) is used on the system GY(s)?

r:O+C - K - 3(5:_5) +@_0_g

Figure 6.6a
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6.6 Consider the control system in Figure

6.7

6.8

a) Assume that the real system is given by

where
1

s(s+5)
and let K = 25/2. Use the robustness criterion to obtain a condition on |G(1w)| that guarantees stability in the
closed loop system. Does G(s) = 1 fulfill the conditions?

G(s) =

b) Now let G(s) = a where a is a scalar. Calculate the characteristic equation for the closed loop system and decide
for which « the system is stable. Does this contradict the condition from the robustness criterion?

10 s
E AN
9 10—1 \\
10! 10° 10*
w [rad/s]
Figure 6.7a
A DC-motor is assumed to have the transfer function
1
G(s) =
(s) s(s+1)

where F'(s) = 4. The amplitude curve of the feedback system

F(iw)G(iw)

|Ge(iw)] = ‘1—|—F(1w)G(1w)

is given in Figure Assume that the real system is given by

a
s+a’

G%(s) = G(s) a>0

and the controller F(s) is used on the system G°(s).

a) Draw a root locus with respect to « for the characteristic equation of the closed loop system and determine for
which « the closed loop system is asymptotically stable.

b) Use the robustness criterion to decide for which « the closed loop system is asymptotically stable.

¢) Comment on the possible differences in the demands on « in a) and b).

A system G°(s) is controlled using a regulator F(s). In Figure the amplitude part the Bode plot of the nominal
closed loop system,
F(s)G(s
Gots) - P66
1+ F(s)G(s)

is shown. Assume G, is stable, and that G and G° have the same number of poles in the right half plane. The model
uncertainty Ga(s), defined by
_G'-G
G
is assumed bounded by |Ga (iw)| < yw. In what interval must v lie to guarantee stability of the closed loop system?

Ga
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Ge(iw)]

Figure 6.8a
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Figure 6.9a

6.9 Consider the system in Figure For r(t) = 0, n(t) = 0 and v(t) = sint the steady-state output is given by
1 T
t) = —=sin(t — —
yit) = s sint = )
Determine the steady-state output y(¢) when r(t) =0, v(t) = 0 and n(t) = sint.

6.10 Recall the model that was used in the design of a lead-lag controller using MATLAB in Problem Assume that the
true system contains a time constant that was neglected, and that the transfer function of the system is given by

a) Determine the relative model error Ga(s).

b) Draw - 1 F(iw)G(iw)

<oy ad | s .y | i @ Bode plot, when G(s) is given by

725
G = G125 + 25)

for the two cases F(s) = 1 and F(s) being the controller designed in Problem What can be said about the
robustness of the closed loop system in these two cases when F(s) is used for control of the “true” system G°(s)?

One possible solution to the design problem in Problem [5.13] was the controller

s+22 s+0.5
s+ 11 s

—— ()~ Fs) | Gls)

Figure 6.11a

F(s)=0.45-5-

6.11 Consider the control system in Figure The controller F(s) = 2 gives the Bode plot of the loop gain F'(iw)G (iw)
shown in Figure The Bode plot of the sensitivity function is shown in Figure The reference signal is
r(t) = 2sin 0.1t. Determine the amplitude of the error in steady state.

6.12 In Problem [5.14] we saw how the amount of dissolved oxygen depends on the stirring speed. A lead-lag controller was

designed for the model linearized around 1200 r/min. Check if this controller also stabilizes the system when the stirring

speed is 400 r/min.
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Figure 6.11c

6.13 Consider the connected tank system in Figure [6.13a] where u is the inflow to the upper tank and y is the level in the
lower tank. The system can approximately be described by the following transfer function

1

O=ere

The level in the lower tank is controlled by a P controller;

The goal of the control is to minimize the influence of the disturbance v. This has been formalized as the following

demand on the system:
|S(iw)] <0.1

at w = 1, where S(s) denotes the sensitivity function. How must K be selected if the demand should be satisfied?
6.14 Tentamenstal 2011-10-17 Upg. 5ab
Systemet

(s —1)(es+1)’
regleras med Pl-regulatorn

ult) = 3e(t) + » / e(r)dr], e(t) = [r(t) — y(1)
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\1

Figure 6.13a

a) Hérled 6verforingsfunktionen fran referenssignal r(¢) till utsignal y(¢) och rita en rotort for det slutna systemetets
poler som function av € > 0. For vilka virden pa e > 0 dr det aterkopplade systemet stabilt?

b) Anvind istéllet robusthetskriteriet (Resultat 6,2, sidan 125 i kursboken) med nominell modell

for att avgora for vilka € > 0 vi kan garantera att det verkliga slutna systemet enligt uppgift a) ar stabilt.
Amplitudkurvan for motsvarande komplementera kéanslighetsfunktion, dvs |T(iw)|, &r given i Figur Det
racker med att anvinda approximativa metoder for att svara pa denna uppgift.

Bode Diagram

Magnitude (abs)

10° 107" 10° 10
Frequency (rad/sec)

Figure 6.14a

6.15 Tentamenstal 2010-12-14 Upg. 5ab

For det aterkopplade systemet i Figur definieras kédnslighetsfunktionen S(s) och slutna systemets Gverforingsfunk-
tion Gc(s) som

S S oc s) = _Gols)
1+ Go(s) b Ge(s) = 14+ Go(s)’

dir G,(s) ar det 6ppna systemets 6verforingsfunktion.

S5(s)

a) Forklara hur |S(iw)| paverkar ett aterkopplat systems formaga att undertrycka en additiv stérning v till utsignalen,
samt hur |G.(iw)| paverkar ett aterkopplat systems férméga att undertrycka métbrus n. Kan bade storningen och
métbruset undertryckas godtyckligt mycket samtidigt? Motivera ditt svar.

b) Visa att om r ar ett steg s& blir statiska reglerfelet noll ifall S(s) har alla poler strikt i vinstra komplexa halvplanet
och ett nollstélle i origo.
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7 Special Controller Structures

gref

I E—
Gri1

GRr2

3
]

Cooling water

Figure 7.1a

7.1 To control the temperature 6 in a chemical reactor, the control system in Figure is used, where 0, is the desired
(reference) temperature. The temperatures 6 and 6,, in the reactor and the cooler, respectively, are measurable and can
be used to control the valve u. The structure of the control system is given by Figure It is here assumed that both

GRr1 and Gro are P controllers.

a) Let Ky =9 and draw the Bode plot of the transfer function from w to 6. Then choose K7 so that the gain margin
A, = 2. What are the gain crossover frequency w. and the steady-state error, if we assume that 6,.s is changed

stepwise?

b) Suppose that we make a simple feedback loop instead, see Figure How is the Bode plot affected? Again,
choose K; so that the gain margin A, = 2, and determine the gain crossover frequency w. and the steady-state
error. Compare with a) with respect to steady-state errors and response times. Conclusions?

Valve and
cooling jacket

Om

Wall and liquid

1

HYL_F@_ w—|—@_~ - 1()31_,_1

(30s+1)(3s+1)

Figure 7.1b
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Figure 7.1c
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Feed-
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Figure 7.2a

7.2 A level control system for a water tank is shown in Figure where all variables denote offsets from an operation
point. The inflow, z(t), to the tank is determined by the valve, and the outflow, v(t), is determined by the pump. Stu
Dent has got the assignment to keep the water level in the tank constant, in spite of variations in the outflow wv(t).
First, Stu determines the transfer function G (s) from the valve to xz(t). By step response experiments, he obtains the
following result:

1

Gls) = 0.5s+ 1

a) Because the disturbance v(¢) is measurable, Stu first considers a feedforward compensator to completely eliminate
it. Stu, who also knows that it is dangerous to differentiate the disturbance, cancels all the derivative terms in the
compensator. Compute the feedforward compensator, and determine the response h(t) Stu will get, if the outflow
v(t) is changed stepwise with an amplitude of 0.1.

b) To improve the control system, Stu also introduces a proportional feedback of the water level h. What is the
steady-state error in the level h now, if the outflow is changed in the same way as in a)?

7.3 Consider the following system
2 3
Y(s) = U
(5) =3V + o
where u is the control signal, y is the output and v is a disturbance. It is desired that y should be as small as possible
despite the disturbance v.

V(s)

a) Design a feedforward controller from v to u that eliminates the influence of v on y.
b) Assume that v is a pure sinusoid with amplitude 2. How large will the control signal be?

¢) The real system is described by




Fy
r + T Y
F;
— r R G1 2 G2
7
Figure 7.5a

where b value is not exactly known but has its value close to 2. To solve this problem a P controller is added to
the feedforward controller that was designed in a). The full controller looks like

U(s) = —KY(s) + Fz(s)V(s)

where F(s) is the feedforward controller. What is the stationary error if v = 17

7.4 The transfer function for a temperature control system is given by

3 4

P V(s)

where y is the controlled temperature, u is the supplied power and v is the temperature of the surroundings. Assume
that the desired temperature is zero.

a) Design a feedforward controller U(s) = F;(s)V (s) which eliminates the influence of the disturbance v on y.

b) To simplify implementation F¢(s) is replaced with a constant, Ft = F¢(0). Assume that v is given by v(t) = —1—0.1¢
and that U(s) = F;V (s) is used. What will y(¢) be in steady state?

¢) The previous controller is now extended with a P controller:
U(s) = BV (s) — KY(s)

What will now y(t) be in steady state?

d) Assume that one only uses the P controller
U(s) =—-KY(s)

What will now y(t) be in steady state?

7.5 Tentamenstal 2011-06-10 Upg. lab

a) I Figur visas en process och en regulator med bade framkopplings- och aterkopplings-lankar. Hérled (uttryck
i Gi(s),Ga(s), Fy(s), Fr(s) och Fy(s))
i) overforingsfunktionen fran referenssignalen r till utsignalen y,
ii) overforingsfunktionen fran storsignalen d till utsignalen y.

542 1
———— och G = ——. Taf
P25 11 2(s) 53 Lo fram
en lamplig framkoppling Fy(s) for att eliminera inverkan av stérningen d. Diskutera &ven hur du enkelt kan

implementera framkopplingen om malet ar att eliminera konstanta storsignaler i stationéritet.

b) Antag att processen i Figur [7.5a har 6verforingsfunktionerna G1(s) =

53



8 State Space Description

8.1 Define suitable state space variables for the DC motor discussed in Problem and write the system in state space
form.

Figure 8.2a

8.2 Consider the system illustrated in Figure [8:2a] It consists of a hinge that can move in the direction marked “z”, and a
thereto attached pendulum. The system is described by the equation

00 + gsinf + Zcosf =0
Define state space variables, input, and output as
21=0 x9=10 u=z2/l y=20

and
wy =g/t

Linearize the system around the equilibrium point given by

rT1=7m x9=0 u=0

@‘éﬁﬁé)q e

Figure 8.3a

8.3 The block diagram in Figure describes an electric motor that drives a load via an elastic axis. Here ¢ is the driving
current to the motor, which gives the torque M;. z is the turning rate of the motor and y is the turning rate of the load.
0 is the angle of the transmission axis. M, = K56 is the torque this angle causes. M, is the torque from the load. Give
a state space description for the system with M) and ¢ as inputs and y as output. (There are at least two different ways
to solve this problem.)

8.4 Write the following systems in state space form.

a)
ddy  d% dy
S 6s i yey=6
as Vg T Tyt
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d3y d2y

d
VoY 55 gy =4

de3  de?

G(s

Use for example controllable or observable canonical form or diagonal form.

8.5 A system has the impulse response (weight function)

g(t) =2e " + 3e~ 4

Write the system in state space form.

8.6 Consider the system

Compute the transfer function of the system.

8.7 Consider the system

dt

)=

@u
de?

$2+55+6

The input is being held constant, u = wug, for the time o <t <tg+T.

Give a relation between z(ty), x(to + 1), y(to), y(to + T) and ug.

Uy

=R

— 4+ 2u

U2

Figure 8.8a
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8.8 Consider the tank in Figure B:8a] The tank can be filled from two different pipes, where the flows ¢ and g2 are
determined by the valve settings u; and us. If ¢1, g2, u1, ue, and h denote the deviation from a nominal value, we get
the linearized equation

.1
h+*h:U1+U2
T

where 7 = 1. It is desired that the level should follow a reference value h..¢ and that ¢; and g5 should be of approximately
the same size. Therefore two PI controllers are used so that

a)

b)

¢)

s = (et — ) + /0 (het — h) dr (8.1)

ug = (hyet — h) + /0 (hpet — h) dT (8.2)

Introduce the state variable z1 = h, and let x5 and z3 represent the integrals in (8.1]) and (8.2]) respectively. Derive
a state space description of the closed loop system with h..s as input and h as output.

Verify that the closed loop system is unobservable and that the unobservable subspace is spanned by the vector
0
1
-1

Give a practical interpretation of this phenomenon.

The level is measured by two different sensors, and due to the poor accuracy in the first sensor it delivers the level
signal together with an error. The equation of the first regulator can hence be written

t
ulz—(h+n)+/ —(h+n)dr (8.3)
0
where it for simplicity has been assumed that h.; = 0. The second regulator is then given by
t
us = —h +/ —hdr (8.4)
0

Modify the state space model by letting the measurement disturbance be the input to the state space model of the
closed loop system.

8.9 Consider the system

(2 40

Is it possible to control the system from the origin to x = (1 3)T within 4 seconds?

8.10 Give the dimensions of the controllable and unobservable subspaces to the systems below. Give also the controllable
and unobservable subspaces.

a)

-2 0 0 1
=0 -1 1 |z+|-1]u
0 0 -3 2

-1 0 0 0
T = 1 -2 0 ]Jx+1| 4 |u
0 0 -4 -2
y:(O 3 O)x
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8.11 A state space representation of

1
G(S)_s—l—l
is given by
-1 0 1
= (0 ) ()
y:(l 0)33

b) Is the system asymptotically stable? Input-output-stable?
¢) Examine the controllability and observability for the system.

d) Explain why the realization is not suitable for simulating a system whose transfer function is G(s).

8.12 Compute the poles and zeros of the system

Figure 8.13a

8.13 Two mathematical pendulums are mounted on a trolley. They are mounted so that they can move without friction in
a plane coinciding with the direction of movement for the trolley. The lengths of the pendulums are ¢ and o/ and their
masses are m. For one pendulum we have

Zcosp+ @l = gsing

a) Linearize the system to the left in Figure around ¢ = 0 and put the constants ¢, m, and g to 1 and write the
equations in the form & = Az + Bu.

b) Give the values on « for which the system is controllable. Give a practical motivation.
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Figure 8.14a

8.14 A system is given by the block diagram in Figure Derive a state space model of the system, with the state space
variables given in the figure.

8.15 The substances A and B react according to, 3A — B, in a tank. The reaction speed is given by ra = —k;c3. The inflow,
g to the tank has concentration ca jn. The tank volume V' and the in- and outflow can be considered constant.

a) Determine the dynamical mass balance for the components A and B in the form of differential equations.

b) Linearize the differential equations around a stationary point, ¢}, cf, ¢4 ;,, and use the state space representation

d
d—f:Am+Bu
y=Cz+ Du

where the state = consists of the deviations ca A and cg a of the concentrations. The input signal u is the deviation
CA.in,a in the inflow concentration and the output signal y is the deviation Bcg a in concentration of component.

8.16 Tentamenstal2008-12-20 Upg. 5
Studera det olinjara systemet

y(t) = —y()u(t) +v
med insignal u(t), utsignal y(¢) och dér v &r en okénd konstant positiv stérning (v > 0). Malet ar att konstruera en
regulator, som haller utsignalen y(t) pa en given konstant niva y(t) = yo, yo > 0.
a) Linjérisera systemet runt motsvarande stationdra punkt.

b) Uppgiften ar att konstruera en regulator s& att det aterkopplade linjariserade systemet med styrlag

U(s) = F9)E(s), F(s) = K501 oy = yo— y(t)

TIS
ar stabilt for alla positiva virden pa den okédnda stérningen v.

Visa att det &r mojligt samt ange ett val av —oco < K < 00
och 77 > 0.

8.17 Tentamenstal2011-12-17 Upg. 4abc
Betrakta systemet

() = 21 (1) + u()
Ea(t) = —2x1(t) + awa(t) — u(t)
y(t) = 2(1).
a) For vilka viarden pa « ar det 6ppna systemet (d.v.s. d& u(t) = 0 {or alla ¢) asymptotiskt stabilt?

b) For vilka virden pa « dr systemet observerbart?

c¢) For vilka virden pd « ar systemet styrbart?
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9 State Feedback

9.1 Consider the system

(2 -0, (!
g=\1 o )rtlp)u
Y= (1 0) T
a) Calculate a state feedback that places the poles in I) { =3, =5}, II) { =10, —15}. What limits the possibility to

achieve arbitrary dynamics of the closed loop system?

b) Suppose only the output is measured. Calculate an observer that makes the transfer function from the reference
signal to the output the same as in a). Discuss the influence of the poles of the observer.

Figure 9.2a

9.2 Figure shows the Lunar Excursion Module from the Apollo project. Consider the module hovering a short distance
above the surface of the moon using its main engine. If the pitch angle of the module (angle between the vertical line
and the direction of movement) differs from zero, a horizontal component of the force is obtained and the module is
accelerating along the surface.

We will study a block diagram which shows the connection between the input u (the control signal to the attitude
thrusters), the pitch angle 6 and the position coordinate z. See Figures and

The module is both in the #-direction and in the z-direction obeying Newton’s law of motion without any kind of
damping. The transfer function from the control signal of the astronaut (y,ef) to velocity 2 is

K1 Ky
53
which is very difficult to control by hand.
a) Write the system in state space form.
0
—
/
|
Attitude 1/
— Direction
thrusters .
of motion
ﬁ 2
z
Figure 9.2b
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et (D)

Feeback

Figure 9.2¢

b) In order to make the control duty of the astronaut easier we change the dynamics of the module by making internal
feedback. The following signals are measurable:

mq, the attitude angular velocity measured using rate gyro.
ms, the acceleration in z-direction measured using accelerometers positioned on gyro-stabilized platforms.
mgs, the velocity in z-direction measured using doppler-radar.

Calculate a state-feedback using these signals such that the closed loop system obtains its poles in s = —% and the
control signal of the astronaut becomes the reference signal of the velocity in z-direction.

¢) Suppose we by safety reasons are interested in the possibility of controlling the module even if the sensors measuring
my and me are not working. Design a controller that can handle this and has approximately the same behavior as
in a).

9.3 A DC motor with an external load, T, is described by
w=10

1
w=—w+cu+cT
T

where 6 is the angle, w the angular velocity, u the control signal, T' the torque of the load, and ¢;, ¢, and 7 are constants.

a) Introduce a controller
u = loeref — l19 — lgw

such that the poles of the closed loop system becomes %(71 +i) and 6 = O, in steady-state if T = 0 and O,c¢ is
constant.

b) Introduce a modified controller
u = Zoeref — 110 — 120.) + ’U/

such that 8 = 0, in steady-state even for constant non-zero 1" and constant 6¢¢.

o 5) ()

(1 -1z

9.4 A system can be described in state space form as

K-
Il

Y

We want to place the poles in { —2, —3}. Suggest an observer, and use a linear state feedback controller. Which are
the poles of the closed loop system?

9.5 Is it possible to design an observer with poles in { -5, -6, -7, -8 } for the system below? Motivate your answer.

01 1 1 1
o 0 11 10
=10 0 0 1|%T|-3|"

000 1 2
y=(1 0 0 0)z

60



9.6

9.7

Uy Z1 €2 x3 U2

Figure 9.6a

We want to control the temperature in a long copper rod by heating or cooling its endpoints. Principally, this problem
is described by a partial differential equation. To simplify the problem we assume that the temperature profile in the
rod can be approximated by the temperatures x1, xo2, and x3 at three points. The temperatures in the end points are
the inputs, u; and uy. All temperatures are relative to the temperature of the surroundings.

We get the following ordinary differential equations:

1 = a(ur — 1) + oz — 1)
3'32 = Ol(:L'l — I’Q) —+ Oé(l’g — 1’2)

i3 = a(ze — x3) + a(us — 3)

where « is a constant that depends on the coefficient of thermal conductivity and the specific heat of the rod. For
simplicity, let @« = 1. Consider the problem of controlling the temperature in xy, xs, and x3 with u; only, assuming
Ug = 0.

a) Assume that we want to have an arbitrary temperature profile, that is, arbitrary values of 21, xo, and x3. Is this
possible? Why /why not?

b) Assume that all the temperatures 1, z2 and x5 are measurable. Find a state feedback that brings any initial state
to zero as e 3.

¢) Assume that only one of the temperatures x1, za, or x5 is measurable, and that we still want a controller which
damps a disturbance as e~3! by using an observer. The sensor can be placed so that any of the three values x,
T2, or x3 is measured. Which choices of measure point make it possible to control the system as desired? Give
a motivation. Choose one of the points making the wanted design possible and design a controller, that is, an
observer and a state feedback, giving the desired error damping.

Consider the lunar excursion module in Problem [9.2] Suppose that there are no rate-gyro measurements available but
that the sensors measuring ms and mg are still working.

Show how mj can be reconstructed from v and measurements of mo such that the reconstruction error decreases
arbitrarily fast without differentiation of any of the measured signals.

Propose a filter and describe the resulting controller when the feedback consists of both measured and reconstructed
states as in Problem
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Figure 9.8a

9.8 In Figure a level control system for a tank is shown. The objective is to keep the level at a desired value. Let w,
h, q, and v denote small variations around the desired working point. The inflow, ¢, to the tank is determined by the
valve, u, calculated by the controller. The outflow v is determined by the pump and deviations from zero is considered
as process noise. The valve has some dynamics, which is modeled with the transfer function

Q(s) =

where ky = 1 and T = 0.5. The level is given by

where the tank cross-section area is A = 1m?2.

1+Ts

i U(s)

Ah=q—v

a) Let g and h be state variables and give a corresponding state space model of the process. Compute a state feedback
u = —l1q — lIah + r, such that the closed loop system poles both are at —2.

b) How large is the steady-state level error for a constant disturbance v = 0.1 if r = 07

c¢) Consider the closed loop system in a) and compute a feedforward control law from v to r such that the influence
from v is completely eliminated. Exclude all terms in the control law in which v is differentiated to make it
implementable. How does this modified feedforward control law work? Steady-state level error?

d) Suppose that kp differs slightly from 1, but that the same control law as in ¢) is used (the control law derived under
the assumption k; = 1). What happens with the steady-state level error?

e) Propose a modified control law such that the stationary level error is zero for constant disturbances regardless of
small deviations from the nominal value of k;.
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Figure 9.9a
9.9 We want to control the system
. 0 1 0
T = <0 O) T+ (1> U
Yy = (1 O) T

with a state feedback. (This can be interpreted as a moving vehicle in one dimension, where x; is the position, x5 is the
velocity, and the acceleration is the control signal.) We introduce the control law

u(t) = —=L&(t) 4+ r(t)
where Z is constructed by an observer )
=A%+ Bu+ K(y — C%)
We choose the vectors K and L as L = (1 2) and K™ = (4 4). These choices put the eigenvalues of A — BL in —1

and the eigenvalues of A — KC in —2. A block diagram of the closed loop system is shown in Figure Due to a
time delay, the real input is given by the equation

u(t)=—-L2(t—T)+r

What is the largest possible time delay T without the closed loop system getting unstable?

9.10 One wants to construct an observer for the system

i(t) = (;1 _12> z(t) + G) u(t)
y(t)=(2 1))

a) Suppose a = 1. Construct an observer with the poles in { —5, —10 }. For which values of « is this possible?

b) Suppose that the measured signal y is given by

y(t) = (2 1)z(t) +ov(t)

Here v(t) is the measurement noise. Compute the transfer function from v to (), that is, the first element in the
state vector for the observer error Z(t) = x(t) — Z(¢).

1.2
1

0.8
0.6

. 04 /
0.2 /

0 /
—0.2
—04-{\ /
~0.6

—
N

Figure 9.11a

9.11 Consider the system
1-s/a
G(s)=—F——, a>0,>0
)= Tre/py g
Systems of this kind, that is, with a zero in the RHP have the property that the step response goes in the “wrong

direction” initially, see Figure
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a) Show that the derivative of the step response at ¢t = 0, that is, y(0), decreases as the zero of the system approaches
the origin.

b) Is it possible to use state feedback to eliminate the problem that the step response goes in the wrong direction
initially? Justify your answer.

9.12 Theoretically one can place the poles of a controllable system arbitrarily. Which practical difficulties limit the perfor-
mance that one can actually achieve?

9.13 Consider the system

=(1 B)ee(3)e
y=(1 1=z

a) Determine L of a state feedback u = r — Lz, that places the poles at —2 £ i.

b) The state feedback of a) is used. It is observed that the output y(¢) = 0 for all ¢ is obtained for a reference signal
of the form r(t) = e**. For what value(s) of a does this occur?

9.14 Consider the model of a DC-motor

where

=G

a) Generate a state space representation using MATLAB. Which physical signals are represented by the states?

b) Suppose that the system is going to be controlled using state feedback
u(t) = —Lx(t) + lor(t)

Compute the gain vector L and simulate the closed loop system for the following two choices of closed loop poles:

o Two poles at —2.2
o Poles at —1 1

Also compute [y such that the closed loop system gets static gain one. In particular look at the properties of the
step response and the magnitude of the control signal in the two cases. Which pole locations give the best trade
off between response speed and control signal magnitude?

¢) Now let L be computed using linear quadratic optimization (LQ) for the three choices of weight matrices given
below. Compute the closed loop poles and the step responses of the closed loop system for the three cases. Describe
how the properties of the step responses in the different cases.

0 a=(g 1) @-1
@ Q= () )@=
i) Qi = (o) @21

d) Start from case (ii) and increase the weight on the control signal gradually until Q5 = 10. Compare the result with
the result obtained for case (i).

e) Start from case (i) and introduce a weight on the velocity ¢(t). Increase the weight gradually and study how the
poles and the step response of the closed loop system change.
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9.15

9.16

The ingestion and metabolism of a drug in a human body can be described by the following equations:
dg(t)
—— = —kiq(t t
P = —kg(t) + u(t
dy(t
WO _ hug(t) ~ ot

where the input signal u(t) is the ingestion rate of the drug, the output y(t) is the mass of the drug in the blood, and
q(t) is the mass of the drug in the gastrointestinal tract. The constants k; and ko are metabolism rates, satisfying
k1 > ko > 0. ko characterizes the excretory process of the individual. In this example, k; = 0.05 and k2 = 0.02.

a) Is the system controllable?

b) Design a state feedback that places the closed loop poles in —0.1.
q(t) (the mass of the drug in the gastrointestinal tract) cannot be measured, so to be able to use the state feedback in
b) we need an observer.

¢) How should the poles of the observer be selected?

d) Design an observer with poles in —0.2.

A system is described by the state space equations

&(t) = Ax(t) + Bu(t — 1)

where it is known that

7<0.3
09<k<11

It is also known that e is a sinusoidal disturbance with angular frequency 10 rad/s. The control design is based on the
simplified model

(9.2)

The specifications for the control system are given by:

1. The bandwidth of the closed loop system must fulfill wg > 5 rad/s.
2. The closed loop system shall be stable despite the disturbance and the uncertainties in the parameters 7 and .

3. The static gain of the closed loop system shall be 1 despite the disturbance and the uncertainties in the parameters
7 and K.

4. The closed loop system shall handle the measurement disturbance sufficiently well.

The regulator design is carried out using state space methods. The poles of the closed loop system, that is, eigenvalues
of A — BL, are placed in { —4, —2 4 2i } and the poles of the observer, that is, the eigenvalues of A — KC|, are placed
in {17, —0.2 +10i }.

The figures below show different aspects of the control system. It is important to note that the diagrams are obtained
using the model (9.2) and the designed regulator. Determine if the requirements 1—4 are fulfilled when controlling the
system given by (9.1
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Figure 9.16a. Bode plot of the loop gain.
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Figure 9.16d. Gain curve of the complementary sensitivity function.
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9.17

9.18
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Figure 9.16e. Gain curve of the transfer function of the closed loop system.

In purification processes sometimes bacteria are used to consume the unwanted substance (possibly converting it to
something more useful). Let ¢ denote the amount of bacteria, n the amount of substance to be removed, and ¢ the
input flow (that contains the substance to be removed). The system is then described by a set of nonlinear differential
equations

é: fl(fvnaQ)
7;} = fZ(fﬂ?afJ)

When considering small deviations from an equilibrium the equations can be approximated by a linear system. In this
example, the numeric values of the linearization are given by

(4 2o )

where x1, x2, and u denote the deviations from the equilibrium values of £, 1, and ¢ respectively.

a) Assume that both z; and x5 can be measured. Determine a state feedback placing the closed loop poles in
{-2, —4}.

b) Assume that only x5 is measured. Is it possible to calculate the amount of bacteria x1 from this measurement if u
is known? If the answer is yes: Why is it important that « is known?

¢) Assume that the value of u is unknown, but let it be known that it is constant. Is it then possible to calculate the
amount of bacteria, 1 from a measurement of x5? In case it is, show some way of doing the computation.

A certain species of bacteria grows by consuming glucose, whose inflow is controlled. The following model is used
m=(f-1m f=-m+q

where m is the amount of bacteria, f the amount of glucose and ¢ the inflow of glucose. One wants the system to
operate in the neighborhood of the operating point m =1, f =1, ¢ = 1. Using the notation z; = m — 1, 22 = f — 1,
u = ¢ — 1, an approximate model (z1z2 neglected) is

S.Cl = X2

Tog=—21+Uu

Sometimes there are disturbances that are modeled as a constant, unknown external signal w:
.’tl =T +w
To=—x1+Uu

One wants to drive x; to a reference value r using u as control variable.

a) xp is measured. What performance (stationary error, speed of response) can be obtained using a P controller?

b) xo is measured. What performance (stationary error, speed of response) can be obtained by using a control law
where u depends linearly on r and z9 if w = 0?7 What happens when w # 07

¢) xo is measured. Determine a controller that does not differentiate z2, gives an asymptotically stable closed loop
system and makes x; converge to r asymptotically for an arbitrary constant but unknown w.

9.19 Tentamenstal 2010-12-14 Upg. 2

Ett system har modellerats genom att dela upp det i flera delsystem enligt Figur
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a)

b)

d)

\ 4
Q
N

U(s) X(s) + Y (s)

Figure 9.19a

Finn 6verféringsfunktionerna:
1. Gx(s), sd att X(s) = Gx(s)U(s).
2. G(s), sd att Y(s) = G(s)U(s).
Genom att sidtta samman 6verféringsfunktionerna i Figur har man funnit att

s+ 2
—

Y(s) =G(s)U(s) dar G(s)=

S

Skriv systemet G(s) pa en valfri tillstdndsform

Det vill séiga, bestim matriserna A, B, och C. Ar din valda tillstindsform en minimal realisation? (Motivera ditt
svar.)

Bestam en tillstandsaterkoppling for systemet ovan,
u(t) = —La(t) + lor(t),

sd att slutna systemets poler hamnar i {—1, —1} och sd att det slutna systemets statiska forstarkning fran r(t) till
y(t) blir 1.
(Om du inte kunde svara pa uppgift b), gor sjéilv ett lampligt val av A och B.)

Designa en observerare for systemet ovan s att observerarens egenviarden hamnar i {—10,—10}.
(Om du inte kunde svara pa uppgift b), gor sjilv ett lampligt val av A och C.)
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11 Implementation

11.1

11.2

11.3

11.4

If you “translate” the compensator
s+b

s+ bN

U(s) = KN(

with Tustin’s formula you get a controller of the form

)E(s)

u(t) = Sru(t — T) + aze(t) + age(t = T)
What are the values of a1, ag, and By, if T'=0.1, N =10, b= 0.1, and K = 27
Consider the system
y(t) = u(t)
Suppose it is controlled with a computer, so that the control signal is constant over the sampling interval, that is,
u(t) =ug, KT <t<(k+1)T

a) Introduce the notation y; = y(kT) and derive a relation between yx11, yi, and ug.

b) Suppose we use the proportional feedback
up = — Ky

and that y(0) = yo. What are the values of K, for which the closed loop system is stable?

u 1 Samoli y
11 sy ampling

Figure 11.3a

Consider the system in Figure which illustrates sampling with prefiltering. Suppose we are sampling with the
sampling period T and that u = ug + u1, where wug is an “interesting” low frequency signal in the frequency interval
0 < w < «/T and that u; is a sinusoidal control signal

. ™ 2w
uy(t) = sinwst, T <wy < T

Since the sampling causes aliasing, the output will be
y(t) = yo + v
where yg is interesting and y; is a disturbance signal
y1(kKT) = Asin(wi kT + ), wy <7/T

a) What are A, wy and ¢?

b) It is clear from a) that the choice of T affects the amplitude of the disturbance signal y;. What is the smallest
amplitude you can get if you do not want to damp any frequencies in uo more than /2 times?

Tentamenstal 2011-01-13 Upg. 1d
Genom att approximera en Pl-regulator med Euler bakat med samplingsintervall T'= 1 fas den tidsdiskreta regulatorn

u(t) =u(t —1) +2e(t) —e(t —1)

Ange parametrarna K och 17 for motsvarande tidskontinuerliga PI-regulator

u(t) = K [e(t) + Ti, /0 t e(T)dT]
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Figure 11.5a

11.5 Tentamenstal 2011-06-10 Upg. 5
En kula ar placerad pa en bom enligt Figur En elektrisk motor kan rotera bommen och ddrmed fa kulan i rullning.
Kulans rorelse modelleras av differentialekvationen

J .
(m + r2> 5 = —mgsinf + mz6?,

dér m &ar kulans massa, J dess troghetsmoment och r dess radie. Kulans position p4 bommen ges av z och bommens
vinkel av @, enligt Figur

Bommens vinkelhastighet dr proportionell mot den elektriska spdnningen u 6ver motorn, d.v.s. 0 = Ku, dir K ir en
konstant.

a) i) Skriv ovanstdende modell pa tillstandsform med tillstanden 6, z och 2, och
ii) linjéarisera sedan modellen kring en jamviktspunkt dar v = 6 = 2 = 0, och skriv ekvationerna pa formen

T = AIE +BU Du kan anta att #J/Tz = ?

b) Vi fokuserar nu pa reglering av enbart bommens vinkel §. Lat darfor y = 6 vara utsignal. Om spénningen Gver

motorn kommer fran en D/A-omvandlare si dr den konstant 6ver varje samplingsintervall och ges av u(t) = uy,
for kT <t < (k+ 1)T dir heltalet k anger sampelnummer och 7' samplingsintervallet.

Lat yr, = y(kT) vara den samplade utsignalen, och uttryck yj41 i variablerna yy and ug.

c) Antag att spanningen i Uppgift b) ges av ui = —K,yx. For vilka K, &r det slutna systemet asymptotiskt stabilt?
(Om du inte kunde 16sa Uppgift b) kan du anta ygr1 = %yk + %uk)
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2 Dynamic Systems

2.1 Start with J§ = —f6 + M and try to write M as a function of # and u using Kirchhoff’s voltage law.
2.2 What is the relationship between the response of the system and the pole locations?

2.3 Separate the pure delay and the dynamic response. Use the final value theorem to find the steady state gain and
calculate the time constant by estimating the time to reach 63% of the final value (neglecting the time delay).

2.4 Identify the coefficients wg and ¢ in the system description

2
“o

Gls) = 52 4 2Cwos + w3

2.9 See Glad&Ljung.

2.11 a) Consider what you can control, what is uncontrollable and what is desired.

b) Consider the relationship between the signals.

2.12 a) Use mass balance and assume that the densities are equal.
b) Consider the change in mass and change in component A.

¢) Assume that all the other independent variables (¢1, g2, ca,2) are constant.

2.13 a) Use mass and component balance.

Solution



3 Feedback Systems

3.1 a) Consider the three blocks; tank, valve, and PID. What is the input and the output from each block? Connect the
blocks and consider v as a disturbance.

For the tank model use the fact that the flow into the tank is z — v and the amount of liquid changes as /- A.

=

@
—_ = I

Consider the final value and the time constant.

(oW

Put F(s) = K and express the closed loop poles as a function of K.
Use the final value theorem.

Put F(s) = % in the expression for the error, and use the final value theorem.

3.2 a) Use the expression for the poles from Problem
b) Put F(s) = Kp + Kps in the expression for the closed loop system from Problem The relative damping is
defined in Glad&Ljung.

3.3 Use Newton’s force equation F' = ma to derive the transfer function for the astronaut.

3.4 Start with deriving an expression for the transfer function from the disturbance f. to the error e.

a) Use F(s) = K and the final value theorem.

b) Use F(s) = Ky + Ks/s and the final value theorem.

3.6 a) The characteristic equation is
s(s+1)(s+3)+K(s+2)=0

which gives P(s) = s(s + 1)(s +2) and Q(s) = s + 2.

b) Characteristic equation:
s(s?+25+2)+ K =0

P(s) =s(s? +25+2), Q(s) = 1.

¢) Characteristic equation:
s(s=1)(s+6)+K(s+1)=0

P(s) = s(s —1)(s +6), Q(s) = s + 1.
3.7 Derive the general closed loop transfer function by first deriving the transfer function for the inner loop.

a) Let a = 0. The characteristic equation is then
s(s+2)+4K =0
Compute the poles explicitly as a function of K.

b) The characteristic equation is
s(s+2)+4K(1+s5)=0

¢) Characteristic equation:
s(s+2)+4K(1+s/3) =0

d) Characteristic equation:
s°+2s+4+4as=0



3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.25

3.26

a) Derive the transfer function from wye to w.

b) The characteristic equation is
(s+10)(s+4)(s—3)+10K(s+1)=0

a) Derive the closed loop transfer function by first deriving the transfer function for the inner loop. The characteristic
function is
s((s+1)(s+10)+ K1)+ K2 =0

We get two principally different root loci when there are complex starting points, and when all starting points are
equal. Treat the cases separately.

a) The characteristic equation is
(s+1)(s—1)(s+5)+K=0

b) Characteristic equation:
(s+1)(s—1)(s+5)+K(1+0.55) =0

a) Characteristic equation:
s +2s% +a(s*+25+6)=0

b) First check for which a the system is stable and the steady state requirement is fulfilled. Then use that “sinusoid
in” gives “sinusoid out” after transients.

Check the root locus to find which K-values gives a stable/unstable system, more/less oscillative system.
Investigate the starting points and end points of the root locus.
Find the open loop transfer function and use the Nyquist criterion.

Since G(s) has no poles in the RHP, the closed loop system is stable if the Nyquist path of KG, does not encircle —1.
Note that the K will only modify the distance to the origin, not the shape of the curve.

Study the amplitude and phase of G(iw).

a) Draw the complete Nyquist path and use the Nyquist criterion. (Note that G,(—iw) is the mirror image of G, (iw),
mirrored in the real axis.)

b) Use the final value theorem, and that G,(0) is known from the Nyquist path.

¢) Apply the Nyquist criterion to %G(s)
The system oscillates when the open-loop gain is equal to —1 (check Ke “TG(iw)).
Try to find the w that gives arg F(iw)G(iw) = —180°.

The Nyquist curve for small w determines if the system may have an integrator or not. Also check if the system is
unstable for some K (from the Nyquist diagram).

Check the steady state error, the relative damping, etc.

a) To compute the closed loop transfer function combine

and



3.31

3.32

b)

The control error can be computed using

1

EG) = T Fmem

eref (3)

To find the steady-state error, use the final value theorem.

See b).

Consider what you can control, what is uncontrollable and what is desired.

Use mass and energy balance for both the tank and the heating system.

Compute the poles of the system.

Note that the system has negative sign in the numerator.

3.33 Check the pole for the closed loop system.



4 Frequency Description

4.1 Determine the angular frequency w of the signals using the figure. Use the relationship saying that when u(t) = Asinwt
the output becomes
y(t) = |G(iw)| Asin(wt + arg G(iw))

to determine |G(iw)| and arg G(iw).

4.2 a) For K = 0.5 the open loop system is given by

- 0.05(1 + s/0.02)
~ s(145/0.01)(1 + s/0.05)(1 + 5/0.1)

Go(s) = F(s)G,(s)Gs(s)

Use the rules in Glad&Ljung to make the Bode plot.

b) What can be said about the phase and gain margin when the output of the closed loop system oscillates with
constant amplitude?

¢) When the reference signal is Asin ot the output signal becomes
y(t) = |Ge(iw)| Asin(at + arg G (iw))

The Bode plot of the open loop system can be used to compute G (iw).

4.3 a) Check the behavior of G(iw) when w — 0 and w — oo respectively. See also if the absolute value and the argument
decrease monotoneoulsy or not.

b) Translate the behavior of the amplitude and phase curves to a pole-zero diagram.

4.4 Check the final values of y(¢) against the static gain G(0). Check also the overshoots of y(t) against the height of the
resonance peaks in G(iw). Check the frequency of the oscillation in y(t) against the resonance frequency in G(iw).

4.5 Use MATLAB, in particular the command bode.
4.6 Recall that for stable, linear systems “a sinusoid in gives a sinusoid out” after initial transients.

4.7 Recall that for stable, linear systems “a sinusoid in gives a sinusoid out” after initial transients.

4.11 a) Use the rules in Glad&Ljung to make the Bode plot.

b) What can be said of the phase and gain margin when the output of the closed loop system oscillates with constant
amplitude?

4.12 a) What is the stability criterion in the Bode plot?

b) What is the current phase margin? Is a lead really necessary?



5]

5.1

5.2

5.3

5.4

5.5

5.6

5.7
5.8

5.9

5.10

5.11

5.12

5.13

5.14

Compensation

Try a lead-lag compensator. A table of phase advance versus “the N-parameter” is found in Glad&Ljung.

a) Glad&Ljung gives a good description of how Bode plots can be drawn by hand.
b) A proportional controller does not affect the phase curve.

c¢) Try lead compensator.

a) Draw asymptotic Bode plot (see 5.1) by hand or use MATLAB.
b) Start with calculating the controller and then use the final value theorem.

¢) Try a lag compensator.

Start with drawing a Bode plot for the open loop transfer function. The final value theorem is a good tool in this
exercise.

Check for signs of dominating poles, pure integrations, resonance frequencies...

Draw asymptotic Bode plot using the guidelines in Glad&Ljung. See the discussion on lead-lag compensators in
Glad&Ljung.

Use values of |G(iw)| and arg G(iw) to plot the Nyquist curve G(s).
The time delay alters the phase curve but not the amplitude curve. Use the Nyquist stability criterion.

Check steady state level and rise time. Modify Figure using Ga (s) and adapt a lead-lag compensator. You can use
two lead compensators to acchieve a big phase advance.

Start by adjusting Figure to obtain the Bode plot of G.

b) It is possible to derive limits on K using either the Bode plot or the Nyquist curve.

¢) Use the final value theorem.

d) A time delay is described by the transfer function e=57.

Think of all possible phase curves, for example originating from time delays, and think about the corresponding Nyquist
curves or Bode plots.

See “Introduktion till CSTB” and previous exercises in this section.

Try a lead-lag compensator.



6 Sensitivity and Robustness

6.1

6.2

6.3

6.4

6.5

6.6

6.7

The sensitivity function is the transfer function from v to y.

Derive the relative model error

Make a simple plot of G, (iw) using the information in the problem formulation. Compare with the inverse of the relative
model error.

Convert the condition that the amplitude of y is larger than the amplitude of v to the condition

1+ Goliw)] < 1

What does this inequality say about the distance between the Nyquist curve and the origin?

Compute the transfer function of the closed loop system. Apply the robustness criterion using the given upper bound
of the relative model error.

a)

5

Derive the relative model order
Ga(s) =
and plot 1/ |Ga (iw)].

Determine the level that |G, (iw)| cannot exceed.

Use the robustness criterion and check the condition for G(iw) when w — oo.

The characteristic equation of the closed loop system is

s%(2 4+ 25a) + 55(2 + 25a) +25 =0

The characteristic equation becomes
s2(s+1)+a(s®+s+4)=0
Derive the relative model error
G (s) — G(s)
G(s)

Check where the absolute value of the inverse of the relative model error intersects |G.(iw)| given in the figure. It
is sufficient to check the low frequency asymptote.

GA(S) =

What can be said about the necessity and sufficiency of the stability conditions in a) and b)?

6.8 Check where the absolute value of the relative model error intersects |G, (iw)| given in the figure.

6.9 Derive the closed loop equation relating y(t), r(t), v(t), and n(t) using Y (s) = V(s) + Go(s)(R(s) — N(s) — Y(s)).
Then use the fact that the sensitivity function S(s) and the complementary sensitivity function T'(s) are related as
S(s) 4+ T(s) =1. (Here T(s) coincides with the closed loop system.)

6.10

a)

b)

The relative model error is given by

Use MATLAB and results from previous exercises.



6.11 Recall that for stable, linear systems “a sinusoid in gives a sinusoid out” after initial transients.

6.12 Create the loop gain transfer function and use its Bode plot to check stability.

6.13 The sensitivity function is the transfer function from v to y.



7 Special Controller Structures

7.1 a) Derive the transfer function from w to 6, which then implies the open loop transfer function

0.9
(1+5/0.033)(1 + 5/0.33)(1 + s)

O(s) = W(s)

Draw the Bode plot using the rules from Glad&Ljung.
b) Draw the Bode plot using the rules from Glad&Ljung.

7.2 a) Use the relationship

106) = - (155506 - Vo))

b) Derive the transfer function from V' to H when both feedforward and feedback are used.

7.3 a) Use Y(s) = (Gu(s)Fi(s) + Gy (s)) V(s).

b) Recall that for stable, linear systems “a sinusoid in gives a sinusoid out” after initial transients.



8 State Space Description

8.1 Define x; = 0, 25 = 0, and utilize the differential equation for the motor.

8.2 For the nonlinear equation o = fo(21, 2, u), the linearized equation is given by

&2 = fo(x1,0, 22,0, %0)

0

+ aiﬁ(ﬂh,owz,o,uo) (1 — 561,0)
0

+ Tﬁ(txl,Oan,OyUO) (z2 —x2,0)
0

+ 8722(961,0, 2,0, uo) - (u — up)

8.3 Define 21 = y, o = 0, and 3 = z. Use block diagram algebra to find expressions for s- X;(s), then use the inverse
Laplace transform.

8.4 Use canonical forms.

8.5 Take the Laplace transform of g(t).

8.6 G(s) = C(sI — A)~'B.

8.7 x(t) = ety (ty) + f:o A=) Bu(r) dr

8.8 a) Inmsert the control signals and take Laplace transforms. Use the final value theorem.

b) Examine the difference uq(t) — ua(t) for arbitrarily small constant e.
8.9 Check controllability.

8.10 The controllable subspace is spanned by the linearly independent columns of S. The unobservable subspace is spanned
by the null space of O.

8.11 b) Compare what happens to the states as t — 0o, to the transfer function poles.

¢) Check if det S and det O are nonzero.
8.12 The system is minimal, compute the transfer function.

8.13 a) For small deviations around 0, sin(¢) ~ ¢, cos(¢) =~ 1. Take # as input.

b) detS=1(1— 1)

8.15 a) Combine mass balance with the given equation for reaction speed.

10



9 State Feedback

9.1 a) The closed loop system & = Az + Bu, y = Cx, u = —Lx + yyer has characteristic polynomial det(s/ — A+ BL) = 0.

b) The observer poles are given by det(s] — A+ KC) = 0 and should be placed to the left of the closed loop poles.

9.2 a) Write the system in state space form by introducing three state variables corresponding to the outputs of the three
left-most integrators in the figure (¢ = output). Design a state feedback controller v = —Lx + y,of and place the
poles in —0.5.

¢) Design an observer with poles to the left of the closed loop poles.

9.3 a) The constant y can be found by using that 0 =& =0 at steady state.

b) Introduce the integrated control error as an auxillary state.
9.4 Decompose the system into two subsystems, one controlled by u; and one by us, and check the controllability.
9.5 Is the system observable?
9.6 Is the system observable?

9.7 e Is the system controllable?

—at

e Z(t) converges to zero as p(t)e~ " if (A — KC) has a double eigenvalue in —a.

e Check the observability of the system.
9.9 Study the phase margin of the open loop system.

9.11 Use the initial value theorem.

9.12 Compute the transfer function from wu(t) to z(t) = L&(t), that is, the loop gain, and check the stability margin given a
certain time delay T'.

9.13 e The closed loop poles are given by det(sI — A+ BL) =0

9.17 a) The closed loop system @ = Az + Bu, u = —Lx has the characteristic polynomial det(sI — A+ BL) = 0.

b) Check oberservability.

¢) Introduce a new state.

11
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1 Mathematics

A
<.

b) A ramp has Laplace transform S%.

1.1 a) A step has Laplace transform

o

1
) 542

oL

) =i
) sU(s) —u(0)

@

f) sU(s). (u(0) =0 is a common assumption in the course.)

) s2U(s) — su(0) — u(0)

o

h) s2U(s). (u(0) = (0) = 0 is a common assumption in the course.)

i) A time delayed signal has Laplace transform, e 57U (s).

1.2 a) lims oo y(t) =5/2

b) Y(s) = 535U(s)

1.3 The general solution is given by

y(t) = Cre™? 4 (Cy + Cst)e™" — %(cos(%) + 7sin(2t))

14 a)ylt)=1—e'+ie? >0

b) y(t) =1—0.5¢7t +0.5sint — 0.5cost
1.5 a) V2%
b) }/—ge_i%”
c) 1+ +/3i
d) -5
1.6
deciBel (dBsyg) | Definition Amplification F
20 20log F =20 = |F=10"=10
-3 20logF=-3 = | F=10"320~0.708 ~ %
0 20log FF =0 = |F=100=1
10 20log F =10 = | F=10%%=+/10~ 3.16
-10 20logF=—-10 = | F=107%% = ﬁ ~ 0.316

1.7 Multiplication of the two matrices gives the unit matrix.

1.8

1

Al =3 v = 1
-2
1

AQ =-1 Vg = 0
3
-1

/\3 =4 V3 = 0
2



1.9

1.10 A basis for the null space is for example

A basis for the range space is

The rank of the matrix is hence 3.

111 a) f(t)=1—e"% 1.
b) f(t) = —0.5e~! 4 0.5¢%; co.
c) f(t)y=e"t -t 0.

112 y® 42+ 29+ y=u

—= W O N

O ==

=W =N



2 Dynamic Systems

a) Differential equation

b) Transfer function

¢) Step response

2.1
where
2.2 (1) K=0.
(2) K=2.
3) K=3
(4) K=0.
2.3 G(s)
24 a)a<l
b) b=2

_ 10e—(L/V)s
- 1+3s

2.5 A-B, B-F, C-A, D-C, E-E, F-D.

2.6
’ System H T \ T \ M \ poles
Ga 3.3 | 47 | % -1,-1
Gp 1.2 | 13.6 | 52% | —0.2+1i0.98
Ge 10.6 | 14.6 | 0% —4.8,-0.2
Gp 1.7 | 54 | 16% | —0.5+10.87
Gg 08 | 26 | 16% | —14il.73

2.7 a > 0 gives overshoot, a < 0 gives undershoot.

210 G1-C, G5B, G4 A, G5 D.

TR
T

1 Raf+ kaky b ka
T JR, " JR,
_0(s) ko
Gls) = U(s) s(s+1/7)

0(t) = kort — ko2 (1 — e~ 4/7)



2.11 a) The signals can be classified as

o Disturbances signal: Acid process flow (unknown pH and flow)
¢ Control signal: NaOH solution

& Measured and controlled signal: The pH of the outflow

b) A block diagram where the control strategy is based on feedback could look like Figure

Acid flow

ref NaOH outflow pH
+@— F Tank

Figure 2.11a

2.12 a) ¢* = 1.5 m3/min and ¢} = 2.0 kmol/m?3.

b) The model is nonlinear since the model is described by the following nonlinear equations

d(pV) _
ar P(Qm qout)
d(Ve
Vea) = q1CA,1 T q2cA 2 — qCA
dt
c) ko = 2.0 kmol/m?, k; = 0.13 kmol/m?, and 7 = % = 0.67 min.
2.13 a) The model is given by

M

vi= 1+ (a— 1)y

dM;
=Li1+Vili—Li =V,
1 1+ Vi
dl‘i
Mz‘g =Li—1 (Ti1 — x3) + Vigr (Yir1 — i) + Vi (2 — vi)
b) The linearized model is given by
* dxiA * * * *
M; i@ Ly jzi1a +Viyivia — Lizia — Viyia
+a;_Lician +yi 1 Viei,a — 21 Lin — yi Via
«
Yin = 3 TiA

(14 (o= 1)z7)

Solution



3.1

3.2

3.3

3.4

3.5

3.6

Feedback Systems

P Pl | Gt ] G

T_

Figure 3.1a

a) Transfer function of the tank Gy(s) = 1. Block diagram see Figure
b) ky=2,T=5

¢) H(s) _ Gi(s)Gv(s)F(s) H(s) Gi(s)

Hyet(s) = 14G(s)Gv(s)F(s)? V(s) T 14+G1(5)Gy (5)F(s)

d) K < 0.05
e) 7%

f) 0

a) —0.1+ /0.3
b) Kp > 1.7

Ky <1land Ky = 200/K22

a) —a/K
b) 0

a) For small values of Kp the step response is slow, well damped and the steady state error is large. For increasing
Kp the step response becomes faster but more oscillatory, while the error is reduced. For large Kp the amplitude
of the oscillations increases, that is, the closed loop system becomes unstable.

b) The integrator in the regulator eliminates the steady state error. A too small value of KT gives a large settling time
while a too large value gives an oscillatory (finally unstable) closed loop system.

¢) Using the (approximate) derivative of the error in the regulator increases the damping of the closed loop system.
Increasing Kp too much, however, gives that an oscillation with higher frequency appears in the step response and
finally (approximately when Kp > 65) the closed loop system becomes unstable.

Root loci are shown in Figure

b) Intersection with the imaginary axis for K = 4, w = £+/2.

c) Intersection with the imaginary axis for K = 7.5, w = +/1.5.
Conclusions about the step response of the corresponding systems:

a) Asymptotically stable all K > 0.

Small K: No oscillations, larger K gives faster system.
Larger K: Oscillations. Larger K gives more oscillations.
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Figure 3.6a

b) Asymptotically stable for 0 < K < 4. Oscillating all K > 0.
Small K: larger K gives faster system.
Larger K: larger K gives more oscillating system. Unstable for large K (> 4).

¢) Asymptotically stable for K > 7.5. Unstable for K < 7.5. Stable and oscillating for K > 7.5. Larger K gives faster
system, until the real pole becomes dominating, then larger K gives a slower system.

3.7 General characteristic equation:
s(s+2)+4K(14+as)=0

The root loci are shown in Figure
a) Asymptotically stable for all K > 0, oscillatory for large K.
b) Asymptotically stable for all K > 0, not oscillatory for any K.
¢) Asymptotically stable for all K > 0, no oscillations for small and large K, faster for large K.
)

d) Asymptotically stable for all & > 0. Oscillatory for small a. Larger a gives more damped system.
With the tachometer feedback we can make the system both fast and well damped. The tachometer feedback is equivalent
to the D-part in a PID controller.

3.8 a) The system is unstable so w will grow to infinity.
b) The root locus is shown in Figure The system is asymptotically stable for K > 12.

¢) No. When K =12, s = 0 is one pole but the other two are complex.
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Figure 3.7a

3.9 a) Starting points: s = —5.5++/5.52 — 10 — K;. The starting points are all real for K; < 20.25, while we have complex
starting points for K7 > 20.25. The two principal root loci are shown in Figure The system is asymptotically
stable for 0 < Ko < 11K; + 110.

b) A larger K gives stability for larger K.

3.10 Root loci in Figure [3.104]

a) The system is unstable for all K.
b) Asymptotically stable for K > 5.

3.11 a) The root locus is shown in Figure The system is asymptotically stable for a > 1.

b) The smallest amplitude is 0.1.

3.12

3.13 The poles of the system all tends to points in the LHP or to —oo for large K.
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3.14 The system is stable for K/A < .

3.15

a) The closed loop system is stable in (i), (ii), and (iv).

Root locus

\

|
ey

ol

o

Real Axis

b) Stable when: (i) K < 2.5, (ii) K > 0, (iii) K < 1/2, and (iv) K < 1/4 or K > 1/2.

3.16 The Nyquist curves are shown in Figure

3.17

a) K <2/3

c) K <2/3
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25
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Figure 3.11a

3.18 7 =1.69

T = g —arctan7T = 0.53

Ty =7 — 2arctan § = 1.74

319 K <2

3.20 Root locus 1.

321 P =  by=by=0
I =  bp=b =0
D = b=b=0

3.22 a) The root locus with respect to Kp is shown in Figure When Kp increases the two complex poles move towards
the imaginary axis, that is, the closed loop system becomes more oscillatory. Finally, for Kp = 6.2, the poles cross
the imaginary axis and the closed loop system becomes unstable. This result is in accordance with Problem [3.5]
For small values of Kp the properties of the step response are mainly determined by the real pole close to the origin.
For larger values the complex poles start to dominate and when the complex poles cross the imaginary axis the
amplitude of the oscillations in the step response increases and the system becomes unstable.

Note, however, that the root locus alone does not give sufficient information to tell how the steady state error
changes with the parameter.

b) The root locus with respect to Kj is shown in Figure For small K7 the response of the closed loop system is
dominated by the poles on the real axis close to the origin. When K7 increases the poles become complex and move



3.23

a)

Figure 3.16a

25

Imag Axis
o
|
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Real Axis

Figure 3.22a

towards the imaginary axis, that is, the closed loop system becomes more oscillatory. Finally, for K =~ 1.5, the
poles cross the imaginary axis, that is, the closed loop system becomes unstable. As can be seen in Problem [3.5] a
small value of K7j, that is, a pole close to the origin, gives a slow step response. When K7 increases the dominating
poles become complex and the step response becomes oscillatory.

A large settling time will typically follow if the system is slow or has poor damping. Here, the large settling time
for small K7 is due to the system being slow. That the steady state error is eliminated cannot easily be seen in the
root locus.

The root locus with respect to Kp is shown in Figure When Kp increases the complex poles closest to the
origin move towards the origin and and at the same time the damping of the poles is increased. When Kp, increases
even more the second pair of complex poles moves towards the imaginary axis giving a high frequency oscillation
which finally gives instability.

The Nyquist curve is “far away” from the point —1 for all frequencies and the step response of the closed loop
system is well damped. As Kp increases the Nyquist curve grows in size and for Kp = 6.2 the Nyquist curve
reaches —1 and thus is the limit of stability.

For low frequencies the Nyquist curve is now far away from the origin since the integrating part makes |G(iw)]
large for low frequencies. The Nyquist curve now passes closer to —1 which results in a more oscillatory closed loop
system. The system becomes unstable around K = 1.44.

10
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Figure 3.22b

¢) The Nyquist curve is now further away from —1 which corresponds to an improved damping of the closed loop
system. The system becomes unstable around Kp = 66.

324 a) w.=0.38, wp, =1.1, ¢, = 94° and A, =3.1.
b) The closed loop system is now much more oscillatory due to the reduced phase and gain margins.

C) Kp =3.1.

3.25 A—iii, B—i, C—iv, D—ii.

3.26 a) Kp small = Both poles on the real axis, but one pole very close to the origin = Slow but not oscillatory system.
Kp = 1/(47%ko) = Both poles in —1/(27), that is, faster than in (1) but still no oscillations.

Kp large = Complex poles with large imaginary part relative to the real part, that is, oscillatory system.

b) If the reference is a step,

Mg et =0
If the reference is a ramp,
i ) A
im e(t) =
t—o0 Kpkot

c) limy,o0e(t) =0
327 Go = 12

o
1+ G,

328 a) G, =FG

G
b) Ge = 1fFG

_ __FG
¢) Gny =— 1+FG

d) Gre = 1+}G

11



Imag Axis
=)
T

2+

4 | | | i | | |
-2 -1.5 -1 -0.5 0 0.5 1 15

Real Axis

Figure 3.22c

329 a) 4%

b) F(s) =1 (for example)

¢) Poles in —2, —2. No zeros.

3.30 A4, B-2, C-3, D-1.

Ft,in, Tt,in

Tref Fc,irn Tc,in Tt
SCall c

Figure 3.31a

3.31 a) See the block diagram in Figure There, the signals are classified as:

o Input Fi i, and T¢ i
o Output Ty

o Disturbance Fi i, and Tt in

b) The model is given by

dT;

Vit = F(Toun — T, T, — T,
‘ dt t( " t)+ clta,inpt( t)
dT, U

Vo — F(Tosn —T) — —— (T, — T,
G = BT =T = (1= T)

c) Tia(s) = WFCMS)

d,e) The root locus for a P controller is shown in Figure [3.31b)

3.32 a) The system has a pole in —3.

12
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Figure 3.31b

b) The system is stable for K < —3.

333 K >p

3.34

13



4 Frequency Description

4.2 a) See figure in the solution. w. = 0.025, ¢, = 31°, A, = 2.5.
b) The period time will be 108 seconds, K = 1.25.
¢) B=28° f=0.02rad/s and ¢ = —42°.

4.3 a) Figure[d.3a]in Solutions.
b) Figure in Solutions.

44 A-B,B-C, C-D, D-A.

) e e s T T35 ]
Ga 1 0.64
Gg 1 1.5 1 2.5
Gg 1 0.21
Gp 1 1.27 | 0.7 | 1.15
Gk 1 254 | 1.4 | 1.15

b) The bandwidth of a system is (approximately) inversely proportional to the rise time. The damping is inversely
proportional to the height of the resonance peak. A large peak implies low damping and large overshoot.

4.6 y(t) = J=sin(2t —1/2 — 4 — Z — arctan 2).

S

47 a) 0.45sin(2t — 1.1)
b) Unstable system.

c) 0.11sin(2t —2.4)

)

d) 0.45sin(2t —2.1)

4.8 a,b)
w |G (iw)] arg G(iw)
1 1 = 0 dBgg —02rad = -—11°
51108 = —19dBg | -09rad = —52°
10105 = —6dBg | —1.6rad = —92°
201102 = —14dBy | —2.2rad = —126°

¢) See Figure in Solutions.
4.9 G1-B, Go-D, Gs-A, G4—C, G5-E.

4.10 Bode gain—step response pairs: A-D, B-C, C-A, D-B.
4.11 a) The bode digram of the system is shown in Figure

14



4.12

b) K = 51655 = 5.14

a) K <5.04
b) F(s) = 1.582+200

Bode Diagram

Magnitude (abs)

Phase (deg)
]
8
T

|

®

3
T

-225-

=270
10

10°
Frequency (rad/sec)

Figure 4.11a
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5 Compensation

5.1 For example, the following controller fulfills the requirements:

5+ 0.185 s+ 0.032
5+ 0.555 s + 0.0036

F(s) =3.33-

5.2 a) See Figure[5.2a]

b) Largest crossover frequency: 0.14 rad/s.

¢) One controller that fulfills the requirements is the lead compensator (with gain adjustment)

s+ 0.106
F(s) =19 - 7T———
(s) s+ 0.106 -7
5.3 a) See Figure[5.3al
1 — —
— 07 =
30525 0.5 === I
S 034 BN 2
0.2 : ‘ _y®
1 1
0.1 —— i = X
0° [ [ [
| | A
=N )
3 R U M ¥
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60 %
g  -180° i ‘ ~i¢ -y
i | | %
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15 A 1wl
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Figure 5.3a
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b) Smallest value of ramp error 0.067 and crossover frequency 150 rad/s.

¢) One controller that fulfills the constraints is

s+ 1.4
F(s)=0.75
(s) s+0.1
5.4 One controller which fulfills the requirements is
. 1.2
Fs) = 1.02-4- 5+6.3 s+1.26

s+25 s40.13
55 A-E-C, B-C-E, C-A-B, D-D-D, E-B-A.

5.6 One controller which satisfies the demands is

s+ 8.0 s+1.8

F(s)=12-5 :
() s+5-80 s+ 1.8/34

5.7 The system is stable when 0 < K < 0.2 or 1.67 < K < 5.

58 a) T <0.698s
b) 0.1s<T <0.279s

3
S 0.0473

00 ] .
P B e = S 0 0 A [
3 i ‘*\< IR S E———
3 ‘ N R .
O -180° R R R 3
=1 I A ”””’x’”\;’i* i 0,4%

”””” | I T ”\\K;
-270°
1072 107 10°
we = 0.078  we,q = 0.40 w [rad/s]
Figure 5.9a

59 a) ka =0.25 and a = 0.5. The Bode plot is given in Figure

b) One controller that does the job is

(s+o.2))>2

F(s) =10.6- (4(”0.2'4

5.10 The following compensator fulfills the requirements:

2
s+ 0.53 5 +0.105
F(s)=44- (4
() ( s+0.53~4> s+ 0.105/195

5.11 a) See Figure
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Figure 5.11a

b) Asymptotically stable for 0 < K < 10.
¢) lim oo e(t) =5

d) T<04

5.12 a) Impossible to determine.

b) It is stable.

5.13 a) we =>5rad/s, w, =9.5rad/s, Ay, = 3.5 and ¢y, = 27°.

b)-d) See solution.

5.14 The following controller will do:
s+0.12 s+ 0.02

s+3-0.12 s

F(s)=35.7-3

515 a) eg=0,¢e; = %, provided K < 4000. Larger K results in an unstable system.

b) The following controller will do:
s+378 s+10

s+264.6 s+ 1.9

F(s)=1756-7

18



6 Sensitivity and Robustness

6.1 The gain of the sensitivity is:
V2

SWl=

and the requirement on K becomes K > 2.
6.2 The maximum bandwidth is wg = 1.
6.3 See the solution, Figure
6.4 Yes.

6.5 a) See the solution, Figure
b)

’ F(iw)G (iw)
2

1+ F(iw)G(iw)

6.6 a) No, stability cannot be guaranteed when G(s) = 1.

b) «a > —2/25. This is not contradictory since the robustness criterion is a sufficient but not necessary condition.

6.7 a) Asymptotically stable for @ > 3. See the solution, Figure
b) a >4

¢) The robustness criterion gives a sufficient but not necessary condition.
1
6.8 0<v<gx

6.9 y(t) = % sin(t — 7) — sin(?)

6.10 3,) ﬁ(s) = —stl

S

b) Stability cannot be guaranteed for F'(s) = 1, while it can be guaranteed for the regulator from Problem
6.11 The amplitude of the steady state error will be 0.2.
6.12 The controller also stabilizes the system for the stirring speed 400 r/min.

6.13 K > /396 ~ 19.9

19



7.1

7.2

7.3

7.4

Special Controller Structures

a) See Figurein the solution. w, and ¢y, are undefined and A,, = 43.5. The stability requirement gives K; = 21.75

b) See Figure in the solution. w. and ¢y, are undefined, and A,, = 16. The requirement gives K; = 8 which

which implies

where a is the size of the step.

implies

Fi(s) =1, and h(t) = — gL (1 — e 2").

Zero steady state error.

The amplitude of the control signal is 3.

limy o y(1) = 357242

_ 4(s+1)
Fi(s) = —3539)6548)

limy_ o0 y(t) = —0.012

lim; o y(t) = — ??I?_lfl

y(t) doesn’t have a final value.

lim e(t) = 0.0487-a

t—o0

lim e(t) =0.111-a

t—o00

20
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8 State Space Description

8.1

8.2

8.3

8.4 a)

8.5

8.6 G(s)

S

= 72 (553

T1A = T2A
. 2
ToA = WHT1A + UA

YA = T1A

xl(t) = Kgxg(t) + M](t)
Q;Q(t) = 71‘1(0 —+ I’g(t)
ig(t) = —KQJJQ(t) + Kli(t)

1(t) = —2a1(t) — u(t)
da(t) = —3w(t) + Su(t)
y(t) = z1(t) + z2(t)

j?1(t) = —xl(t) + 2u(t)
ig (t) = —4$2 (t) + 3u(t)
y(t) = 21 (t) + 22(t)

21



8.7
to+T
x(to +T) = e Ta(ty) + / eAto+T=5) 4s) | Bug

to

8.8 a) The state space description of the closed loop system

-3 1 1 2
it)=[-1 0 0] at)+ | 1] hwet(t)
-1 0 0 1

h(ty=(1 0 0)=z(t)

b,c) The state space description of the closed loop system with noise

-3 1 1 -1
zt)=1-1 0 0)z@)+ | -1]n()
-1 0 0 0

h(t)=(1 0 0)xz(t)

8.9 Yes, since the system is controllable.

8.10 a) Dimensions: 2 and 1. Subspaces: {(1 -1 2)", (-2 3 —6)T} and { 0o -1 2" }

b) Dimensions: 2 and 1. Subspaces: {(O 4 —2)T, (O -8 8)T } and { (0 0 1)T }

811 a) x1=1—e"t 2y =0.5(e* 1)
b) No. Yes.

¢) Controllable, not observable.

)
)
)
)

d) Unobservable growing state = simulation collapses.

8.12 Poles: 1+ iv/2. Zeros: —1.

8.13 a)
Tr1 = Ty
1 U
Xo = —T1 — —
(0% (0%
T3 = T4

3'34:x3—u

b) detS = %(1 — é)z Thus, the system is controllable except for the case a = 1, that is, when the two pendulums

have the same lengths.

8.14 a)

b) u= —5x1 + 22 + 3.2r

¢) Y(s) = L2250 )

22



8.15 a) The model is given by

d

V= —Vhicd +geain — gea
des _ Vhici
a3

b) The linearized model is given by
—q—3k1c\V
ECA,A:%icA,A_F%u
dt \cB,a kici /) \¢cBa 0

v=0 1 (22)
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9 State Feedback

9.1 a) State feedback. Poles in { —3, —5} gives the state feedback
u = _655'1 - 14372 + Yref
Poles in { —10, —15 } gives the state feedback

u = —23x1 — 14925 + Yot

38
K= (—399)

b) Observer poles in —20 gives the observer gain

9.2 a)
0 Ky O 0
t=10 0 1]lxa+| 0 |u
0O 0 O K
1 3 3
b)“:*8K1K2$1*m9§2 2K, T3

c) Observer gain K™= (6 12/K; 8/K3)

93 a) u= 61729 - T—clw + 6172 Oret
—__2 _ 1 _ L2,
b) u= c172 0 'rclw + 617'2 erEf c1 3

9.4 State feedback gain L = (6 —2). Observer gain K™ = (16 9).
9.5 The system is observable and the poles of the observer may be placed arbitrarily.

9.6 a) Yes, since the system is controllable.

b) Closed loop poles in —3 gives
u = —3x1 — 522 — 4T3 + Yrer

¢) The system is observable with the sensor at z7 or x3. The sensor at z; and observer poles in —4 give K™ =
(6 14 14).

9.7 Xs(s) = ELU(s) + £ Xy (s)

98 a
b

=1 2

In steady state: h = —0.1.

S CE

oL

) L
)
¢) Fi(s) =2 gives, in steady state, h = 0.
) h
)

e) Introduce the integral of the height as a new state

z(t):/o h(s)ds=2=nh
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99 T <

9.10 a)
b)
9.11 a)
b)

arctan 2we __

KT = (—13 38)
The transfer function from v to #; is

13s — 12

where C7 = (1 O).

The initial value theorem gives

and hence §(0) decreases as o decreases.

No, since the zero is not affected by the feedback.

9.12 A very fast closed loop system:

9.13 a)
b)
9.14 a)

9.15 a)

implies that the poles are far into the LHP which implies a need for generating large input signals.
easily becomes unstable in case of model uncertainties.
becomes sensitive to measurement noise.

has a sensitivity function with a large peak.

L=(1 0)
r(t) = roe~ "
9 =y (motor angle) and x; = ¢ (angular velocity).

The pole locations give similar rise and settling times. With complex poles the maximum value of the input is
lower.

Larger weight on the motor angle gives faster response.
Increasing weight on the input makes the system slower.

Increasing weight on the velocity makes the system slower.

Yes the system is controllable.

Poles in —0.1 gives the state feedback
u = —0.13z7 — 0.128z,

It is desirable that the estimation error converges to zero faster than the dynamics of the system. Thus, we should
place the eigenvalues of the observer to the left of the poles of the closed loop system. To avoid large amplification
of the measurement noise the poles of the observer should not be placed too far into the left hand plane.

Observer poles in —0.1 gives the observer gain
0.45
K= <0.33>
the specifications 1—4 fulfilled?

The bandwidth requirement is not fulfilled.

The system is stable despite the model errors.
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9.17

9.18

The gain is different from 1 when k # 1

Both measurement and process noise are amplified for some frequency.

u=4x1 + T

Yes! It is essential that the input u is known since u is required in the observer design to get an asymptotically
vanishing state estimation error.

Yes, by introducing a third state x3 = u. This new system is observable hence a observer can be designed to
estimate wu.

The poles are pure complex and thus the system doesn’t have a well defined stationary error or speed of response.

A linear combination of r and x5 is given by
u = lo’f’ — lgl’g

with this controller the poles can be placed with Iy as

A
"
T 4

and by setting lo = 1 the stationary error will be zero when w = 0. If w # 0 and [y = 1 then there will be stationary
error of size lyw.

Designing a observer with the following observer gains k1 = —11, k2 = 6, and k3 = —8. Let the control law be
u = lgr — la@y — l323. With I3 =[5 and [y = 1 there will be no error. Place the poles to the closed loop with [s.
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11 Implementation

11.1 B; = 0.905, ay = 19.14, and as = —18.95.

11.2 a) Yk+1 — Yk = T’LL]C

b) 0<K <2
11.3 a)
1
A =
1 —+ ((.4)2T1)2
2

w1 = ? — W2

@ =7 + arctan wsT)
b) Ty =T/ gives A = L

1+ (waT/m)2
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1 Mathematics

1.1 a) A step has Laplace transform %.
b) A ramp has Laplace transform s%.
c) sj—2
d) =i
e) sU(s) —u(0)

f) sU(s). (u(0) =0 is a common assumption in the course.)

) s2U(s) — su(0) — u(0)

= 0

) s2U(s). (u(0) = 4(0) = 0 is a common assumption in the course.)

—

A time delayed signal has Laplace transform, e=*T U (s).

1.2 a) Insert §(t) = 0 och u(t) = 5 directly into the differential equation = y(t) = 5/2. It is also possible to solve the
differential equation and let ¢ — oo, or to use b) and the final value theorem.

b) Use Laplace transform on the differential equation Y (s) = 341»2U (s). The denominator coincides with the charac-

teristic polynomial of the differential equation. Note that we also have assumed y(0) = 0.

1.3 The general solution is given by
3
y(t) = Cre ™" + (Cy + Cst)e™" — m(cos(%) + Tsin(2t))

1.4 a)

b) The Laplace transform of the input

yields

The differential equation

may be represented by the transfer function

Hence, the Laplace transform of the system output is given by

1 1 1 1

—_. + . 5

s s+1 s+1 s2+1

—_— Y
Yi(s) Ya(s)

Y(s) =

Rewriting the first term using partial fractions leads to

1 1 1
s s+1 s s+1

Yi(s) =



with inverse transform

p(t)=1—e"
Rewriting the second term using partial fractions leads to
1 1 0.5 0.5s 0.5

Ya(s) =

s+1 5241 s+1 s2+1 +32+1
with inverse transform
yo(t) = 0.5e7" — 0.5cost + 0.5sint

Hence, the system output is
y(t) =1—0.5e"" +0.5sint — 0.5cost

1.5 a) The abolute value is |1 +i| = /2, and the argument is arctan 1 = T = 45°. Hence, the polar form is
V2l T

b) The absolute value is

5’1+\/®i‘

-
L4l V2,
5.2

The argument is

141
arg [ ————— ) = arg (1 +1i) — arg5i — arg (1 + V/3i
g<5i(1+ﬁi)) g(1+1i) —arg g ( )

= arctan 1 — 90° — arctan v/3 = 45° — 90° — 60°
= —105°

Hence, the polar form is
\/§ {105 -
—e 180
10
c) 2¢'5 =2cos % +2isin % =1+ /3i
d) 5e™'" = 5cos(—m) + bisin(—7) = -5

1.6 The amplification in deciBel is computed as 10log|F|* = 20log |F|, where F is the absolute value of the amplification.
The amplification F' = 100 hence corresponds to 20 log 100 = 40 dBayg.

deciBel (dBsgg) | Definition Amplification F
20 20logF =20 = | F=101=10
-3 20logF=-3 = | F=10"320x0.708 ~ %
0 20log F =0 = | F=10"=1
10 20log F =10 = | F=10"%=+/10~3.16
-10 20logF=—-10 = | F=107%% = \/% ~ 0.316

1.7 Multiplication of the two matrices gives the unit matrix.

1.8 The eigenvalues () of the matrix A are given by the equation det(AI — A) = 0, and the corresponding eigenvectors (v)
are given by the equation (A — A)v = 0.

1
A1:3 v = 1
-2
1
A2:71 Vg = 0
3
-1
/\3:4 V3 = 0
2




1.9

1 1 -1
T=11 -1 0
1 0 1
1.10 A basis for the null space is for example
0
1
-1
1
A basis for the range space is
2 1 2
0 1 1
3 1 3
1 0 1
The rank of the matrix is hence 3.
1.11 a) Writing the function with partial fractions yields
1 1
F(s)=-—
() s s+1
The inverse transform is then computed by use of a Laplace transform table:
f)=1-e"

This means that f(¢) — 1 as ¢ — co. The same result can also be obtained by use of the final value theorem, that
is, by computing limg_,o sF(s).
b) Writing the function with partial fractions yields
05 n 0.5
s+1 s—1
The inverse transform is then computed by use of a Laplace transform table:

f(t) = —0.5e7" + 0.5¢"

F(s)=

This means that f(¢) will grow without bound as ¢ — co. Here, the final value theorem cannot be used since f(t)
lacks a final value.

¢) The inverse transform can be computed by use of the relation
L7HG(s+a)} = g(t)
Here, G(s) = & and a = 1. The inverse transform of G is g(t) = t, so

1 —t
Gripl~

which tends to 0 as ¢ — co. This result can also be obtained by use of the final value theorem.

1ty =£74 4

1.12 The relation between inflow and water level is given by the transfer function

1
Y(s) = Z
(s) = 12
and the relation between control signal and inflow may be written as
1
Z(s) = ———
(5) 52 45+ 1U(S)
This means that the Laplace transforms of the control signal and water level are related by
1 1 1
Y(s) = U(s) = U(s)

(s+1)(s2+s+1) s3+2s24+2s+1
which corresponds to the differential equation

y 2 +2)+y =u



2 Dynamic Systems

2.1 a) We start from the equations

Jo=—f0+M
M = ki
v=ky0
Voltage equilibrium gives
. di
u—Raz—Laa—vzo
where L, = 0. Equation (2.2 in (2.1]) gives ) _
JO+ f0 = kyi
From (2.4) and (2.3) we get '
i=(u—k,0)/Ra
which in (2.5) gives ) . )
JO+ f0 =ko(u— ky0)/R,
that is Rof+ hok L
TR, T IR
Let
1 Raf + kaky o — ka
T JR. " JR,
which gives
.. 1 .
0+ —-0=Fku
T

b) Laplace transformation of (2.6) gives
1
(s + . 5)0(s) = koU(s)

and this gives the transfer function
0(s) ko

S U(s)  s(s+1/7)

0, t<0
u =
1 t>0

¢) Suppose that u is a unit step, that is,

that is 1
This gives
- - kio 1 - k‘oT k’QT 1
o= 60 = s = (5 - )

Inverse Laplace transformation gives
0(t) = kort — ko2 (1 — e~ 4/7)

that is, 8 will grow unlimited when ¢ increases.

2.2 (1) Asymptotically stable system. Monotonic step response, that is, real poles: K = 0.1.
(2) Very oscillative system. Poles close to the imaginary axis: K = 2.5.

(3) Unstable system. Poles in the right half plane: K = 3.

A,\
N
N =

(2.4)

(2.5)

(2.6)



2.3

2.4

2.5

2.6

(4) Asymptotically stable system. Oscillative step response, that is, complex poles in the left half plane: K = 0.5.

The inverse Laplace transform gives the step response

R i S )

For the final value, we have
dl (t) — B, t— o0

The figure gives 8 = 10. At the time ¢ = T, the system time constant, the step response has reached 63% of the final
value, that is,
d1(T)=0.63-10

The figure gives T' = 3, which gives the total transfer function

10
143s

G(s)

If we measure the signal dy(t) we introduce an additional time delay of % time units. The total transfer function then
becomes

10e~v*
G =
() 14 3s
Answer: .
10e~v*
(s) =
14 3s
Use the system description
2
w
Gs) = ——-9
() 52 + 2Cwos + w3
In the first figure wg = 1 and ¢ = 0.5.
a) For the system
1
G(s) = ———
() s2+as+1
we have wg = 1 and ¢ = 0.5a. The step response is more oscillative than in the case ( = 0.5, that is, ( < 0.5. This
gives a < 1.
b) For the system
b2
G(s)= —"——
(5) s2 + bs + b2

we have wg = b and ( = 0.5. The step response is in this case pure time scaling compared to the case wg = 1. The
figures show that the step response is twice as fast as in the case wy = 1. This gives b = wg = 2.

The pairs of plots that belong to the same system will be written in the form pole-zero-letter—step-response-letter.

Pole-zero diagram B has a single pole in the origin which gives a ramp as step response, that is, B-F. Pole-zero diagram D
also has a pole in the origin which gives an infinitely growing step response, D—C. Pole-zero diagram I has complex poles
which gives an oscillative step response, F—-D. Pole-zero diagram A has a zero in the origin which gives final value zero,
A-B. Pole-zero diagram C cannot be step response E, since two real poles and no zeros give no overshoot. Hence C-A,
and step response E is the only alternative left for pole-zero diagram E.

Answer: A-B, B-F, C-A, D-C, E-E, F-D.

a) Enter the systems. >> s = tf( ’s’ );
>>GA =1/ (872 + 2%xs +1 );
> GB =1/ (52 + 0.4%s + 1 );
> GC =1/ (872 + 5*xs +1);
> G =1/ ((s"2+s+1);
> GE =4/ (872 + 2%s + 4 );



Compute and plot the step response. >> step( GA ); grid

Step Response

0.9 b

0.7 4

0.6 b

0.5 b

Amplitude

04f : 8

0.3 bl

0.2 : b

Time (sec.)

The systems Gg(s), Ge(s), Gp(s), and Gg(s) can be simulated in a similar way. The values of T}, Ts, and M
for the different step responses can be found by a right click in the figure and selecting “Characteristics” and then
selecting the desired property. Use the “Properties...” menu item (of the right click menu) to change the interval
for the settling time. (The default interval is 2%, while we use 5% in the course.)

Compute the poles. >> pole( GA )
ans =
-1
-1

The other systems are handled in the same way.

The results from a) and b) can be summarized in the following table.

] System H T, \ T, \ M \ poles ‘
Ga 3.37 | 4.74 0% -1,-1
Gp 1.21 | 13.7 | 52.7% | —0.2 +£1i0.98
Gg 10.5 | 14.6 0% —4.8,-0.2

Gp 1.65 | 5.29 | 16.3% | —0.5 £10.87
Gk 0.824 | 2.64 | 16.3% | —14il.73

Using this table we can draw the following conclusions. (i): The speed of the step response (mainly) depends on
the distance between the poles and the origin. Poles further away from the origin give a faster step response and
shorter rise time. (ii): The damping of the system depends on the relationship between the imaginary part and the
real part of the poles. Poles with large imaginary part relative to the real part give a poorly damped (oscillatory)
step response.

Remark: We see that even though the distance to the origin is nearly the same in system G and Gp the rise
time is almost 3 times faster in system B. Note that speed is not only rise time, also the settling time should be
considered! Look at the following system

2
“o

G e ———————

(s) s2 4+ 2Cwps + Wi
The poles of this system are given by s = wo(—(+i\/1 — (2) = wo(— cos ¢ £isin ¢) where cos ¢ = . The parameter
¢ is called relative damping and 0 < ¢ < 1. We see that wq is the distance from the origin to the poles and in
Figure the step responses for different ¢ are shown when wy is constant. We see clearly that the rise time is
faster when ( is small but when ( is small the settling time is big!
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Figure 2.6a
2.7 Enter the system. Here we consider the case >> s = tf( ’s’ );
«a = 2, that is the system has a zero in —0.5. >>GLl = (2¢s + 1)/ (872 + 2%s + 1 );
Plot the step response. >> step( G1, 10 ); grid
Step Response
1.4
1.2+ .
1k
[ 0.8 : . ml
e}
2
£
=
<
0.6 .
0.4 8
0.2 |
]
0 1 2 3 4 5 6 7 8 9 10

Time (sec.)

A zero located close to the origin on the negative real axis causes an overshoot in the step response. A zero on the
positive real axis causes the step response to initially move in the negative direction. This means that in some cases the
zeros of the system can have significant influence in the system properties. Systems with zeros in the right half plane
normally imply extra difficulties for the design of control systems.

2.8 The Laplace transform of a step is U(s) = % The step response is hence given by
_ 1
y(t) = L7 (G(s)).

If G(s) is a rational function the inverse Laplace transform can be computed by first doing a partial fraction expansion
and then using a transform table. When the system is available one can let the input «(t) be a step and measure y(t).



2.9

The steady state value is 1.5.

The output signal almost reaches 1.9, which is slightly less than 0.4 over the final value. The overshoot is hence

0.4
04 26%.

Find the time points where the output is 10% (0.15) and 90% (1.35) of the steady state value. The rise time is the

difference between these values, here approximately T, ~ 1.5 s.

Find the earliest time such that the output then lies within £5% of the steady state value. Here, the interval is
[1.425, 1.575], and the settling time is T &~ 7.8.

2.10 G1—C: G4 is poorly damped, which gives an oscillatory behavior.

2.11

2.12

Gz:

Can be excluded since it is the only system having static gain %, and among the step responses there is always more

than one match for each of the present final values.

G3—B: This case has the shortest rise time, and some overshoot due to the pair of complex poles. The static gain is 2.

G4—A: The pole in —2 dominates, which gives slower step response than systems G5 and G5. The static gain is 1.

G5—D: The dominating pole is in —3, which is slower than for G3 but faster than for G4. The static gain is 2.

GGS

a)

b)

a)

Can be excluded due to instability.

The signals can be classified as

¢ Disturbances signal: Acid process flow (unknown pH and flow)
¢ Control signal: NaOH solution

& Measured and controlled signal: The pH of the outflow

A block diagram where the control strategy is based on feedback could look like Figure

Acid flow

ref NaOH outflow pH
+C>—» r Tank

Figure 2.11a

At steady state the inflow is equal to the outflow (constant volume). From mass balance
Pq" = pidr + pada
Assuming the densities are equal (p = p; = p2) gives ¢* = ¢} +¢3 = 1 +0.5 = 1.5 m®/min. From component
balance for component A
q"Ch = qiCA1 T G5Ch 0
which gives ¢} = 2.0 kmol/m?>.

The amount of mass in the tank is given by pV (assuming p is constant). The change in mass is given by the mass
coming in subtracted by the mass going out of the tank

d(pV)
- in — {ou 2.1
o = Plain ~ dout) (2.1)
where gi, = ¢1 + g2 and ¢ouy = ¢. Assuming that the volume is constant gives % which means
@ +q2=q (2.2)



2.13

b)

The amount of component A contained in the tank is given by Vea. The change is then given by

d(Ve
(th) = (q1CA,1 T G2¢A 2 — qCA (2.3)
Constant V and ([2.2)) gives
dc
VT: =q1(caq —ca)+q2(caz —ca) (2.4)

The model (2.1]), (2.3]) is nonlinear since it contains products between variables. Assuming volumes and flows to be
constant gives a linear model.

Assume that all the other independent variables (g1, g2, ca,2) are constant. Take their values from a). Equation (2.4))

then gives
de A

dt

The equation can be written

=g (can(t) —ca(t)) + ¢ (cho —ca(t)) = —L5ea(t) + can(t) +2

dCA
— = —1.5¢ca(t) + 3.2
i ea(t) +
for ¢ > 0. The corresponding Laplace transform equation is
1
s(Lea)(s) — (Lea)(0) = —1.5(Lea)(s) + 3.2g
or
1 3.2 1 1 1
= 2 — = 2 .2 -
(Lea)(s) = S5 ( 3 ) s+15 T 15
which transforms back to 4.9
1.5 . 1.5
ca(t) = 2e t+1—5(1—e Y

Rearranging yields

3.2 3.2 3.2 —+
9_ -15t _9 (9 _ 1— ==
5 ( 1.5) ¢ ( 1.5) ( °«

where the sought constants can be identified: ko = 2.0 kmol/m?, ki = 0.13 kmol/m?, and 7 = %= = 0.67 min.
The equilibrium equation is
aT;
;= _ 2.1
“iTTT (a—1)z; (2.1)
Mass balance gives
dM;
=Lia+Viga—Li =V, (2.2)
d¢
Component balance gives
% = M- + i dtz = Li—1zi—1 + Vig1yi+1 — Lizi — Viys (2.3)
Combining (2.2)—(2.3) gives
M; el (Lica +Vigr — Li = Vi) + Licazi 1 + Vigayirr — Lz — Viys (2.4)
=Li—1(xic1 — i) + Vi1 Wit1 — x) + Vi (2 — y3)
The dynamic model for M;(t) and z;(t) is described by (2.1)), (2.2)), and (2.4).
The stationary point for (2.2)) gives L7 ;| + V% | — Lj — V;* = 0. Introduce the difference variables
Tin =T — X Tit1,A = Ti+1 — z;'k+1 Yin = Yi — Y
Yi1,A = Yim1 — Yi1 Lizia=1Lig1 —Li, Vicia =Viei =V,
Lin=Li~ L Via=Vi— 1}



The assumption that the change of mass on the plate is zero gives

dM;a

=0
dt

which means that
Li 1 +Viga—L; —=V; =0

this will simplify (2.4) to
dl’i

Mzg =Liiwi—1 + Viqyir — Liwi — Viy, (2.5)
Linearization of (2.5) gives
* dl’iA * * * *
M; T - Li yzicin+Viiyivia — Lizia — Viiyin (2.6)
+ a7 1 Licia + Y1 Vier,a — 21 Lin — Y Via
Linearization of (2.1)) gives
!

The linearized model is described by (2.6)—(2.7).

Solution

Y
2.14 Fran blockdiagramet fas Y (s) = Ga(s)[Fa(s)Y (s) + G1(s)U(s) + Fi(s)U(s)], vilket ger 6verforingsfunktionen ¥(s) =

U(s)
Ga(s)(G1(s) + Fi(s))
1-— FQ(S)GQ(S) '

2.15 D: En integrator vars stegsvar ar en ramp. Ger 1. B: Nollstélle i hogra halvplanet vilket ger ett stegsvar som initialt
gar at fel hall. Ger 5. A: Polerna till A och B &dr samma, vilket ger samma relativa ddmpning. Ger 2. C: Polerna har
relativ ddmpning ¢ = 0.15 vilket 4r mindre &n alla andra. Ger 4. F: Polerna har relativ dimpning ¢ = 1 och snabbhet
wo = 3. Inget annat system &r sa snabbt. Ger 3. E: Enda systemet kvar. Ger 6.

Svar: A-2, B-5, C-4, D-1, E-6 and F-3
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3 Feedback Systems

3.1 a) To begin with, the transfer function for the tank system is derived. The mass balance equation is, assuming that
the bottom area of the tank is 1 m?

h(t) = z(t) — v(t)

that is (note that all initial conditions are zero when deriving transfer functions)

sH(s) = X(s) — V(s)

Hence
H(s) = Gi(s)(X(s) = V(s))
where 1
Gt (S) = ;
The block diagram becomes like in Figure
b) The transfer function for the valve is
ky
Gv(s) 1+Ts
With the input taken as a unit step signal, that is,
1
U(s) = -
(5) =~
it follows that i 1
X — v .-
(s) 1+Ts s

The final value theorem gives
lim z(t) = lim sX(s) = ky
t—o0 s—0

The time constant T is the time it takes for the step response to reach 63% of its final value. From the plot it
follows that T'= 5 and k, = 2, that is

Pre - h
—(3) Fls) | Guls) (B Guls)

Figure 3.1a

¢) By using the controller F'(s), the closed loop system shown in Figure is obtained. From the block diagram,
the following equations are obtained:

E(s) = Hyet(s) — H(s)
H(s) = Gi(s)(F(s)Gy(s)E(s) = V(s))
This leads to
H(s) = Gu(s) (Guls) F(s) [Hr(s) — H(s)] - V(5))

e
H(s) (1 + Gt(s)Gv(s)F(s)> = Gy(s) (GV(S)F(S)Href(s) - V(s))
<~
_ Gi(8)Gy(s)F(s) 3 Gi(s) .
H) = e me e ) " e e Fe) ~ @
Ge(s) —Gy n(s)

11



3.2

2)

That the expression for the output is a sum over all inputs, with each term given by a rational transfer function
multiplied by the input, is no coincidence; this will always be true of any transfer function between points in a block
diagram with rational transfer functions and summation points. In particular, the output is a linear (dynamic)
function of the inputs. This leads to a conclusion that will be used frequently hereafter: When computing the
transfer function from one input to the output, all other inputs may be set to zero. The reader is encouraged to try
this by taking Hyet(s) = 0 in the first equation above.

Inserting the expressions for Gy(s) and G,(s) in the equation above, it follows that G 1, is given by
H(s) 1+ 5s
V(s)  s(1+5s)+2F(s)

and G. by

Hyer(s)  s(145s) +2F(s)

Assume F(s) = fﬂbgji with Fy(s) and F,(s) polynomials, then the characteristic polynomial becomes p(s) = s(1 +

58)Fa(s) + 2Fy(s) in both cases.

Proportional feedback
F(s)=K

gives
H(s) 04K

Heet(s) 524025+ 04K

The closed loop poles are given by
s> +0.25 + 0.4K =0

That is
s=-0.1+iv04K —0.01 if K > 0.025

The closed loop poles belong to the pre specified region provided that [Re| > [Im| or
0.01 > 04K —0.01
Hence K < 0.05.

When v is a unit step signal we have

1
Vis) = =
(5)= -
The control error € = hyef —h = —h  (hyet = 0) is given by
s+ 0.2 1

E(s) = —H(s) = 1
(5) (5) = 27025 104K 5

The final value theorem gives (the system is stable for K > 0)

. . 1
Jim e(t) =l sEB(s) = o7
A PI controller, that is,
K K
F(s) = Kps + Ki
s
gives
s(s+0.2) 1

E(s) = 1
)= 3G +02) +0d(kes T K1) s

when v is a unit step signal. The final value theorem gives (provided that the closed loop system is asymptotically
stable)
lim e(t) = lim s(—H(s)) =0

t—o0 s—0

The closed loop poles (from Solution are given by
s =-0.1+iv0.4K —0.01

K =1 gives
s =—0.14+1iv0.39

12



b) PD control
F(S) = Kp + Kps

and using the expressions derived in Solution [3.I] this results in

= Hre = Hre
S5 59) 1 2F(5) ) = T 02+ 0.4kp)s + 04Ky ()

The characteristic polynomial is
s2 4+ (0.24 0.4Kp)s + 0.4Kp =0

Compare with the standard form
s% 4+ 2Cwes +wi =0

where wg denotes the fundamental frequency and ¢ denotes the relative damping. Assume Kp = 1 and determine
Kp so that ¢ > 1/4/2. A comparison with the standard form then gives

Wop =V 0.4

_02404Kp _ 1

=% a B

which gives Kp > 1.7.

3.3 The dynamics of the astronaut is given by
F=ma

where m = 100, F' is the control signal u and a = §j. This gives the model
1009 = w

and
1

Y(5) = 10052

Uls)

The control law is given by
u=Ki(r—y)— KiKyy = Ki((r —y) — K29)

U(s) = K1(R(s) = Y (s) — K3sY (s))

The transfer function from r to e is given by

82 + 0.01K1K25
82 + 001K1K28 —|— OOlKl

E(s) = R(s)

When r(t) =t we have

The final value theorem then gives (provided that K; and Ky are chosen such that the closed loop is asymptotically
stable) (also note that the transfer function from r to e must have at least one zero at the origin for the final value to
exist, but this is satisfied regardless of the choice of K; and K>)

lim e(t) = lim sE(s) = Ko < 1
5—0

t—o0

The transfer function from r to y is given by

R(s)  s2+ 0.01K K25+ 0.01K,

The standard form for the characteristic equation
52+ 2Cwps +wi =0

gives with ¢ = 1/v/2 =~ 0.7
$2 + v 2wy + wg =0

13



A comparison with

2+ 0.01K,Kos +0.01K, =0

gives wo = 0.14/K;. We hence obtain

Answer: Choose Ky < 1 and K; = 200/K3.

3.4 We shall determine how the control error e(t) = yyot(t) — y(t) depends on the disturbance signal f.. We can assume that
yref (t) = 0, since the size of the error as a function of f. is sought for.

E(s) = Yiet(s) = G(s5) - (Fe(s) + F(s)E(5))

where
1
Gls) ms? + ds
gives
G(s)
BE(s) = — F.
) =15 Gmre W
fc(t) is a step disturbance, that is
a
F.(s) = -
()=
a) Proportional control, F'(s) = K, gives
1
B(s) = .

T ms2t+ds+ K s

Using the final value theorem it follows that (provided that K is chosen such that the closed loop is asymptotically
stable)

lim e(t) = lim sE(s) = —a/K
5—0

t—o0

b) Proportional-Integral control

gives

E(s) =

" msd+ds2 + Kis+ Ko s

The final value theorem in this case gives (provided that K; and Ks are chosen such that the closed loop is
asymptotically stable)

lim e(t) = lim sE(s) =0

t—oo s—0
3.5 a) Enter the system. >> s = tf( ’s’ );
> G6G=0.2/(C(s2+s+1)x*(s+0.2));
Generate a proportional regulator. >> F = 1;
Generate the closed loop system. >> Gc = feedback( F * G, 1 );

14



Compute and plot the step response. >> step( Gc, 30 ); grid

Step Response

0.7

0.6 nl

Amplitude

0.3 : nl

0.2 al

0.1 nl

0 I I I I I
0 5 10 15 20 25 30

Time (sec.)

By trying some different values of Kp the following behavior can be seen: For small values of Kp the step response
is slow, well damped and the steady state error is large. For increasing Kp the step response becomes faster but
more oscillatory, while the error is reduced. For large Kp the amplitude of the oscillations increases over time, that
is, the closed loop system becomes unstable.

Generate a PI controller with Kp = 1 and >> KP = 1; KI = 1;
Ki=1. >> F = KP + KI / s;
Plot the result. >> Gc = feedback( F * G, 1 );

>> step( Gc, 50 ); grid

Step Response

18

1.6 nl

141 al

1.2 nl

Amplitude

0.8 al

0.6 v v 1

04 :

0.2 nl

0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

The following effects of the integrator can be found by trying some different values of Kj. (i): The integrator in
the regulator eliminates the steady state error. (ii): A too small value of Ky gives a large settling time while a too
large value gives an oscillatory (finally unstable) closed loop system.

15



C) Generate a PID controller with Kp = > KP =1; KI =1; T = 0.1; KD = 1;

1,Ki=1,Kp=2and T =0.1. >> FP = KP;
>> FI = KI / s;
> FD =KD *s / ( s*¥T + 1 );

>> F =FP + FI + FD;
Plot the result. >> Gc = feedback( F * G, 1 );
>> step( Gc, 50 ); grid

Step Response

15

Amplitude

0 i i i i i i i i i
0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

Using the (approximate) derivative of the error in the regulator increases the damping of the closed loop system.
Increasing Kp too much, however, gives that an oscillation with higher frequency appears in the step response and
finally (approximately when Kp > 65) the closed loop system becomes unstable.

3.6 a) The transfer function for the closed loop system is

_ Gols) K(s+2)
1+ Go(s)  s(s+1)(s+3)+K(s+2)

Ge(s)

The characteristic equation is
s(s+1)(s+3)+K(s+2)=P(s)+ KQ(s) =0

that is
P(s) =s(s+1)(s+3) Q(s)=s+2

© Starting points: < zeros of P(s):0,—1,-3
End points: < zeros of Q(s) : —2

¢ Number of asymptotes: 2
Directions: % [r + 2k7] = /2
Intersection with the real axis: 1[04 (—1) + (=3) — (-2)] = —1

¢ Real axis: [—3, —2) and [—1, 0] belongs to the root locus

¢ Intersection with the imaginary axis: Set s = iw and solve the characteristic equation

iw(iw + 1) (iw+3) + K(iw + 2) = —iw® —4w? + 3+ K)iw + 2K =0

(—w?+3+K)w=0 w=K=0
—4w? +2K =0 (starting point)

16



i
Asymptote ------ -l

1
- K=04186

Re

; T T T
-4 -3 -2 -{ 1

Asymptote ------ >

Figure 3.6a

Figure 3.6b

This gives the root locus in Figure

Answer: All poles are in the left half plane, that is, the closed loop system is asymptotically stable for all K > 0.
For small values of K there are no oscillations and the speed is increasing with increasing K. For a certain value
of K the system becomes oscillating. The damping is decreasing with increasing K.

The transfer function for the closed loop system is

Go(s) K
1+Go(s)  s(s2+25+2)+ K

The characteristic equation reads
s(s+25+2)+ K =0

that is
P(s) = s(s? + 25+ 2) Q(s)=1

o Starting points: < zeros of P(s):0,—1+1
End points: < There are no zeros of Q(s)

¢ Number of asymptotes: 3
Directions: &[r + 2kn] = m, +7/3
Intersection of asymptotes: £[0+ (=1 +1) + (=1 —i)] = —2/3
o Part of the real axis that belongs to the root locus: (—o0, 0]
¢ Intersection with the imaginary axis: Set s = iw and solve the characteristic equation

iw((iw)? + 2w+ 2) + K = —iw® — 20w? 4+ 2iw + K =0

(—w? +2)w=0 w=K=0 or w==+V2
—2w*+ K =0 (start point) K=4

17



Asymptote ---------»! Im
4
3
2
0=VI3
K~11021 WG \K=75
Re
> i
-7 -6 -5 -4 -3 -3 -1 1 2
| | [o=-VI5
| K=175
-2
-3
-4
Asymptote ---------»
-5
Figure 3.6¢

This gives the root locus in Figure [3.65

Answer: All poles are in the left half plane. That is, the system is asymptotically stable for 0 < K < 4. The
step response is oscillating for all K. To begin with the system will be faster with increasing K. However, for K
sufficiently large the oscillating part is dominating. The damping will decrease with increasing K and for (K > 4)
the closed loop system is unstable.

¢) The transfer function for the closed loop system is

Go(s) K(s+1)

Gl = 156.6) = 56— DG +6) + K+ 1)

The characteristic equation is
s(s=1)(s+6)+ K(s+1)=P(s)+ KQ(s) =0
P(s) =s(s—1)(s+6) Q(s)=s+1

o Starting points: < zeros of P(s):0,1,—6
End points: < zeros of Q(s) : —1

¢ Number of asymptotes: 3 —1 =2
Directions: [r + 2k7] = 4 /2
Intersection of the asymptotes: [0+ 1+ (—6) — (—1)] = —2

o Part of the real axis that belongs to the root locus: [—6, —1) and [0, 1]
¢ Intersection with the imaginary axis: Set s = iw and solve the characteristic equation:
iw(iw — 1) (iw + 6) + K(iw + 1) = —iw® — 5w + (K — 6)iw+ K =0

(—w?+ K —6)w=0 w=K=0 Lw= 3
—5w?+ K =0 (start point) K=175

This gives the root locus in Figure [3.6¢

Answer: All poles are in the left half plane, that is, the closed loop system is asymptotically stable for K > 7.5.
For small values on K the closed loop system is (as the open loop system) unstable. For K > 7.5 the closed loop
system is stable and oscillating. As K is increasing from the critical value both the damping and the response speed
are increasing (the time constant is always > 1/2s), until they both are beginning to decrease. The damping is
decreasing with increasing K.

3.7 The transfer function for the closed loop system is obtained from

0(s) = %9’(5) = é - fST K - (Bres(s) — asB(s) — 0(s))
=
0(s) k-K 4K

G(s) = Brot (5) = s(1+s7)+ k- K(1+ as) - s(s+2)+4K(1 + as)

The characteristic equation is:
s(s+2)+4K(14+as) =0

18



Im

0 T T
-3 -2 -1 1

Figure 3.7a

Re

Figure 3.7b

a) a = 0. The characteristic equation is then
s(s+2)+4K =s* + 25 +4K =0

with the solution

s=—-1+£+v1—-4K

This gives the root locus in Figure [3.7a)

Answer: All poles are in the left half plane, that is, the closed loop system is asymptotically stable for all K > 0.
b) a = 1. The characteristic equation is then
s(s+2)+4K(1+s)=0

that is
P(s) =s(s+2) Q(s) =4(1+s)
o Starting points: < zeros of P(s): 0, —2
End points: < zeros of Q(s): —1

& Number of asymptotes: 2 — 1 =1.
Direction of asymptotes: % -7, that is, the negative real axis.
o Part of the real axis that belongs to the root locus: (—oo, —2] and (—1, 0]

¢ Intersection with the imaginary axis: Set s = iw and solve the characteristic equation:
iw(iw +2) + 4K (1 +iw) = —w? + (2 + 4K)iw + 4K = 0

2+4K)w=0 w=K=0
—w?+4K =0 (start point)

This gives the root locus in Figure
Answer: All poles are in the left half plane, that is, the closed loop system is asymptotically stable for all K > 0.
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K=3+05/27 K=3-05/27

Figure 3.7c

¢) @ =1/3. The characteristic equation is then
s(s+2)+4K(1+5s/3)=P(s) + KQ(s) =0

which gives
P(s) =s(s+2) Q(s) =4(1+s/3)

o Starting points < zeros of P(s): 0, —2
End points < zeros of Q(s): —3

¢ Number of asymptotes: 2 — 1 = 1 Direction: % -7 , that is, the negative real axis
o Part of the real axis that belongs to the real axis (—oo, 3) and [—2, 0]

¢ Intersection with the imaginary axis. Set s = iw and solve the characteristic equation:
N . 2 4 ..
iw(iw+2)+4K(1 +iw/3) = —w* 4+ (24 gK)lw +4K =0

(24 2K)w =0 w=K=0
—w?+4K =0 (start point)

This gives the root locus in Figure [3.7¢
Answer: All poles are in the left half plane, that is, the closed loop system is asymptotically stable for all K > 0.
d) K = 1. The characteristic equation becomes
s(s+2)+4(14+as) =s>+2s+4+4as=0

that is
P(s)=s>+2s+4 Q(s) =4s

o Starting points < zeros of P(s): —1 £iy/3
End points < zeros of Q(s): 0

< Number of asymptotes: 2—1 =1
Direction: -7, that is, the negative real axis

1
o Part of the real axis that belongs to the root locus: (—o0, 0)
¢ Intersection with the imaginary axis: s = iw solves the characteristic equation

—w? + 2w + 4 + diwa =0

w(2+4a)=0 has no solution
—w?+4=0 (o < 0 is of no interest)
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3.8

Figure 3.7d

To get further insights into the behavior of the closed loop system the intersection with the real axis is determined.
That is, a real valued double root to the characteristic equation has to be determined

2+ 25+ 44 4as = (s +a)? = s>+ 2as + a?

20 = 2+ 4« N a=2
a?=4 a=1/2

This gives the root locus in Figure

Answer: All poles are in the left half plane, that is, the closed loop system is stable for all « > 0. From d) it
follows that the system will be more damped for larger values on « (compare b, c: in b) the system is not oscillating
for any value on K). For « sufficiently large, the time constant can be arbitrary large. This is natural since the
term —af - K (D-term) that appears in the input voltage of the motor reduces the velocity of the axis. The effect is
as if the motor has been drained with thick oil. With a suitable viscosity « the system can be made fast and stable
as in ¢). With @ = 0 as in a) and K large enough, the system is not becoming faster just less damped.

w(s) 10(s + 1)
Oref(8) (s+10)(s+4)(s—3)
The open loop system is unstable (a pole in s = 3). Hence w(t) is increasing when d,¢(t) is a step signal. Observe that
the model is valid for small changes with respect to a large reference input 6y for the pitch, and for predetermined
values on the static and the dynamic pressure.

=G1(s) - Ga(s) =

w(s) = Gi(s) - Ga(s) - K - (wret(s) — w(s))
gives

w(s) _ K- Gl(S) . GQ(S) w (S)
1+ K-Gi(s)-Ga(s) ™
10K (s + 1)

= 5 10)(s + D)(s — 3) + 10K (s + 1))

The characteristic equation is
(s+10)(s+4)(s—3)+10K(s+1)=0

which gives
P(s) =(s+10)(s +4)(s — 3) Q(s) =10(s+ 1)

o Starting points: < zeros of P(s): —10, —4, 3
End points: < zeros of Q(s): —1

¢ Number of asymptotes: 3 —1 =2
Directions: 3 (7 + 2km) = +7/2
Intersection with the real axis: 315 [(—=10) 4+ (—4) +3 — (=1)] = =5

o Part of the real axis that belong to the root locus: [—10, —4] and (-1, 3]
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- --- Asymptote

K=15163 K=12

<---- Asymptote -8

Figure 3.8a

¢ Intersection with the imaginary axis: s = iw solves the characteristic equation

=

(iw 4+ 10) (iw + 4) (iw — 3) + 10K (iw + 1) =

—iw

This gives the root locus in Figure
Answer: All poles are in the left half plane, that is, the closed loop system is asymptotically stable for all K > 12.

3 _11w? + (10K — 2)iw + 10K — 120 = 0
(—w? + 10K —2)w =0

w=0
11w? + 10K — 120 = 0 }:‘ K =12 }

¢) The question is: Is there any K > 12 for which all poles are real valued? For K = 12 it is known that s = 0 is a
solution to the characteristic equation. The other roots are given by

(s +10)(s +4)(s —3) +10-12(s + 1) = s(s* + 115 + 118)

That is, the two remaining poles are

11 11
— 4 /(=)2—118 = —5.5+£94i

2 2

which shows that they are complex for K > 12. The answer is hence no.

3.9 This text serves as a workaround for an obscure bug in ITEX.

1
+(T>_' (+1)(5110)

]

a) The block diagram is given in Figure

1
(s+1)(s+10)+ K1

1
(s+1)(s+10)+ K1

©

A

Figure 3.9a

3.9a

Hence, the characteristic equation is s ((s + 1)(s +10) + K1) + K2 =0

P(s)

Start points: 0 and the roots to s + 11s + 10 + K; = 0, that is, s = —5.5 + /5.52 — 10 — K,

The roots are real when K; < 20.25.

@

The roots are complex when K; > 20.25. (II)
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The

I o

<

The

start points: 0, —5.5 + «
end points: missing

. a. 5
asymptotes: 3: ¥, m, ¢

intersection of the asymptotes: §(—11) = —4

parts of real axis: (—oo, —5.5 — a], [-5.5 + a, 0]

root locus is given in Figure |3.9b

Root locus

Imag Axis
o

-5F

=15

Real Axis

Figure 3.9b

start points: 0, —5.5 + i
end points: missing
asymptotes: as in (I)
parts of real axis: (—oo, 0]

root locus is given in Figure |3.9¢c
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Root locus
T

Imag Axis
o
Il

5} i

Real Axis

Figure 3.9¢

Imaginary axis crossings: put s = iw in the characteristic equation =
iw(—w? +1liw+ 10+ K1)+ Ko =0 <
—iw?® — 11w? + 10iw + Kjiw + Ko =0 =
—w? + 10w+ Kiw=0 (1)
—1w?+ Ky =0 (2)
w = 0 solution to (1) = in (2) K2 = 0.
w? =10 + K; solution to (1) = —110 — 11K; + Ko = 0 = Ky = 11K; + 110
Answer: The closed loop system is asymptotically stable when 0 < Ky < 11K; + 110

b) By using the inner feedback (K7 > 0) a larger value of K3 is allowed.

3.10 Set
1

(s+1)(s—1)(s+5)
With U(s) = F(s)E(s), the transfer function of the closed loop system becomes
__Go(s)F(s)

1+ Go(s)F(s)

Go(s) =

Ge(s)
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a) Here, F(s) = K, so
Ge(s) =

(s+1D(s—1)(s+5)+ K
The characteristic equation is

(s+1)(s—1)(s+5)+K=0
which gives

P(s)=(s+1)(s - 1)(s+5)  Qs) =1

o Starting points: < Zeros of P(s): —1,1, =5
End points: < Zeros of Q(s): none

¢ Number of asymptotes: 3 —0 =3
Directions: #[r + 2k7] =7, £7/3
Intersection point: i[—1+ 1+ (=5)] = —5/3

3
o Real axis: (—oo, —5] and [—1, 1] belongs to the root locus
¢ Intersection with the imaginary axis, set s = iw:

(iw + 1) (iw — 1) (iw + 5) + K = —iw® —5w? —iw+ K —5=0
(W?+1Dw=0 w=0
(A simple root!)

This gives the root locus in Figure

Im

,K=5.049
S

,/ two poles in
20097

Figure 3.10a
Answer: There exists at least one pole in the RHP. Hence, the system is not asymptotically stable for any value
of K.
b) Here, F(s) = K(1 + 0.5s). Hence

K(1+0.5s)

Ge(s) = (s+1)(s — 1)(s +5) + K(1 4 0.5s)

The characteristic equation is
(s+1)(s—1)(s+5)+ K(1+0.55) =0

which gives
P(s)=(s+1)(s—1)(s+5) Q(s) =1+0.5s

o Starting points < Zeros of P(s): —1,1, =5
End points < Zeros of Q(s): —2

¢ Number of asymptotes: 3 —1 =2
Directions: 3 [r + 2k7] = +m/2

Intersection point: [—1+1—5—(=2)] = —

ol
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Figure 3.10b

o Real axis: [—5, —2) and [—1, 1] belongs to the root locus
¢ Intersection with the imaginary axis, set s = iw:

(iw+1)(iw — 1) (iw + 5) + K (1 + 0.5iw) =0
—w3 +w(0.5K —1)=0
— {—%ﬁ—5+K:O

— w=20 w? = —1, not real!
K=5 %\ K=0

This gives the root locus in Figure
Answer: The system is asymptotically stable (all poles in the LHP) if K > 5.

3.11 a) The closed loop system
k

E ) k(s +a)
G = =
C(S) 1+Wois+a) 5(8+2)(8+a)+ka

has the characteristic equation
s(s+2)(s+a)+ka=0

Choose k = 6, and draw a root locus with respect to a. The characteristic equation can be written
s*+2s* +a(s* +25+6) =0

that is,
P(s) = s*(s +2) Q(s) =52 +254+6

© Starting points: 0, 0, —2
End points: —1 £iv/5

¢ Number of asymptotes: 3 — 2 = 1, direction: .
o Parts of the real axis: (—oo, —2]
¢ Intersection with the imaginary axis: s = iw
6a — w?(2 + a) +iw(2a —w?) =0

Im: w(2a —w?)=0 <= w=0orw?=2q

Re: 6a —w?(2+a) =0
w=0 <= a=0

w=2 <= 20—2a>=0 <= a=0ora=1

Intersection points: s =0, s = +£v/2
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Im

-3

Figure 3.11a

This gives the root locus in Figure

Answer: The system is asymptotically stable for a > 1

b) For y to have a stationary value of 1 the system must first of all be stable. When the system is stable, the stationary
value will be 1 when r is a unit step since the system contains an integrator.

Next, consider

a
m(t) = sin(10t) = y¢(t) = in(10¢
(t) =sin(100) = 3e(t) = | 1 im0 4.
(the expression for y¢(¢) is valid after a long time, that is, when the transient has vanished). The amplitude is given
by
- a _ 1
a+ 101 1 + 20720

Now, choose a as small as possible but a > 1 to maintain stability. The lowest amplitude is A ~ 0.1.
Answer: A=0.1

3.12 When K is small the system has a real unstable pole, that is, the magnitude of the step response grows without bound
and the step response has no oscillations = K = 4 corresponds to step response C.

When K is larger we have an unstable complex-conjugated pole pair, that is, the magnitude of the step response grows
without bound and the step response is oscillative. = K = 10 corresponds to step response D.

For even larger values of K all poles end up in the LHP. As K grows the step response becomes faster since the
dominating poles move away from the origin. K = 18 corresponds to step response B and K = 50 to step response A.

Answer:

3.13
ST b by Taa(s)

1
s tapsvl 4+ da,  Ny(s)

With a proportional feedback the closed loop system becomes

G(s) =

_ Gl Twald)
Ge(s) = 1 +KG(s)  N(s)+ KT,1(s)

with the characteristic equation
Np(s)+ KT,,—1(s) =0

that is,
P(s) = Ny(s) Q(s) =Th-1(s)
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3.14

3.15

e Starting points: The zeros of N, (s)
End points: The zeros of T;,_1(s)

e Number of asymptotes: 1 since deg N, (s) — degT,—1(s) =1
Direction: 7

When K tends to infinity, one root approaches —oco, the remaining roots approaches the zeros of T;,_1(s). The zeros of
T,.—1(s) are in the LHP according to the problem formulation. Hence, if K is large enough, the system is asymptotically
stable.

Since gout,a(t) = 0 we get

ihA(f) .

1
dt (Qin,A(t) — Qout,A (t)) = quam,A(t - T)

A
= (a6 =)~ ha(t = 7))

which gives
K —sT
SHA(S) = Ze (Href,A(s) - HA(S))

The transfer function of the open loop system is hence

K efsT
GO(S) = Z . s
Now draw the Nyquist curve:
e Big semi-circle in the RHP:
s = Rel’ —m/2<0<T7/2
Since Re s > 0 we have ’e*STf < 1, that is,
K 1
Go(s)] < AR
The large half circle is hence mapped onto the origin.
e Imaginary axis:
K 1
|Go(iw)] = 15 arg Go(iw) = —g —wT

As w goes from r to R, the gain monotonically decreases towards zero and the argument goes from —7/2 to —oc.
The resulting Nyquist curve makes a spiral motion towards the origin. The first time the curve crosses the real axis

is for wT = 7/2, that is, w = m. The absolute value is then KT/A.
e Small semi-circle to the right of the origin:
. K 1 .
GO 1w ~ — .. —1lw
(re') 15

The small half circle is hence mapped into a large half circle in the RHP.

This gives the Nyquist path in Figure The system G,(s) has no poles in the RHP. According to the Nyquist
criterion, the closed loop system is asymptotically stable if the Nyquist curve does not enclose the point —1. In this

case the condition reads
K/A -

s

1

Answer: K/A<m

The system G(s) has no poles in the RHP. The closed loop system is asymptotically stable if the Nyquist curve of
KG,(s) does not enclose the point —1. In the problem, Nyquist diagrams for G(s) are given. The axes must hence be
rescaled with a factor K.
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Mirror image of
Nyqist curve (ii)

Zl=

Mirror imageof ____: |
Nyquist curve (i) - P Y

Nyaquist curve (if) ---- o decr Origin (i)

-~ Nyquist curve (i)

Figure 3.14a

a) (i) Yes. (ii) Yes. (iii) No. (iv) Yes.

b) (i) Stable if 0.4K < 1, that is, K < 2.5.
(ii) Stable for K > 0.
(iii) Stable if 2K < 1, that is, K < 1/2.

(iv) Stable if 4K < 1 or 2K > 1, that is, K <1/4 or K > 1/2.

3.16 a) G(iw) = = gives
|G (iw)| = % arg G(iw) = —90°

b) G(iw) = - gives

—yy
1

arg G(iw) = — arg G(iw) = —180°
w

This gives the Nyquist curves in Figure

a) b)

A Im A Im

Figure 3.16a

3.17 a) Since G(iw) — 0, w — oo, we assume that the large half circle is mapped onto the origin. The small half circle is
mapped onto the point 2. The point —1 is not encircled by the curve. This means that the closed loop system is
stable if 1.5- K < 1. Hence K < 2/3.

b)

. . L 111
Am e(?) _ll—%SE(S) = lims- 1+KG(s) s 142K

for K < 2/3 according to a.
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¢) The Nyquist criterion can also be applied to

K

= .a

~Gls)
as the open loop system. On the large half circle % ~ 0 which means that it is mapped onto the origin even for
1.G(s). On the small half circle

we have G(s) ~ 2 and

Hence, it is transformed by % -G(s) to a large half circle in the RHP. Setting s = iw in % gives the absolute value %
and the argument —7/2. The Nyquist curve is turned 90° and “increased” by a factor % This gives the Nyquist
path in Figure

Answer: The closed loop system is asymptotically stable if %K < 1. This means that also in this case we have
K <2/3.

-3t=-3/2

Re

Figure 3.17a

3.18 The system

is controlled by

which gives the open loop system

Go(s) = Ke *TG(s)

During self oscillations the open-loop gain is equal to —1:

Ke “TqG(iw) = -1

that is,

Ke—in . l —ig —iarctanwT —im

w =1 gives

K

= %K gives a self oscillations with w = 0.5. This gives

=1 (@

0.5+ 4/ 241

T _
{ -3 — % —arctanf = —7 (3)
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The equations (1) - (4) give 7 = 1.69 and hence

T = g -arctanT = 0.53

T, =7 — 2arctan% —1.74

3.19 From the Nyquist curve it is seen that for w =1
arg G(1i) = —135°  |G(1i)| =1/v2

and
arg F(1i) = —45°  |F(Li)| = K/V?2
This gives arg F/(11))G(1i)) = —180°. According to the Nyquist criterion, asymptotic stability is achieved if

[F)G)| = K/2<1 = K<2

3.20 Since |G(iw)| does not tend to oo as w — 0 the system does not have integrating factor for K = 0. Thus reject root
locus no 2. Furthermore, since the gain can be increased arbitrarily without causing the Nyquist curve to encircle —1,
that is, without making the closed loop system unstable, we reject root loci 3 and 4.

Answer: Root locus no 1.

3.21 P = b():b2:0
I = bo=01=0
D = by =by=0

3.22 a) The characteristic equation of the closed loop system is given by

(s +s5+1)(s+0.2)+Kp-02=0

that is,
P(s) = (s> +s+1)(s+0.2) Q(s)=0.2
Enter P(s) and Q(s). >> s = tf( ’s’ );
>>P=(s2+s+1) x (s +0.2);
> Q = 0.2;
Draw the root locus. Click in the figure to >> rlocus( Q / P )
determine the imaginary axis crossings.
25
ol ]
15 g
1L ]
05 g
E
—05F 4
1+ i
-15F g
2ok 4
_25 1 1 1 1 1 1 1 1 1
- 08 -06 -04 02 0 0.2 0.4 06 08 1
Real Axis
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When Kp increases the two complex poles move towards the imaginary axis, that is, the closed loop system becomes
more oscillatory. Finally, for Kp ~ 6.2, the poles cross the imaginary axis and the closed loop system becomes
unstable. This result is in accordance with Problem For small values of Kp the properties of the step response
are mainly determined by the real pole close to the origin. For larger values the complex poles start to dominate
and when the complex poles cross the imaginary axis the amplitude of the oscillations in the step response increases
and the system becomes unstable.

Note, however, that the root locus alone does not give sufficient information to tell how the stationary error changes
with the parameter.

The characteristic equation of the closed loop system using the PI controller with Kp =1 is given by

s((s* +s+1)(s+0.2)+0.2) + K;-02=0

that is,
P(s) =s(s>+1.25 +1.2s +0.4)  Q(s) =0.2
Enter P(s) and Q(s). >>P =35 % (873 + 1.2¥s72 + 1.2%¥s + 0.4 );
>> Q = 0.2;
Draw the root locus. Click in the figure to >> rlocus( Q / P )
determine the imaginary axis crossings.
1.5

051 bl

Imag Axis
o
T
I

15 I I I I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Real Axis

For small K7 the response of the closed loop system is dominated by the poles on the real axis close to the origin.
When K increases the poles become complex and move towards the imaginary axis, that is, the closed loop system
becomes more oscillatory. Finally, for K1 ~ 1.5, the poles cross the imaginary axis, that is, the closed loop system
becomes unstable. As can be seen in Problem [3.5]a small value of K, that is, a pole close to the origin, gives a slow
step response. When K7 increases the dominating poles become complex and the step response becomes oscillatory.

A large settling time will typically follow if the system is slow or have poor damping. Here, the large settling time
for small K7 is due to the system being slow. That the steady state error is eliminated cannot easily be seen in the
root locus.

Using PID control with Kp = 1, K1 =1 and T = 0.1 the characteristic equation of the closed loop system is given
by
(0.1s+1)(s(s* +s+1)(s+0.2) +0.2(s +1)) + Kp-0.2s> =0
that is,
P(s) = (0.1s + 1)(s* +1.25% +1.25 + 045 +0.2)  Q(s) = 0.2s?

Enter P(s) and Q(s). >> P

(0.1%s + 1) * ...
(874 + 1.2%s”3 + 1.2%s72 + 0.4%s + 0.2 );

>> Q 0.2%s72;
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Draw the root locus. By changing the axes >> rlocus( Q / P )
or using the function zoom the region of in- >> axis([ -2 2 -4 4 1)
terest can be seen more clearly.

4

Imag Axis
=]
T
Il

2t 4

_4 L L L L L L L
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Real Axis

When Kp increases the complex poles closest to the origin move towards the origin and and at the same time the
damping of the system is increased. When Kp increases even more the second pair of complex poles moves towards
the imaginary axis giving a high frequency oscillation which finally gives instability.

3.23 a) Enter the system and the regulator. Plot >> s = tf( ’s’ );
the Nyquist curve of the open loop system. > G6G=0.2/ ((s2+s+1)* (s +0.2));
>>F =1,;

>> nyquist( F * G )

Nyquist Diagrams

0.8

0.4r-

0.2

Imaginary Axis
<
T

Real Axis

The Nyquist curve is “far away” from the point —1 for all frequencies and the step response of the closed loop
system is well damped. As Kp increases the Nyquist curve grows in size and for Kp = 6.2 the Nyquist curve
reaches —1 and thus is the limit of stability.
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b) Generate a PI controller. Plot the Nyquist > F =1+ 1/s;
curve of the open loop system. >> nyquist( F * G )
>> axis([ -2 2 -221)

Nyquist Diagrams

Imaginary Axis

-2 -15 -1 -0.5 0 0.5 1 1.5 2
Real Axis

For low frequencies the Nyquist curve is now far away from the origin since the integrating part makes |G(iw)|
large for low frequencies. The Nyquist curve now passes closer to —1 which results in a more oscillatory closed loop
system. The system becomes unstable around K1 = 1.44.

¢) Generate a PID controller. Plot the Nyquist >F=1+1/s + 2%s / ( 0.1xs + 1 );
curve of the open loop system. Here with >> nyquist( F * G )
the parameters Kp = 1, K1 = 1, Kp = 2, >> axis([ -2 2 -22 1)
and 7= 0.1

Nyquist Diagrams

Imaginary Axis

Real Axis

The Nyquist curve is now further away from —1 which corresponds to an improved damping of the closed loop system.
The system becomes unstable around Kp = 66.
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3.24

a) Enter the systems and the regulator. Make
a Bode plot of the open loop system when
the regulator and the system are put in
series. This gives w. = 0.38, wp = 1.1,
¥m = 94° and A, = 3.1.

Plot the step response.

>> s
>> G
>> F

Magnitude (abs)

-225

-270

Phase (deg)

I I

® » b A
o (9] o (4]

tf( ’s’ );
0.4/ ((s2+s+1)x*x(s+0.2));
1;

>> margin( F * G )

Bode Diagram

Gm =3.1 (at 1.1 rad/sec), Pm =94.2 deg (at 0.377 rad/sec)

>> Gc

Amplitude

Frequency (rad/sec)

feedback( F * G, 1 );
>> step( Gc, 50 )

Step Response

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

35

15 20 25 30
Time (sec.)

35

40

45

50



b) Increase the gain in the regulator. Make a
Bode plot. The crossover frequency w. has
increased while wy, is the same, since only
the amplitude curve is changed when the
gain is changed. Both the gain and phase
margins have decreased.

Plot the step response. The closed loop sys-
tem is now much more oscillatory due to the
reduced phase and gain margins.

>> F =

2.5;

>> margin( F * G )

Magnitude (abs)
>

o\

|
©
o

-135

Phase (deg)

-180
-225

-270

>> Gc

Bode Diagram

Gm =1.24 (at 1.1 rad/sec), Pm = 12.6 deg (at 0.99 rad/sec)

Frequency (rad/sec)

= feedback( F * G, 1 );

>> step( Gc, 50 )

Amplitude

10°

Step Response

1.4

1.2

0.8

0.2

36

20 25
Time (sec.)

30

35

40
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¢) Increase the gain to 3.1, that is, the value of
Am in a). Both the gain and phase margin
are at the limit between what would give an
stable or unstable closed loop system. Any
further increase of the gain will give an un-
stable closed loop system.

Plot the step response. The output now os-
cillates with constant amplitude.

> F = 3.1;
>> margin( F * G )

Bode Diagram

Gm=1 (at1.1rad/sec), Pm =0.000321 deg (at 1.1 rad/sec)

Magnitude (abs)

451
S -90 -
(o]
s
o -135 B
(2]
©
=y
o _180f R
-225 b
-270% ‘ ‘
1072 10 10° 10' 10°
Frequency (rad/sec)
>> Gc = feedback( F * G, 1 );
>> step( Gc, 50 )
Step Response
1.5
1r i
[}
e}
2
=
S
<
05 T
0 Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50
Time (sec.)

3.25 The top row gives a steady state error = K1 = 0. Left column less oscillative than the right one = Kp # 0.

Answer: A—iii, B—i, C—iv, D—ii.

3.26 a) The motor transfer function is (from Solution 2.1)))




Feedback control
U(s) = F(s)(0ret (s) — 0(s))

where F(s) is the control law transfer function and 6,¢f is the reference signal. The closed loop transfer function is
given by

0(s) _  F(s)G(s)
Oret(s) 1+ F(s)G(s)

Proportional feedback F'(s) = Kp and G(s) according to above give

G.(s) =

Kpko
52 + S/T + Kpky

Ge(s) =
The poles of the closed loop system are given by
s +s/7 + Kpko =0

that is,
—1++/1—-472Kpky
S =
2T

(1) Kp small = Both poles on the real axis, but one pole very close to the origin = Slow but not oscillatory
system.

(2) Kp =1/(47%ky) = Both poles in —1/(27), that is, faster than in (1) but still no oscillations.

(3) Kp large = Complex poles with large imaginary part relative to the real part, that is oscillative system.

The transfer function from the reference signal to the tracking error e = 6, — 0 is given by

1 s(s+1/7)

=TT FEGE) ) T et 170 + Koke et ()

0, t<0
rer(t) = {A £>0

E(s)

The reference signal is a step

which gives

A
ere =
t(s) =~
The final value theorem gives
. . s(s+1/7) A
| t)=1 . -—=0
tigloe(> sl—r>I%)s S(S+1/7‘)+Kp]€0 S
The reference signal is a ramp
0 t<0
Ores(t) =<
«t(t) {At, t>0
which gives
A
eref(S) == ?

The final value theorem gives (the closed loop is asymptotically stable for all Kp according to a))

. . s(s+1/7) A A
lim e(t) = lim s- 2=
tggoe( ) si0® s(s+1/7)+ Kpko s?>  Kpkot

The error can be decreased by selecting Kp large, but according to a) the system becomes very oscillative for large
Kp.

PI controller
t
u(t) = Kpe(t) + Ki / e(r)dr
0

that is 1
F(S) = Kp + KI;
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gives
1 s2(s+1/71)

E(s) = meref(s) = s2(s+1/7) + ko(Kps + Ki)

eref (5)

When 6,f is a ramp according to b) we get

lim e(t) = lim sE(s) =0

t—o0 s—0

Comment: The final value theorem can only be used when the denominator of G(s)U(s) has all zeros in the left half
plane or at the origin. G(s) is the system transfer function and U(s) is the input signal.

3.27 The transfer function for the loop gain is G.

The transfer function from the reference signal R to the output Y is obtained by using the block diagram and observing

that
Y=G,(R-Y)
Solving this equation for Y gives
Go
Y = R
1+ G,
that is, the transfer function for the closed loop system is G, = lf—g}o

3.28 a) The loop gain, G,, is FG.

b) The influence of the disturbance (N = 0) can be neglected. Use the solution to problem Solution The transfer

function from R to Y is G, = %, that is, Y = G.R.

¢) The influence of the reference signal can be neglected. (R = 0). The block diagram gives

Y = FGE = —FG(Y + N)

FG

which implies that the transfer function from N to Y is G,y = —TiFG-

d) The influence of the disturbance can be neglected (N = 0). The block diagram gives
EFE=R-Y=R-FGFE

Solving for E gives
1

1+FGR

_1
1+FG"

that is, the transfer function from R to F is G, =

3.29 a) The transfer function from reference signal to error signal is (see Solution [3.28()

1 1 o (s+1)(s+3)

TG = JE— RO = G 1 &

s+1)(s+3)

R(s)

r(t) step = R(s) = 2. The steady state value of the error is given by the final value theorem

: . . (s+1)(s+3) 3A
1 =1 =1 =
A 0= B = I G+ 9 + K T 31K

b) In order to make the steady state error equal to zero the regulator has to contain an integrator. Using, for example,
F(s) =1 one gets

lim e(t) = lim = lim A =0
t—>00 s=0 1+ F(s)G(s) =01+ %m

Notice though, that the integrating feedback normally has to be combined with proportional feedback.
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¢) The transfer function from R to Y using F'(s) =1 is

FG 1 1 1

T 14+ FG (s+D)(s43)+1 £+ds+4 (s+2)?

G(s)

The system has two poles in —2 and no zeros.

3.30 e The four step responses are characterized by, for example, that A and D have a steady state error, while C and
B do not. Further, A shows better damping than D, and C shows better damping than B. It can also be noticed
(although it is not as apparent as the other characteristics) that the error decays more slowly in C than in B.

e The four regulators are characterized by, for example, that regulators 1 and 4 don’t have any integral action.
Regulator 2 has more integral action than 3, and regulator 4 gives better damping than 1.

e The derivative part in the regulator improves the damping, while integral action eliminates the steady state error
and reduces the damping. Besides, for small values of Ki, the error will decay slowly to zero.

Answer: A-4, B-2, C-3, D-1.

Ft,ina Tt,in

Tref Fc,im Tc,in Tt
SCall :

Figure 3.31a
3.31 a) See the block diagram in Figure There, the signals are classified as:

o Input Fi i, and Tt i,
o Output T}

o Disturbance Fi i, and Tt in

b) Assume prefect mixing in the tank. Mass balance for the tank

d(pVi)
dt

= pt,inFt,in — Pt Ly
Assume p;in = py and that p; is constant which gives
————=0=Fn—-FHF = F=Fn
Assume that there are no heat losses to the surroundings. The energy balance for the tank is

d (pe Veet (Ty — Ther))
de¢

= peFinC in (Toin — Tret) — po et (Ty — Tret) + U (T = Ty) - (3.1)

where U is a heat transfer constant. Assume that cf;, = ¢} is constant and that Tpet is constant. This means that

(3.1) can be simplified to

dT} U
— = Fi(Tiin — T4 — (1. — T, 2
Vi i (Tt v+ Cfpt( ¢ t) (3.2)

Mass balance for the heating system
d(pcVe)
dt

- pc,inFc,in - chc
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3.32

a)

Assume pcin = pc and that p. is constant which gives F. = Fj,. Assume that there are no heat losses to the
surroundings. The energy balance for the heating system is

d (pC‘/v(?CIc)(TC - Tref))
dt

- chc,inCain(Tc,in - Tref) - pCFCCS(TC - Tref) - U(Tc - Tt) (33)
Assume that c? = cf;, is constant. This means that (3.3)) can be simplified to

dT, U
chﬂ - Fc(Tc,in - Tc) - ?,DC(TC - Tt) (34)

The dynamical model is described by (3.2) and (3.4).

Linearization of (3.2) and (3.4)) (assuming p. = p; and c? = ¢}) gives

dTi A U
v = (F+ =) Toa + F'Tom
a <t+c§pt> ta ¥ fuduing
U * *
+ D TCA + (Tt,in - Tt ) FtA
Gt Pe
*dTCA * U *
Vc di _<Ft +C$pt>TCA+FCTC,inA

U
+ —Ten + (T5, —T7) e
Cfpt A ( ’ ) 4

With numerical values for the stationary points and assuming that Fi, Tt in, and T¢ i, is constant, the linearized
model is
dT;
dttA = —0.26T; o + 0.16T 5 (3.5)
dT.
th = —3.6T.A + 1.6T; o + 200F, o (3.6)

Taking the Laplace transform of (3.5) and (3.6) gives

STtA(S) = —026TtA(8) + O].GTCA(S) (37)
STCA(S) = 736TCA(S) + 16TtA(S) + QOOFCA(S)
1.6 200
= Tea(s) = o 3.6Tm(8) + chA(S) (3.8)
Combining (3.7) and (3.8)) gives
0.256 32

STtA(S) = —O26TtA(S) +

32
Fe
(5 +3.675)(s + 0.185) L eal®)

ta(s) ea(s)

s+ 3.6 5+ 3.6

= Tia(s) =

The transfer function for the closed loop is

32K

G =
(8) = 23865 1 0.68 1 2K

The characteristic equation is
% +3.86s + 0.68 + 32K = 0

with the solution

s=—1.934/1.932 — 0.68 — 32K
This gives the root locus in Figure

The system G, (s) = has one pole in —3 and one pole in 1, hence the system is unstable.

-1
s2425—3
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K = 0.0952
%> L <X
-3 -2 -1 Re
-1 -

Figure 3.31b

b) The closed loop is given by
-K

Gc(s):52+2s—3—K

The poles of the closed loop are given by

s=—-1£v1+3+ K

For K < —3 the closed loop will have all its pole in the LHP.

3.33 Given § = puy+u and v = K(r —y) we have §y = (u— K)y+ Kr. This system converges when the eigenvalues of (i — K)
are in the LHP, that is, when K > p.

3.34

a) The closed loop system

Root Locus
1.5 T T T T T T
1 4
05 b
2
x
<
2
g
g 0 ’S) 4
IS4
E
_05 - -
_l - -
15 L L L L L i
-6 -5 -4 -3 -2 -1 0 1
Real Axis

Figure 3.34a
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G(s)K K(s+2)

Gels) = 17 G5)K  (s+1)2+K(s+2)
has the characteristic equation
(s+ 1)+ K(s+2)=0
which gives
P(s) = (s+1)? Q(s)=s+2

e Starting points <= Zeros of P(s): -1,-1
End points <= Zeros of Q(s): -2

e Number of asymptotes: 2 —1=1
Direction: 7
Intersection point: —1—-1+2=0

e Real axis: (—o0, —2] belongs to the root locus
e Intersection with the imaginary axis, set s = jw:

(jw+1)? + K(jw+2)=0
Im: w2+ K)=0
Re:—w? +1+2K =0
1
—w=0K=—=
2
which does not meet K > 0.
Intersection with the real axis, set s = jw:
(jw +a)* = (jw + 1)® + K (jw + 2)
= (K =0,a=1),(K =4,a=23)

This gives the root locus in Figure The system is asymptotically stable. K = 4 (pole position —3) gives the
fastest step response without fluctuations since it does not have any imaginary parts.

b) With a similar approach as in a), the closed loop system is

G(s)F(s)
Ge(8) = ———=—~
W TR GERG)
where F(s) =4+ £, G(s) = (SSJ:'IQ)Z. The characteristic equation is

1+ F(s)G(s) =s(s+1)2+(4s + Kr)(s+2) =0
which gives
P(s) =s(s+ 1) +4s(s +2) = s(s + 3)? Q(s)=Ki(s+2)

e Starting points <= Zeros of P(s): 0,-3,-3
End points <= Zeros of Q(s): -2

e Number of asymptotes: 3 —1 =2

; ion: & ST
Direction: 7, =5

Intersection point: 2=3-3+2 — —2
e Intersection with the imaginary axis, set s = jw:

jw(jw +3)? + K;(jw +2) =0
Im:w(-w?+K;+9)=0
Re: —6w?2+2K; =0

54
:>(w:0,K=0),(oJ2:K1+9,K1:—Z < —9) : not real

which does not meet K; > 0.
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Root Locus

10

Imaginary Axis

-10

-1.5 -1 -0.5 0 0.5
Real Axis

Figure 3.34b

This gives the root locus in Figure [3:34D] The system is asymptotically stable.

¢) The P-controller of a) gives a faster step response than the PI-controller of b) since the dominant pole [—2,0] is slower
than —3. However, there is the stationary error of P-controller, see Figure [3.34d
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Amplitude

Step Response

K=4, P—controller
- KP=4, K|=4’ Pl-controller

Time (sec)

Figure 3.34c
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4 Frequency Description

4.1 If we let u(t) and y(t) denote the actual temperature and the measured temperature, respectively, we can divide the
temperatures into their mean values and variations as follows:
u(t) = ug + u(t)
and
y(t) = yo +y(t)
where ug = yo = 30 °C.
The thermometer is modeled as the following first order linear time invariant dynamic system with
Y
Y(s) = G(s) = @
U(s) s+b

Since
u(t) = Asin(wt)

it follows that after the transients have vanished (that is, in steady state)
y(t) = |G(iw)| Asin(wt + @)

where
¢ = arg(G(iw)) = — arctan(w/b)

From the relationship w = 27 /T and from the figure the following is obtained:

1. w= ﬁ rad/s = 0.33 rad/s

2. (b — *003(])-36 2rrad = —1.12 rad

3. |G(iw)| = 22 = 0.45

2.0
Hence 0.33
an(@) = =3 5066 010
and a
Giw)=——— = a=0.16
= T
Answer:
(s) = 0.16
 s54+0.16
4.2 The equation )
w =1

and
Tl'O:):—OJ-i-Kl'(S

give the transfer function
K 0.1

T s(1+Tys)  s(1+s/0.01)

Gs(s)

The transfer function of the rudder machine is
B 1 B 1
C1+sT,  1+4+5/0.1

G, (s)

and the controller has the transfer function

_K1+s/a 1+ 5/0.02

Fl) =K = K 005
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) s
& 13 In
- 3 e e
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-270° T T T \\\TT
0.001 0.01 0.1 1
we = 0.026 w [rad/s]
wp = 0.06
Figure 4.2a

a) K = 0.5 gives
- 0.05(1 + s/0.02)
~ 5(1+45/0.01)(1 + 5/0.05)(1 + 5/0.1)

1Go(iw)] = 0.05\/1+ (535)°
e VT GBI+ o5 T+ ()

It thus follows that

with low frequency asymptote

0.05
|Go(iw)] = —, w—0
w
and w w w w
arg G, (iw) = arctan 00 90° — arctan 00l arctan 008 arctan o1

The gain is drawn approximatively based on a known gain at some point of the low frequency asymptote, |% | =10,
and the breakpoints and slopes of the asymptotes:

Frequency [rad/s] 0.01 0.02 0.05 0.1
Slope —1 -2 -1 -2 -3

The phase shift is drawn based on a couple of samples:

Frequency [rad/s] | 0.005 0.01 0.02 0.04 0.08
Phase —111° | —125° | —142° | —163° | —194°

The Bode plot in Figuregives: we = 0.026 rad/s, om = 32°, A = 4.2

b) The system starts to oscillate if K is chosen so that arg(G,(iw.)) = —180°. This gives the crossover frequency w, =
wp = 0.06 rad/s. This implies that the gain should be amplified 4.2 times. Therefore, choose K = 0.5-4.2 = 2.1.

2T 27
—o/T = T=""—2" _105
w=2m/ w.  0.06 i

Answer: The period time will be 105 seconds, and K = 2.1.

Ut (t) = Asin(at)

gives
U(t) = Bsin(ft + ¢)
where A = 5°, o = 0.02, § = a, B = A|G.(ia)| and ¢ = argG.(iov). The transfer function for the closed loop

system when K = 0.5 is
Go(9)

Ge(s) = 1+ Go(s)
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4.3

a)

where
|G, (10.02)| = 1.44 arg G,(10.02) = —142°

That is
G,(i0.02) = —1.135 — i0.886

which gives

1.44
|G(10.02)] = —161 = B=8
v0.135% + 0.8862
and
, o o 0.886
arg G¢(i0.02) = —142° + 180° — arctan(o 135) = —0.76 rad

Answer: B =8°, § =0.02rad/s and ¢ = —0.76 rad.

As w — 0, |G(iw)| — oo and arg G(iw) — —90°. The gain is first decreasing (low frequencies). It then increases,
and finally decreases again (approaching zero for high frequencies). The phase shift is increasing at low frequencies.
As the frequency becomes higher the phase shift is positive in an interval until it decreases towards —90°. This

gives the plot in Figure
A system with a Bode plot as the one shown above must have one pole in the origin since arg G(iw) — —90° as

w — 0. Then two break points appear (up), since there is a positive phase shift. After that, there must be two
break points (down), since the phase shift should approach —90°. Hence, the plot in Figure is possible.

10!
= 0
3 10
S 10-1
102 I
60° e e BRI R AT
HI- - -[- HHl- - 4 - P /, N R R
5 30° = L AT N
g/ 0° - /,ﬁﬁﬁ N
a0 —30° A \ i
—
ﬁ _600 1 77777; ’ e 1T rro 77\7;7 -
1 I D o A A Vi
—90°
107t 10° 10! 102 10® 10* 10°
w [rad/s]
Figure 4.3a
s Im
XX 00 X
Re

Figure 4.3b. Pole-zero diagram. Not accurate in scale; the diagram shall only be interpreted as a right to left ordering of poles and
zeros, with the first pole at the origin.

4.4 From the final value of step response B (the only one greater than 1) and static gain in Bode gain C (the only one

greater than 1), the step response-Bode gain pair B-C follows. Step responses C and A have approximately the same
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overshoots but different fundamental frequencies. Bode gains B and D have equal resonance peaks but D has a lower
resonance frequency. This gives the combinations C-D and A-B. The remaining combination is D—A, which is a good
match with small overshoot (resonance peak) and final value (static gain) 1.

4.5 a) Enter the system and make a Bode plot. >> s = tf( ’s’ );
>>GA =1/ (872 + 2xs +1);
>> bode( GA )

Bode Diagrams

Phase (deg); Magnitude (dB)

-100

-150

-200 :
10 10 10

Frequency (rad/sec)

Use, for example, curve handles and “Characteristics” in the right click menu to find static gain, bandwidth,
resonance frequency, and resonance peak. The other systems are treated in the same way. The results can be
summarized in the following table. (Note that gain values may be presented in dBgy in MATLAB.)

[ System [ G0) | wg [ w: | M, |

Ga 1 0.64
Gp 1 1.5 1 2.5
Go 1 0.21
Gp 1 1.27 | 0.7 | 1.15
Gg 1 2.54 | 1.4 | 1.15

b) Using the results in a) and in Problem[2.6] the following observations can be made. (i): The bandwidth of a system
is (approximately) inversely proportional to the rise time. High bandwidth implies a short rise time and hence a
fast system. (ii): The damping is inversely proportional to the height of the resonance peak. A large peak implies
low damping and large overshoot.

4.6 From the frequency responce interpretation of the transfer function (“a sinusoid in gives a sinusoid out”) and the input
being
u(t) = 2sin(2t — 1/2)
it follows that the output is
y(t) = 2|G(i2)| sin(2t — 1/2 + arg G(i2))

Here G(s) and hence

_ e*
— s(s+1)°
1 1
221 2/5
arg G(i2) = —4 — g — arctan 2

G(i2)] =
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4.7 The input is a sinusoid with amplitude 1 and angular frequency w = 2 rad/s.

4.8

a)

b)

a)

0.45sin(2t — 1.1).
(Gain: | ‘ = 1~ 0.45, phase: —arg(i2 +1) ~ —1.1 rad = —63°.)

2+1 NG

The system is unstable. Hence, the system output will tend to infinity, and the system will not reach a steady
state. To be more precise, the general form of the solution to the differential equation describing the system output
is y(t) = Coet + % sin(2t — 7 + arctan 2), and any initial state y(0) # % sin(—m + arctan 2) will lead to a solution
that tends to infinity. This will almost always be the case in practice.

0.11 sin(2t — 2.4)

(Gain: ~ 0.11, phase: —arg(i2+1) —arg(4i+ 1) = —2.4 rad = —139°.)

1 1
(i2+1)(i4+1)’ — VBVAT

0.45sin(2(t — 0.5) — 1.1) = 0.45sin(2t — 2.1).
Similar to problem a), with an extra time delay of 0.5 s.

To determine the phase difference, ¢, given a diagram with two sinusoids, sin(wt) and K sin(wt + ¢), one possibility
is to consider the time points when the two curves pass 0. Determine ¢; and ¢ such that

sin(wty) =0
K sin(wty +¢) =0
This gives that wt; = wts + ¢, that is,

27 rad
T

t
¢ =—wtp = — tA = —%27r rad

where tpA = to — t; and T is the common period time. Here, the last expression may be interpreted as the delay
expressed in parts (1) of a whole revolution (27). For example, consider the second graph where ta ~ 0.18 s and

T ~ 1.25s (which cgn either be read from the figure, or, in this problem, computed using w = 5 rad/s). Hence,
o= —?ég 227 rad = —0.9 rad. This results in the table below, where the answer to part b is also included.

w |G (iw)| arg G(iw)

1 1 = 0 dByg —02rad = -—11°

51108 = —19dBgy | -09rad = —52°

10105 = —6dBg | —1.6rad = —92°

201102 = —14dBy | —2.2rad = —126°

b) Just evaluate the decibel formula to obtain the values in the table above.

¢) A Bode plot of the system is given in Figure

15
055
302
5 013
- 0.054
0.02
001 T TTT T TTT T TTT
0° —
— ™~
~X.
3 <
(bDD -90 g
5 Fan
-180° —=
TTTT TTTT T T TTT
0.5 1 2 5 10 20 50
w [rad/s]
Figure 4.8a
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4.9 Answer: G1-B, G>-D, G3-A, G4,—C, G5-E.

4.10

4.11

The Bode plot B has static gain 1 and no resonance peak, and hence G;—B. It can also be seen that the Bode plot B
decays by one decade (20 dBgg) when the frequency increases by a factor of ten (“the slope is —1”) and that Gy
has one pole.

The Bode plots A and C have both infinite gain for when the frequency tends to zero, that is, they correspond to
systems containing an integrator = systems G3 and G4. The Bode plot C decays more rapidly for high frequencies
= the relative degree (number of poles — number of zeros) is higher. Hence G3-A, G4—C.

The Bode plots D and E have peaks = systems G2 and G5. (For G2 the peak is caused by the zero where the curve
“turns up” at w = 1.) The Bode plot E has larger slope than D for high frequencies, that is, E corresponds to a
system with higher relative degree. G5 has one pole more than zeros, G5 has 2 poles, and hence Go—D, G5—E.

In step response A and D the step responses tend to one, that is, they correspond to Bode gain A and C. Step response
D has larger overshoot, that is, it corresponds to Bode gain A, and consequently step response A corresponds to
Bode gain C. This gives the Bode gain—step response pairs A—D and C-A.

Step response B has no overshoot, which implies that it corresponds to Bode gain D, which has no peak. This gives
the combination D-B.

The remaining combination is B—C. Step response C has an overshoot which can be related to the peak in the Bode
gain plot. It can also be seen that this pair belongs to the fastest system.

The system can be rewritten as
1.7

G+ + DG+

G(s) =

It thus follows that

. 1.7
G(w)] = : :
V1 +w2\/1 + (%) \/1 + (%)
and
. w w
arg G(iw) = —arctanw — arctan —— — arctan —

1.43 2

The gain is drawn approximatively based on a known gain at some point of the low frequency asymptote, |G(i0)| =
1.7, and the breakpoints and slopes of the asymptotes:

Frequency [rad/s] 1 1.43 2
Slope 0 —1 —2 -3
The phase shift is drawn based on a couple of samples:
Frequency [rad/s] 0.1 0.5 1
Phase —12.7° —59.9° —106.6°
Frequency [rad/s] 2 3 10
Phase —162.9° | —192.4° —244°

The bode plot in Figure gives: w, = 0.874 rad/s, om = 83.8°, Ay, = 5.14, and w, = 2.51 rad/s.

The phase is —180° at w, = 2.51 where the amplitude is 0.1946. To make the pH oscillate with constant amplitude

_ 1
one has to choose K = 01916 = 5.14.

The phase is —180° at w, = 0.334 where the amplitude is 0.1984. To keep the reactor stabile one has to choose

1 —
K < 51551 = 5.04.

This is a lead-lag design task. The amplitude and phase of G at wcq = 0.1 is 0.6325 and —100°. Thus we have a
phase margin of 80° which is sufficient, and hence no lead controller is needed. To remove the steady-state error
we need a lag controller with M = oo. This results in the controller structure

s+a

F(s)=K
N
Flag
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|G (iw)]
oo o
R Ul

0.02 \
0.01

-90° %

arg G(iw)
/

-180°

-270° TTIT TTTT TTTT TTIT
0.01 0.1 1 10

w [rad/s]

Figure 4.11a

— — ; — 1 —
Chose a = 0.1wcq = 0.01 (a bigger value on a makes the error go to zero faster) and K = Gl ) s (o)) =

7eszs = 1.58. This gives the controller F(s) = 1.58 001,

4.13 Ansitt G(s) = s_l;a (med a > 0 och b > 0).

Utsignalen ges av (ekvation 4.2 i boken)

y(t) = |G(iw)|sin (wt + arg G(iw)), w=2

b
Gliw)| = —m— =2
=V
arg G(iw) = argb — arg (iw + a) = —arctan 2 = —%.
a

Och alltsa for w =2 fasa =2 och b = 4\/5, samt initialviardet
Yo = 2sin(0 — 7/4) = —/2.
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5 Compensation

5.1 The compensator is constructed using lead-lag design. “Twice as fast” is interpreted as a doubling of the bandwidth,
which, in turn, is approximated by a doubling of the gain crossover frequency. “Same damping” is interpreted as
maintaining the old phase margin, which is accomplished using a lead compensator in the controller. The error in static
reference following is controlled by adjusting the static gain of the open loop system, which is accomplished using a
lag compensator in the controller. Sensitivity to measurement disturbances is given by the complementary sensitivity
function, 1 — (1 4+ G,)~!. Tt is small where the open loop gain is small. Thus, to make it small at high frequencies, the
high frequency gain of the controller should be kept as low as possible.

First, the open loop system when F(s) =1 = G, = G is examined in order to quantify the requirements.

0.4
Gls) = (s4+0.1)(s+0.5)(s2 + 0.4s + 4)
2
T (1+5/01)(1+5/05)(1+2-0.1-5/2+ (s/2)2)
which implies that )
|G (iw)]

VI (&I (&)2/T - (9)2)2+4-0.01(9)2
with low frequency asymptote
|G(iw)] = 2, w—0
and "
2

. w w 2-0.
arg G(iw) = — arctan 01 arctan — — arctan

0.5 1—(2)2

The gain is drawn approximatively based on a known gain at some point of the low frequency asymptote, 2 (at any
point), and the breakpoints and slopes of the asymptotes:

Frequency [rad/s] 0.1 0.5 2
Slope 0 —1 -2 —4
The system has two complex conjugated poles which implies that the amplitude curve has a resonance peak. The
approximative amplitude curve must be modified at the resonance peak. An exact calculation of the gain gives
Frequency [rad/s] 1 1.5 2 2.5

wlg| =

Gain 0.12 | 0.09 | 0.12 | 0.025
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] | 0.01 0.1 1 1.5
Phase —7° —57° —155° | —=177°
Frequency [rad/s] 2 2.5 10
Phase —253° | —322° | —354°

The Bode plot in Figure [5.14] gives
we =0.16rad/s ¢, =102° A, =10.6

and hence
wea =0.32rad/s m,q = 102°

The phase of G at the wc q is —108°. Hence, in order to obtain the desired phase margin of 102° = —78° — (—180°), a
phase advance of approximately (—78°) — (—108°) = 30° is required. To this end, introduce a lead compensator in the

controller:
s+b

s+ bN
See the discussion of lead compensators in Glad&Ljung! To keep the high frequency gain of the controller as small as
possible, N should be chosen as small as possible. The desired phase advance is obtained with N = 3. This phase lead
is obtained at the desired crossover frequency if

Flead =N

c,d

b= =0.185

é“e
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Figure 5.1a

The desired crossover frequency is obtained by adjusting the gain of the open loop system by introducing a factor, K,
in the controller:

1 = K |Fieaq| - |G(i0.32)] = KVN-0.52 = K =111

With +0.185
s+ 0.
F(s) =333 -2
(8) = 333 0555
and wyef(s) = A/s, where A is constant, it follows that (using the notation e(t) = wyet(t) — w(t))

. . L 1 A
A elt) = lim sEs) = I ss—mrsay s
A

- < 0.05A.
1+1.1-2 Flg(0) =

This is equivalent to
Flag(0) > 8.63

If the low frequency gain of F(s) is increased approximately 9 times the stationary error will be smaller than 5%. To
this end, introduce a lag (phase-retarding) compensator

sta

s+ 17

Eag =

in the controller, where M should be kept as small as possible to avoid unneccessary high gain at low frequencies. See
the discussion of lag compensators in Glad&Ljung! With M = 9 and a = 0.1w¢ q = 0.032 the desired low frequency gain
increase is obtained without altering the phase margin too much.

This gives the controller

(s40.185) (s+ 0.032)

(s +0.555) (s + 0.0036)

F(S) =K -Flead(s) . -Flag(s) =3.33

5.2 Let G denote the heat exchanger’s transfer function.

a) Draw the Bode plot using the given table. From the diagram in Figure it follows that
we =0.079rad/s ¢, =88° A, =50
b) A proportional controller does not change the phase curve. According to Figure the phase curve crosses —130°

at the frequency 0.15 rad/s. A gain crossover at this frequency will yield exactly the required phase margin, and
any higher crossover frequency will yield one that is too small[f]

*The controller gain that yields the desired gain crossover frequency can be computed as
1 1

K=——=_—_ =19
|G(0.151)| ~ 0.525
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¢) Twice as large crossover frequency is desired:
wea =0.29rad/s ¢m,a = 50°

At the frequency 0.29 rad/s the phase margin is approximately 0° (actually a little less, since w, = 0.28 rad/s).
Hence, a phase lead of 50° is needed. To this end, use a lead-compensator (using standard notation of parameters)
with 8 = 0.13 (according to the diagram in Glad&Ljung) in order to achieve this. To obtain the maximum phase

lead at the desired crossover frequency, let
1

™ = =947
Wc,d\/B

Finally, K is chosen so that w. q is obtained:

1= K|FpD(iwC)d)| : |G(iwc7d)| ~ K- =

L
A

-

K~ \/BA, =183

Answer:
(947s+1)

F(s)=183———>"2)
() (0.13-9.47s + 1)

a)

20
G(s) = 3 5
which implies that
. 20
|G (iw)| =

wy/(1—(55%)?)2+4-0.01-(7%)2
with low frequency asymptote
Gliw) = 2, w0
w
and
arg G(iw) = —90° — arctan 12

The gain is drawn approximatively based on a known gain at some point of the low frequency asymptote, |%’ =1,
and the breakpoints and slopes of the asymptotes:

Frequency [rad/s] 150
Slope -1 -3

The system has two complex conjugated poles which implies that the amplitude curve has a resonance peak. The
approximative amplitude curve must be modified at the resonance peak. An exact calculation of the gain gives
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Frequency [rad/s] | 100 | 150 | 200
Gain 0.35 | 0.67 | 0.12

The phase curve is drawn based on a couple of samples:

Frequency [rad/s] 10 50 100 150 200
Phase —91° | —94° | —103° | —180° | —251°

In addition, one can also use

arg G(iw) = —90°, w — 0
arg G(iw) — —270°, w — oo

The Bode plot with the gain curve labeled “A” in Figure gives

we=20rad/s ¢©n =88° A,=15

b) If K would be chosen to the gain margin, A, = 1.5, the new gain margin would be 1. Thus, if

Am
K=—=0.
5 0.75
the resulting gain margin becomes 2. With this amplification the final value theorem gives the ramp error
lim e(t) = lim sE(s) = li L = ! = 0.067
00 W T TN T I SKG(s) T 075-20

Note that the system is stable by construction (the new gain margin is greater than 1).

¢) The new gain crossover frequency obtained in part b is 15 rad/s, see the gain curve labeled “B” in Figure
The low frequency gain of F'(s) must be increased at least 15 times. A lag-compensator with M = 15 can be used.
Choose, according to the rule of thumb, a = 0.1-w, g, where w. g = 15, and hence a = 1.5.

Answer: ( 15)
s+ 1.
F(s) =0.75
() (s+0.1)
5.4 We begin by drawing a Bode plot of the system.
10
G(s) =

which implies that
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with low frequency asymptote
10
|IG(iw)] = —, w—0
w
and w w
arg G(iw) = —90° — arctan — — arctan —
g Gliw) 10 100
The gain is drawn approximatively based on a known gain at some point of the low frequency asymptote, |1—10’ = 10,
and the breakpoints and slopes of the asymptotes:
Frequency [rad/s] 10 100
Slope -1 —2 -3
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 2 10 20 50 100
Phase —102° | —141° | —165° | —195° | —219°

In addition, one can also use

arg G(iw) = —90°, w =0
arg G(iw) — —270°, w — oo

From the Bode digram in Figure it follows that w. = 7.8 rad/s, ¢, = 47° and A,, = 11. However, these values are
not used by the solution to this problem.

Figure m (the figure can also be found in Glad&Ljung) gives that the overshoot is acceptable if ¢ > 0.58. Choose for
instance ¢ = 0.6. This results in a desired phase margin ¢y, q = 60°. According to Figure (the figure can also be
found in Glad&Ljung), this also implies a desired gain crossover frequency:

wols =18 and 24 — 07 =
wo
1.8 1.8
ea = 0722 =072 =12,
wed =077 = 0755 6

At 12.6 rad/s a phase advance of approximately 30° is needed in order to get the desired phase margin. To this end,
use a lead compensator (with the usual notation of parameters) with N =4 and b = we q/V N = 6.3. K is adjusted to
get the desired gain crossover frequency:

1 = K |Fiead(iwe,d)| - |Gliwea) = KVN-049 = K =1.02

The transfer function from the reference input to the control error is given by

1

BRRRERICLE)

Oret (5)
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When 6,.¢(t) is a step signal, the final value theorem gives

lim e(t) = lim sE(s) =0

t—o0 s—0
even without a lag compensator thanks to the integration in G. Here, the final value theorem may be used since the
system by construction is stable (the phase margin is 60°).

In order to handle errors for ramp references, introduce a lag compensator (with the usual notation of parameters) in
the controller. Then |Fi,s(0)| = M, and if 0,¢¢(t) = 10-¢, that is, if

10
Gref(s) = 872
one obtains 1 10 10
A elt) = lim s B(s) = s Sem e ~ ko = O

which gives M > ﬁ =9.8. Take M = 9.8 to avoid excessively high low frequency loop gain. According to the rule of

thumb, let a = 0.1-w,q = 1.26.

Answer:
. 1.2
F(s):1.02-4-5+63-8+ 6
s+25 s+0.13
om [°] 100 \ 10 dBao Mp
M [%] \
80 8 dB2g
/
M M,
60 \ \ 6 dB2g

40 \ 4 dByo

20 \ 2 dB2o

\
0 — 0 dBao
0 02 04 06 08 1

¢

Figure 5.4b. Relations between overshoot, M, phase margin, ¢m, resonance gain, My, and relative damping, ¢, for a second order
system with no zeros and static gain 1.

5.5 Notation. The notation “A — B — C” is used to say that the system with open loop Bode plot in row A has its closed
loop Bode plot in row B, and its step response in row C.

A good start is often to look at the static gain and the final value of the step responses. The static gain of the open loop
system and the closed loop system are related as |G.(0)] = %. Systems with the same static gain can then be
separated by looking at stability margins, resonance peek, overshoot, bandwidth, and speed. Three of the combinations

are easy to identify:

A — E — C: Finite but non-zero open loop static gain matches non-zero closed loop static gain less than 1. Infinite
stability margins matches step response without overshoot.

B — C — E: Infinite open loop static gain matches closed loop static gain equal 1, which in turn matches a step response
that settles at amplitude 1.

C — A — B: Zero static open loop gain matches zero closed loop gain, which in turn matches a step response that settles
at amplitude 0.

The remaining open loop Bode plots are D and E. These should be matched with the closed loop gain curves B and
D, and step responses A and D. Both open loop Bode plots show a static gain near 1, which will make it hard (albeit
possible) to use that feature for identification. Easier is to approximately locate the (closed loop) resonance frequency,
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Figure 5.4c. Relations between gain crossover frequency, w., bandwidth, wg, raise time, T}, and relative damping, ¢, for a second order

3
wol/
2
/
><\
1 // T~ WB /|Wo
| —

w, /wo\\\\\
0

0 0.2 0.4 0.6 0.8 1

¢

system with no zeros and static gain 1.

5.6

which will be near the frequency where the Nyquist curve minimizes its distance to —1. That is, the magnitude shall be
near 1, and the phase near —180° in the open loop Bode plot. This happens at a lower frequency in open loop Bode plot
D than in E. The resonance peak in the closed loop gain curve B is located at a higher frequency than that in D. Finally,
a higher resonance frequency gives faster oscillations in the step response, and the oscillations in step response A are
much quicker than those in D. Alternatively the bandwidth’s relation to response speed may be used; the bandwidth
is higher in closed loop B than in D, and step response A is quicker than D. Anyway, the last two combinations are

D-D-D, E-B-A.

10

G(s)

gives

10

T s+ )0+ 5) 0+ 1)

|G(iw)|

with low frequency asymptote

T oIt (BT

10)°V1+ (3655)°

10
|G (iw)| — Y 0

and

arg G(iw) = —90° — arctan % — arctan — — arctan %00

The gain is drawn approximatively based on a known gain at some point of the low frequency asymptote, H—g! =1, and

the breakpoints and slopes of the asymptotes:

4

0

Frequency [rad/s] 20 40 100
Slope -1 -2 -3 —4
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 10 20 50
Phase —136° | —173° | —236°

In addition, one can also use

arg G(iw) = —90°, w =0
arg G(iw) — —360°, w — oo

The Bode plot in Figure gives that w. = 8.9 rad/s, v, = 48° and A,, = 3.9. However, it is only the gain crossover
frequency which directly interests us here; an increase of the speed with a factor of two and a preserved damping imply
We,a = 18 rad/s and ¢, g = @m. From the figure, we have pa = arg G(iw.) — arg G(iw,q) = 35°. The required phase
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lead is thus at least oA + 6° = 41°. To this end, use a lead compensator (with standard notation of the parameters)
with 8 = 0.21 and Tp = ——~ = 0.12. K is adjusted to get the desired crossover frequency:

Wc,d\//g -

VB

=—=12
0.37

K |G(iwe,a)| - [Flead(iwe,a)| = 1

The transfer function from the reference input to the control error is given by

1

EG) = 1 Fmans)

oref (5)

When 6,.¢(t) is a step, the final value theorem gives

tlggo e(t) = llg(l) sE(s) =0
even without a lag compensator thanks to the integration in G(s). Here, the final value theorem may be used since the
system by construction is stable (the phase margin is positive).

In order to handle errors for ramp references, introduce a lag compensator (with the usual notation of parameters) in
the controller. Then |Fis(0)| = 1/7, and if O,e¢(t) = 10- ¢, that is, if

eref(s) = 572

one obtains 1 10 10
. T T I S S Uy
i elt) = lim s B(s) = s sam s ~ ok = 00
which gives v < 0.01K = 0.012. Take v = 0.012 to avoid excessively high low frequency loop gain. According to the

rule of thumb, let 71 = 10/w 4 = 0.56.

Answer:

12 1 . 1
Fs) = 1.2 0.12s + ) 0.56s +
0.21-0.12s+1 0.56s +0.012

Based on the Bode plot we plot the Nyquist curve, see Figure [5.7a] The system is stable when the point —1 is not
encircled by the Nyquist curve. This gives

A time delay of T seconds changes the phase curve with —wT rad at frequency w. The amplitude curve is not affected.
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4 Im eI

Figure 5.7a. Nyquist curve in two scales. Left: small scale. Right: big scale.

a) The crossover frequency is w = 1 rad/s and the phase margin is 0.698 rad. This gives the stability condition
0.698 rad — 1 rad/s-T > 0

that is, T' < 0.698 s.

b) Plot the Nyquist curve as in Figure The point —1 is not encircled if the phase is decreased at least 40° at
w = 7 rad/s but not more than 80° at w = 5 rad/s. This gives the following conditions

7rad/s-T > 40° =0.698 rad and 5rad/s-T < 80° = 1.396 rad

that is, 0.1 s < T < 0.28 s.

—100°

Figure 5.8a

5.9 a) The step response of Ga is
k k
y(t) = LY ()} = —>(1 =) = =% t 00
a a
From the figure it is seen that ka/a = 0.5. At time ¢t = 1/a we have
_ ka -1y _ — —
y(l/a) = 7(1 —e ) =0.5-0.63 =0.315 = y(2)
Thus a = 0.5, which gives ka = 0.25:

0.25
s+ 0.5

GA(S) =
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which is rewritten to make apparent the amplitude and phase

GA (1w) _ 0.25 e—iatctan 2w

Vw? +0.25

The corresponding Bode plot is shown in Figure [5.9a] To see how Go modifies the Bode plot of Gy, consider for
instance the frequency 0.1 rad/s. When computing the new gain, the logarithmic scale in the diagrams is used to
do directly obtain the logarithm of the product of the two systems’ gains:

|G (0.11)] = 10915
|GA(0.1i)] = 107031
|GA(011)Gm(011)| — 100.15 . 10—0.31 — 100.15-‘1—(—0.31) — 10—0.16

The new phase is obtained by adding the arguments of the two transfer functions:

arg G, (0.1i) = —135°
arg G (0.1i) = —11°
arg G (0.11)Gy,(0.1i) = arg GA(0.1i) + arg G, (0.1i) = —146°

Carrying out the procedure of “adding Bode plots” at a range of selected frequencies results in the Bode plot in
Figure [5.90] where G, = GaAGh,.

— 1004 [
'\% -0.6 N
(Bg 10 N
1008
AN
OO ,,,,,,, R DR e .S N I IR I N (A A
’3“ ,,,,,,, S e R N R O
'»{/ L e I I B R NUREE I
G SO B A IO I e N 8
O R e M e S
AR B R O I I S SO AR S (O N O 0 1 ~—_
-90°
1072 107 10°
w [rad/s]
Figure 5.9a

3
S 0.0473

-90 —— } <
< | ”””\Q'\;{;,::;ém 0 I | BN 2
2 RN = L [
O -180° }}\“'—- 3
=7 A \\\: i i O,%

”””” o T
-270°
1072 107 10°
we = 0.078  weq = 0.40 w [rad/s]
Figure 5.9b
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b) In Figure it can be seen that the crossover frequency is 0.078 rad/s. Hence, let we 4 = 0.4 to obtain a 5 times as
fast system. At the desired crossover frequency, the phase must be advanced by 68° to maintain the phase margin.
To this end, employ two equal lead compensators (using standard notation of the parameters), each advancing the

o. _ — Wed __
phase by 34°; take N =4, and b = N 0.2.

The controller gain is adjusted by the factor K to get the desired crossover frequency:

K |G(iwea)| - [Fleaa(iwea)* =1 =

1
K=———5=106
0.047 - VN
Answer: )
(s4+0.2)
F(s) =106 [ 4——*—
(s) =106 ( (s +0.2-4)
5.10 1
Gls) = Gi(s)
gives
o Gai(iw)]
Gliw)| = L

arg G(iw) = Gy (iw) — 90°
A P controller gives a phase margin of 40° when

arg G(iw) = —140° = argG;(iw) = —50°

g AR s oo m s 1/8.58
& N 00242
- 10-2 i i
T N\
1 | L
o N i
= _50° ==kttt L
S oo ‘\ i
o0 - N LT TOOr - _ o
: s A
-180° ir ir [~
102 107! 10° 10! 102
we,p = 0.52 w [rad/s]
Wea = 1.05

Figure 5.10a

From Figure it is seen (although not easily) that this occurs at we p = 0.52 rad/s, which is also the highest possible
gain crossover frequency possible to obtain with P control. The desired increase in speed by a factor of two is thus
achieved by a new gain crossover we q = 1.05 rad/s. Figure gives

arg Gy (iwe,q) = —107° =  argG(iweq) = —197°

A desired phase margin of 40° requires that the phase be advanced by 57° + 6° = 63°. To this end, employ a two
equal lead compensators (using standard notation of parameters), each advancing the phase by 32°; take 8 = 0.31 and
= 1.72. The controller gain is adjusted by the factor K to get the desired crossover frequency:

_ 1 _
™= wc,d\/fg

10024

K———— = K =133
/0_312 1.05

K |Eead(iwc,d)|2 ' |G(iwc,d)| =1 =
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In order to handle errors for ramp references, introduce a lag compensator (with the usual notation of parameters) in
the controller. Then |F.z(0)| = 1/v, and |F(0)| = K/v. To choose v, consider the Laplace transform of the control

error,
1
B(s) = — —
) = T Fmae) T
If r(t) = A-t (a ramp), that is, if
A

R(s) = 2

one obtains
. : o 1 A A
A elt) = lim s B(s) = I s s e s 2 ~ M ST F)ai )
B A
[F(0)] - [G1(0)]

This shows that the ramp error is inversely proportional to the static gain of the controller. According to Figure
the highest possible controller gain when using a P controller and a phase margin of 40° is required, is 8.6. Hence, to
reduce the ramp error to 1% of that of the P controller, the static gain of the new controller has to be at least 860.
Therefore, take v = K/860 = 0.0155, and, according to the rule of thumb, let 71 = 10/w q = 9.52.
Answer:

1.72s +1 9.52s 4+ 1

0.31-1.725s +19.52s + 0.0155

F(s) =133

5.11 a) The Nyquist curve is drawn based on the following observations: First, as w — 0, |G(iw)| increases and arg G(iw) —
—90°. Then, as w — 00, |G(iw)| — 0 and arg G(iw) decreases. We also have, w. = 0.78 rad/s with arg G(iw.) =
—133°, and finally w, = 3.2 rad/s with |G(iwp)| = 0.091. The resulting Nyquist curve is shown in Figure

/ A Im \

Figure 5.11a

b) The gain margin is 1/ |G (iwp)| = 11, which is also the highest possible proportional gain that preserves closed loop
asymptotic stability.

¢) The Laplace transform of the control error is related to the reference as follows:

1

E(s) = HTG(S)R(S)

With
10

r(t) =10t = R(s)= 2

and using the final value theorem (from b we have that the system is stable), this yields

. . 10
A elt) = lim s B(s) = Sy — G0
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5.12

5.13

a)

2)

b)

For small w we have

1
G(s) =~ 5

= sG(s)—>1,s—0 = lime(t)=5

t—o0

Raising the gain curve in the Bode plot by K = 2 results in
we =124rad/s ¢y = 32°

The closed loop system becomes unstable when the phase margin is eaten up by the phase lag of the delay,

arge W = T

so in order to get an asymptotically stable closed loop system it is thus required that

32° 0.55 rad

- = 0.44
< Toirad)s  12dvadfs O

wI <32° = T

For this amplitude curve we cannot say anything about the stability since the system can contain an arbitrarily
large time delay which could make the gain margin less than 1.

It is stable, since the gain is less than 1 for all frequencies; there is no risk that the Nyquist curve could encircle —1
under these circumstances.

Enter the system and the regulator. Draw >> s = tf( ’s’ );

the Bode plot. This gives w. = 5rad/s, >> G =725/ ...

wp = 9.5rad/s, Am = 3.5 and @, = 27°. ((s+1)*(s+2.5)* (s+25));
>> F =1;

>> margin( F * G )

Bode Diagram
Gm = 10.8 dB (at 9.49 rad/sec) , Pm = 26.6 deg (at 4.99 rad/sec)

50

Magnitude (dB)
]
a
o

-100

Phase (deg)
I
@
o
T

10° 10' 10
Frequency (rad/sec)

From a) we know that at we q = 5 rad/s the phase margin is 27°. In order to have ¢, > 60° we need to increase the
phase by approximately 40°, including 6° extra to compensate for a future lag compensator. This is obtained using
a lead compensator (using standard notation of parameters) with 8 = 0.21. The phase compensation is located at
the correct frequency by taking mp = —1— = 0.43.

we,ay/B

The controller gain is adjusted by the factor K to get the desired crossover frequency:

1
@) =K e 1 =1 =
0.21

K.

Sl

K =0.46
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The requirement ey = 0, that is, no steady state error for a unit step reference signal, is achieved by incorporating
a lag compensator (using standard notation of parameters) with v = 0, and, using the rule of thumb for the choice
of 11, we take 71 = 10/5 = 2.

Generate a lead-lag regulator and make a >> wc = 5;

Bode plot of the open loop system. Both the >> b = 0.21;

crossover frequency and the phase margin >>tD =1/ (wc * sqrt( b ) );

requirements are satisfied. >> K =sqrt( b ) / 1;
>>Flead = (tD* s+ 1) / (b*xtDx*xs +1);
>> g = 0;

>> tI = 10 / wc;

> Flag = (tI *s+1) / (tI *s +g);
>> F = K * Flead * Flag;

>> margin( F * G )

Bode Diagram
Gm = 16.8 dB (at 17.5 rad/sec) , Pm = 62.6 deg (at 5.01 rad/sec)

50

Magnitude (dB)
]
o
o

-100

_150 . . . .
45

S
g -135
&
8 -180
o
—225
-270 1 1
107 107 10° 10’ 10° 10°
Frequency (rad/sec)
Plot the step response of the closed loop sys- >> Gc = feedback( F * G, 1 );
tem. >> step( Gc, 10 )
Step Response
1.4
1.2F 1
L
[0
S o8 1
2
£
<<
06t 1
04t 1
0.2H J
0 s s s s s s s s s
0 1 2 3 4 6 7 8 9 10
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C) Compute the transfer function of the closed >> Gcl = feedback( G, 1 );
loop system for F(s) = 1. Draw the Bode >> bode( Gel )
plot.

Bode Diagram

50

Magnitude (dB)
|
a
o

-100

Phase (deg)
1
@
o
T

_o70L L L L

10 10 10’ 10 10
Frequency (rad/sec)
Add the Bode plot of the compensated >> hold on
closed loop system to the previous figure. >> bode( Gc, ’-.7 )
The curves of the compensated system are >> hold off

dash-dotted.

Bode Diagram

50

Magnitude (dB)
|
a
o

-100

Phase (deg)
1
@
o
T

10’ 10 10
Frequency (rad/sec)

Comparing the two Bode plots we see that the main difference is that the height of the resonance peak has been
reduced, that is, the damping of the closed loop system has been increased due to the increased phase margin. We
also see that the bandwidth is approximately the same, since we have not changed the gain crossover frequency.

d) Calculate the transfer function from the reference signal to the error:

B(s) = R&) - FWGWES) = E() = a0 )
Let
S(s) = m
Enter the transfer function S. >8S=1/(C1+F=*G);
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Create a time vector between 0 and 30 with >t =(C0:0.1:30).°;

step 0.1, and a reference signal vector r(t) = >>r =t

t.

Plot the result. Even though the steady >> y =1sim( S, r, t );
state error for a step reference signal is zero >> plot( t, y )

(due to v = 0), the steady state error for a

ramp reference signal is non-zero.
0.4

0.25F b

0.2 4

0.15 b

0.1 4

5.14 The amplitude and phase at w = 0.2 rad/s is 0.0162 and —140°. We need a phase lift of 20° to obtain a phase margin of

5.15

60°.

A lag part is needed to remove the steady state error. Hence we need 6° more in phase lift, all in all a 26° phase lift.

This is obtain by employing lead and lag compensators (using standard notation of the parameters). First, N = 3 and
b= weca/ VN = 0.12 give the required phase lead at the desired gain crossover frequency. Then K = m = 35.7

achieves that gain crossover frequency. Finally, a = 0.1w. q = 0.02 and M = oo remove the steady-state error.

The resulting controller is:

a)

s+0.12 s+ 0.02

F(s) =357
(8) = 3573 =5 015

Combining the system’s transfer function with the controller K, the loop gain becomes

0.25K
(ris+ 1)(m2s + 1)s

Go(s) =

which leads to the error coefficients

1 . 1 4
= = U, e
1+ limy 0 Go(s) !

- limg_,0 sGo(s) K

€0

provided that G, is stable. The Bode plot shows that stability of G, under proportional control may be evaluated
via the gain margin A,,, that is, G, is stable if K < A,,. The Bode plot gives A,;, = 4000, so the condition under
which the error coefficients are defined is

K <4000

The problem formulation suggests the use of a lead-lag compensator.

Let weq denote the desired gain crossover frequency 100 rad/s. The Bode plot gives |G(iwc,q)] = 5-107* and
arg G(iwe,q) = —175°. To obtain the desired phase margin, a phase lead of ((—180°) + 50° + 6°) — (—175°) = 51°
is needed, where 6° has been added to ensure that the phase margin is kept even if a lag compensator is used. To
this end, introduce a lead compensator in the controller:

s+b

Fleaa = N
lead s+ bN
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See the discussion of lead compensators in Glad&Ljung! To keep the high frequency gain of the controller as small
as possible, N should be chosen as small as possible. The desired phase advance is obtained with N = 8. This
phase lead is obtained at the desired crossover frequency if

We,d
VN
The desired crossover frequency is obtained by adjusting the gain of the open loop system by introducing a factor,
K, in the controller:

b= =354

1 = K |Fiead(iwe,d)| - |Gliwea) = KVN-5-107* = K =707

Since the system contains an integrator, the step error coefficient eq is zero. The ramp error coefficient requrement
is

1
= 0.001 =
“l limg_,0 sF(8)G(s) <
4
— < 0.001 —
hms_m F(S)

4000 < lim F'(s)
s—0
but the controller K Fieaq doesn’t fulfill this requrement since

lim K Fieaa(s) = 707
s—0

Hence, the static gain of the controller must be increased by the factor % = 5.7. To this end, introduce a lag
compensator in the controller,
roo_ s+ta
e T o4 a/M

with M = 5.7 and a = 0.1we q = 10 (see the discussion of lag compensators in Glad&Ljung!).

The resulting controller is
s+354 s+4+10

F(s)="707-8 .
(5) s+2828 s+ 178
5.16 Systemet G(s) = %e*O'QE’S regleras med en P-regulator med K = 1//2. Skérfrekvensen w, ges av
, 2K 2 _ 2
L= KGiwe)| = ——s 5 4K =0 +1 5w = VAK? T =1
wc

Fasmarginalen ¢, ges av

om =7+ arg(KG(iw.)) = © — 0.25w, — arctan w, =

Tm—1

=7 —0.25 —arctanl = ~ 121°.

Vi vill bestdmma en lead-lag-regulator F'(s) som ger dubbla skéarfrekvensen och samma fasmarginal. Vid weny = 2 ar
fasmarginalen

Omony =T +arg G(2i) =7 — 0.5 — arctan 2 ~ 88°.
Det innebér att vi maste hoja fasen med
Apy, = 121° — 88° + 6° = 39°,
med 6° for lag-laink. Det ger

1 —sin(Apy,) 1

= = 02, T = — = 11
1+ sin(Ap.,) b We,nyV B

B

1+7ps
1+B71ps”

For att fa ratt skarfrekvens bestdmmer vi ett K’ si att

D& har vi Fieuq =
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5.17

Det

T =

a)

1 1 1
1 = | K’ Freqa(iwe)Giws)| = 2K'— e = 2K, /% —2K' = K' =3
)

5(0‘)2,774; +1
stationédra felet maste vara mindre &n 0.05 nér referensen &r ett steg. Vi lagger till en lag-lank Fj,q = i;:ffy, dér
w10 = 5 och « bestdms sa att
c,ny
1 1 2K’
= <005=7< =0.05
1+ K Floaa(0) Flag(0)0G(0)  1+2K'/y = 7=
Vi soker F(s) = Fieqd(5)Fiag(s).

Vi borjar med den fasavancerande lanken
TTps+1
Fiea =K——.
tead(s) Brps+1
Den nya skérfrekvensen ar w. q = 30 rad/s.
Eftersom ¢, = 40° och ¢, = arg(F(iwe,q)G(iwe,q)) +180° = arg(Fleqa(iwe,a)) +arg(Frag(iwe q)) +arg(G(iwe,q)) +
180°, sa far vi arg(Fieqd(iwe,q)) = —140° — arg(Fiqq(iwe,q)) — arg(G(iwe,q)). Fran bodediagrammet har vi
arg(G(iwe,q)) &~ —180° och fran tumregeln om fasretarderande lédnkar, vet vi att den minskar fasen med 6° for
lampliga parameterval. Alltsd arg(Fieqq(iwe,q)) = —140° + 6° 4+ 180° = 46° och § = 0.17. Med detta g far vi
D = (We.av/B) "L = 0.0812.
Vi viljer K sd att we g = 30: |F(iwe,q)G(iwe,q)| = 1. Detta ger
|Ficad(iwe,d)|| Flag (iwe,a)||G(iwe,a)| = 1.
Fran tumregeln foljer |Fiqq(iweq)| = 1, och
K LA

VB liwe,a(iwe,a + a)(iwe,qa + b)|

)

vilket ger K = 395.17.

Den fasretarderande ldnken ges av

718+ 1

-Flag(s) = ! 3
TIS +

och enligt tumregeln ska 77 = 10/w, 4 = 0.33. Vi vill vilja v sa att statiska felet vid steginsignaler &r noll. Enligt
slutvirdesteoremet (slutna systemet r asymptotiskt stabilt, se ovan)

1 1
lim e(t) = lim sE(s) = lim s -
5—>

t—00 520 1+ Fleqa(s)Flag(s)G(s) s’

vilket ger
lim (s+a)(s+b)(s+c)(Brps+1)(rrs +7)
5=0 (s+a)(s+b)(s+c)(Brps+ 1)(rrs+ ) + Kki(tps + 1)(1rs + 1)
B abey
abey+ Kk

Alltsa ska vi vélja v = 0.

Den resulterande regulatorn ges av

0.0812s +10.33s + 1
0.0137s +1 0.33s

F(S) = Flead(S)Flag(S) = 395.17

Den verkliga Oppna loopen ges av VF(S)GO(S) =  F(s5)G(s)e Tas, Notera att |F(jw)G°(jw)| =
|F(jw)G(jw)e 71| = |F(jw)G(jw)l|e™T4| = |F(jw)G(jw)|, medan arg(F(jw)G°(jw)) = arg(F(jw)G(jw)) —

Tqw. Eftersom tidsfordrojningen bara paverkar fasen tittar vi pa fasmarginalen. Regulatorn &ar designad sa
att ¢, = 40° = %ﬂ' rad. Alltsd ¢2, = ¢, — Tyw.. Slutna systemet dr stabilt om % > 0, vilket ger

om — Tqwe > 0Ty < ‘fu—’: = 0.0233 s.

Slutna systemets (G.) snabbhet ges av dess bandbredd, vilken 4r wp = 50 rad/s. Ett lagpassfilter F,.(s) = ﬁ

uppfyller |F,.(jw)| ~ 1 for w < 771, medan fér w > 7! avtar forstdrkningen med lutning —1 i ett bodediagram.

Approximativt giller d& att F,. bara reducerar hela systemets bandbredd om wpg > 771, vilket ger 7 > w,}l = %.
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6

6.1

6.2

6.3

6.4

Sensitivity and Robustness

The sensitivity function is the transfer function from v to y. The block diagram gives

1 s2+s
Y(s) = 7KV(S) == V(s)
S(s)
Vw? +1
()] = T
(K — w?)? 4+ w?
For w =1 we get
2
|S(1i)] = v2

(K -1 +1
The amplitude of y(¢) is less than the amplitude of v(¢) if |S(1i)] < 1, that is,

V2
(K —1)2+1

<1 & 2<(K-12+41 & K>2

Determine the upper limit of the relative model error

GO(s) — G(s) :
GA(S)—W—S = |GA(1CL))‘—W
The stability is then guaranteed if
.| Fiw)G(iw) 1
[Geliw)] = ‘ 1+ F(iw)G(iw) < w w

No steady state error for steps implies G.(0) = 1 and the bandwidth wg is thus defined by the smallest value that
satisfies

|Ge(iw)] <

1
—, w>w

V2 °
The curve 1/w crosses 1/v/2 at w = /2. Thus, the bandwidth must be less than /2. However, the curve |G.(iw)|
asymptotically approaches a line with slope —20 dBso/decade, which implies that wp cannot be arbitrarily close to V2.

For example, if G, is a first order system, then the breakpoint of the asymptote must be 1 rad/s if it shall coincide

with 1/w. The first order system with that asymptote is ﬁ, which has a bandwidth of 1 rad/s. If G. would be a

higher order system, the bandwidth could be made slightly higher, but the limited information about G, excludes this
possibility.

Answer: The maximum bandwidth is wg = 1.
The disturbance is amplified when the magnitude of the sensitivity function exceeds one, that is, when
L >

]. + Go(l(}J)

that is
14+ Go(iw)] < 1

which corresponds to the part of G, (iw) that is within a circle with center at —1 and radius 1, see Figure

Let
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Figure 6.3a

denote the upper bound on the norm of the relative model error. Robustness condition:

F(iw)G(iw) 1

T(iw)| = Y
@) = [ | <5
Now,
s+10 1 1
F = .
(5)G(s) s s+10 s =
F(iw)G(w) | | 1T | 1
1+ F(iw)G(iw)|  |iw+1| w2+l
so the robustness condition becomes
Y L < wi+1 &
w
w2 +1 0.9

Vw: 0.9 <w?+1
which is satisfied.

Answer: Yes.

6.5 a) Using notation similar to that in Glad&Ljung, we have
Ga(s)=eT -1
that is, Ga(iw) = coswT — 1 — isinwT'. This implies
|Ga(iw)] = V2 — 2coswT

and in particular
0, whencoswT =1

|Ga(iw)] = {

2, whencoswT = —1
In Figure |Ga(iw)| ™" is plotted as a function of wT.

b) The robustness criterion results in
F(iw)G(iw) < 1
1+ F(iw)G(iw) |G a(iw)]

“

Figure therefore provides the answer.

Answer:
1

‘ F(iw) G (iw)
2

1+ F(iw)G(iw)
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6.6

6.7

1/v/2 —2coswT
w
|

0.5 —-

Figure 6.5a

a) First identify the relative model error:

G(s)
that is, 3
_G(s)
GA(S) - G(S)
The robustness criterion
Vi ’ 1 B ’G(iw)‘ ‘ KG(iw)
Ga(iw)|  |G(w)| ™ |1+ KG(iw)

gives

~ . liw(iw +5) + K| 2 (25/2 — w?)? + 25w2
G < S to o — 2 w2(w? + 25)

2 wt4(25/2)2
“ %\ P o) I

Because g(w) — 2/25 as w — oo stability cannot be guaranteed when G(s) = 1. Also note that the requirement
that GO(iw)F(iw) — 0 as w — oo fails, since GO(iw) — 1, w — oo.

b) When G(s) = « the closed loop system becomes

KGO(s) K(1+ as(s+5))

1+ KGO%s)  s(s+5)+ K(1+as(s+5))

with characteristic equation
s%(2 4 25a0) 4+ 55(2 + 25a) +25 =0

Rouths algorithm gives the condition
2+25a>0 & a>-2/25

This is not contradictory since the robustness criterion is a sufficient but not necessary condition.

a) The characteristic equation can be determined for a generic nominal loop gain. Let

denote the nominal loop gain. The true closed loop system becomes

o

(:

s) = a(s) s+a _ _
Ge(s) 1+ Z((Z% Sza a(s)(s+a)+b(s)a  a(s)s+ (a(s) +b(s))a

@
—

83
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Im

w= \/g, a=
1
Asymptote
/ @)
\ 03 >
-2 -1 1 Re
-1
w=—-v3 a=3
Figure 6.7a

and has the same root locus with respect to « as the open loop system

a(s) + b(s) _ Go+1
a(s)s s

has with respect to a proportional feedback. This can be used to draw the root locus using MATLAB. However, to
draw the root locus by hand, we use that here Go(s) = KG(s), so

b(s) =4 a(s) =s(s+1)
which lets us identify the polynomials P and @ in the characteristic equation P(s) + aQ(s) =0 as
P(s) =a(s)s = s*(s + 1) Q(s)=a(s) +b(s) =s>+s+4
o Starting points = zeros of P(s): 0 (double), and —1
End points = zeros of Q(s): —% + i‘/TE’

¢ Number of asymptotes: 3 —2 = 1.
Direction of asymptote: % -7, that is, the negative real axis.

1
o Part of the real axis that belongs to the root locus: (—oo, —1].
o Intersection with the imaginary axis: Set s = iw and solve the characteristic equation:

—w?(iw+ 1) + a(—w? +iw+4) =0

Isolate real and imaginary parts:

~w?(1+a)+4a=0
—w+aw=0

with solutions
(a=0,w=0) or (a=3w==+V3)

The root locus is shown in Figure from which the conclusion immediately follows.
Answer: Asymptotically stable for a > 3.

b) Begin by identifying the relative model error:

o e e
G (S):G(S)(era) :G(s)(l G1o) 1)
Gal(s)
Thus
1 _ S+ « —m::f(w)
|G A (iw)] —s w




6.8

6.9

6.10

The robustness criterion Yw : |G¢(iw)] < f(w) is fulfilled if the low frequency asymptote of f(w) exceeds the
resonance peak at w = 2, where |G.(i2)| = 2. This gives the condition

V4+012 aéo

> 2
2

a> V12

Answer: o > 12

¢) The robustness criterion gives a sufficient but not necessary condition, that is, the system can be stable even if the
criterion is not satisfied. In this case for 3 < a < v/12. With a root locus we obtain an exact characterization of
the stabilizing parameter values, that is, a necessary and sufficient condition.

It can be shown that both F(iw)G(iw) and F(iw)G°(iw) tend to 0 as w — oo. The robustness criterion guarantees
stability if
1
|Ge(iw)] < —
yw
since
1 1

|GA(w)| < yw = 'yiw < 7|GA(iw)|

The transfer function G, has a resonance peak at w = 1 with |G¢(il)| = 35, which leads to the condition

1 1
<< — & < =

v-1 35

Trivially, v must also be positive.
Answer: 0 <~v < %
The closed loop system becomes

Y(s) = V(s) + Go(s)(R(s) — N(s) = Y(s)) =

Go(s) 1
Y(s) = - N
() = T g gs) (B = N + g Ves)
where we can identify
1
7(s) = o) - ()

T 1+ Go(s) T 1+ Go(s)

Notice that S(s) + T(s) = 1. In the problem formulation we have Y (s) = S(s)V(s) since the other inputs are zero.
Hence, for v(t) = sint, we have

LTHSVY(t) = % sin(t — %)

and thus for n(t) = sint

a) Putting
G(s) = G(s) ;g5 = o)1+ Gas)
gives s
Gals) = - s+1
and
I s+l
Ga(s) s

(0]



b) Enter the system and the regulator from >> s = tf( ’s’ );
Problem [E.13] >> G =725/
((s+1)*x(s+25)x (s+25));
>> wc = 5;
>> N = 5;
>> b =wc / sqrt( N );
> K =1/ sqrt( N );

> Flead =N * (s+b)/ (s+bx*xN);
>> a = 0.1 % wc;

>> Flag = (s +a) / s;

>> F = K *x Flead * Flag;

Enter the inverse relative model error and > IDG =- (s +1) / s;
the complementary sensitivity function ob- >> T = feedback( 1 * G, 1 );
tained when G(s) is controlled by F(s) = 1. >> bode( IDG, ’k-’,

Plot the amplitude curve of the inverse rel- T, ’k-.7 );

ative model error in the same diagram as
the amplitude curve of the complementary

I . Bode Diagram
sensitivity function. 9

100
50| 1
g
T O - — B
° ~
E] <
S 50 ~ -
=5 N
= RS
-100 ~_ ]
-150
270 ‘ ; ‘
180+
S 90f 1
(7]
S
@ OfF— == == == e 7
] <
T -90r \ .
\
-180| e 1
—270% I I I CTimi— e
107 0™ 10° 10 10° 10°

Frequency (rad/sec)

Since the absolute value of the complementary sensitivity function goes above the inverse relative model error over
a frequency interval, we cannot guarantee that the closed loop system obtained when G°(s) is controlled by F(s) is
asymptotically stable.
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6.11

6.12

6.13

Enter the complementary sensitivity func- >> T = feedback( F * G, 1 );
tion obtained when G(s) is controlled by the >> bode( IDG, ’k-’,

lead-lag regulator designed in Problem[5.13] T, ’k-.7 );

Plot the amplitude curve of the inverse rela-
tive model error in the same diagram as the
the amplitude curve of the complementary
sensitivity function.

Bode Diagram

=
o
S

al
=]
T
I

o
1

Magnitude (dB)
1
al
o
T
/
/
L

-100 ~

-150

270 \

180

©
=]
T
I

Phase (deg)
o
[
|
[
I
L

|
©
=]
T
/
I

-180 ~ ’

_o70L ‘ ‘ ‘ ; - =
10 107 10° 10" 10 10
Frequency (rad/sec)

In this case |T'(iw)| stays below the inverse relative model error, and hence we can guarantee that the closed loop
system obtained when the lead-lag regulator is applied to GY(s) will be asymptotically stable.

The transfer function between the reference and the error is the sensitivity function. When the reference signal is a
sinus the error signal will also be a sinus with the same frequency and with an amplitude modified by the gain of the
transfer function at that frequency, [S(0.1i)] = —20 dBgg = 0.1. This gives that the amplitude of the error is 0.2.

A way to see if the controller also stabilizes the system at 400 r/min is to look at the phase and amplitude margin of

s+ 0.116 s+ 0.02 0.02 e2s
s+0.116-3 s s+ 0.021+4 20s

F(s)G(s) =35.7-3

A bode plot of this system is given in Figure were it can be seen that the phase margin is 9.54° and that the
amplitude margin is 1.3. The closed loop system is stable but the margin is small.

The sensitivity function is given by

1
5 = T FeaE)
which in this case means
o (s+1)?
Ss) = (s+1)2+K

The demand that the amplification of the sensitivity function should be less than 1 at w = 1 gives

2
S(il)]| = ———— < 0.1
S(i1)] = <= <

that is, K > /396 =~ 19.9.

To illustrate, the condition is verified in MATLAB.
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10! =
3 b >
T 100 N
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~ )
\
107!
-90°
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(§ 7777\\<;7 77777 = = 7 = 7T 0 =11 7
S e T~ S i i s 1 N
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< o TN .
AN N I oINS o>
e s il e el e e - A NG R
-210° :
[
10! 10°
we = 0.26 w [rad/s]
wp = 0.32
Figure 6.12a
Enter the system and create the sensitivity >> s = tf( ’s’ );
function. Plot with a grid. > G=1/ (s +1)72;
>> K = 20;
>> S =minreal( 1/ (1 +K *xG) );
>> bode( S );
>> grid;
Bode Diagram
10
o0
g
g
=
-20
-30
135F -
B 90 .
%
©
T 45t 4
0k I |
107 107 10° 10" 10

Frequency (rad/sec)

6.14 a) Hitta G.(s)
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Héarledning av 6verféringsfunktionen for det slutna systemet,

Go(s) FG(s)

G = =
o(s) 14+ Go(s) 14 FG(s)
3s+1 1
_ s (s—1)(es+1)
3s+1 1
L+ s (s—1)(es+1)
3s+1

s(s—1)(es+1)+3s+1"

Identifiera P(s) och Q(s)
Skriv om némaren till G.(s) som

s(s—1)(es+1)+3s+1=¢(s®— %)+ (s> +25+1).
Detta ger
Q(s) =s*—s* P(s)=s>+2s+ 1.

Dock maste gradtalet for P(s) vara storre dn gradtalet for Q(s). Sa &r ej fallet. Vi hanterar detta genom att rita
rotorten for K = 1/e istéllet. Foljaktligen blir

P(s) =5 -5 Q(s)=s*+2s+1.

Hitta startpunkter
Startpunkter dr de s dér P(s) = 0. De dr s; =0, s = 0 och s3 = 1.

Hitta andpunkter
Andpunkter dr de s dir Q(s) = 0. De ér s; = —1, sp = —1.

Antal asymptoter
Antalet asymptoter &r n — m = 1, dir n ar gradtalet for P(s) och m ar gradtalet for Q(s).

Hitta riktningar
Asymptotens riktning ges av

™

= T.
n—m

Foljaktligen kommer asymptoten ej att skira reella axeln.

Hitta eventuell skirning med imaginira axeln

Séatt in s = iw i P(s) + KQ(s) = 0 och 16s ekvationen for reella w och icke-negativa K. Vi far
P(iw) + KQ(iw) = —iw® + w? — Kw? 4+ 2Kiw + K =0
= w=0 K=0o0chw=1+3, K=3/2.

Bestiam de delar av reella axeln som tillhor rotorten

Den del av reella axeln som tillhor rotorten ar —oo < s < 1.

Rita rotorten

Se figur

Foljaktligen s& ar det slutna systemet stabilt for K > 3/2 = 0 <e < 2/3.
Svar: 0 <e < 2/3.

Identifiera det relativa modellfelet
Enligt definitionen s& har vi

G%(s) = G(s)[1 + Ac(s)]-
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6.15

a)

Root Locus

25 T T T T T T T T T

2t J

15F J

1+ J
2

% o0s5f 1
>
©

£ o0 o .
©
E

-0.5F 8

-1 F -

15} 4

-2F -

o5 ! ! ! ! ! ! ! i !
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
Real Axis
Figure 6.14a
I vart fall sa ar
0 1 €s —€s
G (s) = =G(s)(1 ) = Acl(s) =

(s—1)(es+1) Ces+1 es+1

Enligt robusthetskriteriet sa ar det slutna systemet stabilt om |T'(iw)| < 1/|Ag(iw)| for alla w. Den asymptotiska
amplitudkurvan for

I 1+s/(1/e)
Ag(s)  —s/(1/e)
har lutning —1 fram till w = 1/e och sedan lutning 0. Den har foérstéarkning 1 {or frekvenser w > 1/e. Enligt figuren

har |T'(iw)| forstarkning mindre dn 1 for ungefar w > 3, sé olikheten &r uppfylld om e < 0.33.
Svar: 0 < e < 0.33.

S(s) ar overforingsfunktionen fran storsignal till utsignal. For att undertrycka en storning av frekvens w ska
|S(iw)| < 1. —=G.(s) ar overforingsfunktionen fran métbruset till systemets utsignal. For att undertrycka métbrus
av frekvens w ska |G.(iw)| < 1. Vi har foljande samband mellan S(s) och G.(s)

- 1 Go(s)
T 15 Go(s) 14 Go(s)

S(s) + G.(s)

Pa grund av detta samband sa kan inte bade S(s) och G.(s) goras sma oberoende av varandra. Saledes kan vi inte
bade undertrycka storningen och métbruset godtyckligt mycket samtidigt.

b) S(s) ar stabil si vi kan anvinda slutvardessatsen:

lim e(t) = lim sE(s) = lim sS(s)1 = liH(l) S(s) = {nollstélle i origo} = 0.
s5—

t—o0 s—0 s—0 S

80



7 Special Controller Structures

7.1 a) Derive the transfer function:

1
) = T somya 73 )
n(s) = oL ()

(1+ 10s) + Gra(s)

Gra(s) = K3 =9 gives

0.9
0(s) = 5 5 W(s) =: G(s)W (s)
(1 + 0,033)(1 + m)(l + 3)
Thus,
0.9
|G (iw)| = S =
VIF (G5 VI (552 V1+?
with low frequency asymptote
|G(iw)] = 0.9, w—0
and
arg G(iw) = —arctan Y _ arctan —— — arctanw
0.033 0.33

The gain is drawn approximatively based on a known gain at some point of the low frequency asymptote, 0.9, and
the breakpoints and slopes of the asymptotes:

Frequency [rad/s] 0.033 0.33 1
Slope 0 -1 -2 -3
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] | 0.033 | 0.1 0.2 0.5 1.0
Phase —52° | —94° | —123° | —169° | —205°
2 1
1l === [ —— —
— 057 . ] &
E) 0.2 S i I
©) = : ot
= 0.05 5 ~— /K |G
0.02 R e 0
0.01 = ;
T T
-60° o
é\ -90° K i i
= -120°
)
o0 -150° s s e A
® _180° Jg»%
_2100 R~
‘ T ‘ T ‘ T ‘ T
0.02 0.03 0.050.07 0.1 02 03 0507 1

wp =0.61 w [rad/s]
0.427

Figure 7.1a

The Bode plot in Figure gives that the gain crossover frequency and the phase margin are undefined, but we

have a gain margin:
wp =0.61rad/s A, =50.5

A gain margin of 2 is obtained when
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that is, K7 = 25.25. This results in a new gain crossover of 0.43 rad/s (and new phase margin of 19°). To find the
steady state error, study how the Laplace transforms of the controll error relates to that of the reference:
1

E(s) = m&ef(s)

which with 0..t(s) = & gives

lim e(t) = lim sE(s) =0.042-a

e 550 T1+K,-09

Without the internal feedback we get the transfer function defined by

1

0(s) = U+ o)1+ o) (1 + 555)

and thus
1

Gliw)| =
O = A e T (=PI (=)

with low frequency asymptote
|Giw)] = 1, w =0

and
w

w w
— arctan —— — arctan —
0.033 0.33 0.1

The gain is drawn approximatively based on a known gain at some point of the low frequency asymptote, 1, and
the breakpoints and slopes of the asymptotes:

arg G(iw) = — arctan

Frequency [rad/s] 0.033 0.1 0.33
Slope 0 -1 -2 -3
The phase curve is drawn based on a couple of samples:
Frequency [rad/s] | 0.033 0.1 0.2 0.4
Phase —69° | —134° | —174° | —212°
5
13 = - o
— 052 g |
3 02 : o
5 0lg———————a—=———1/Ki |®
= 0.05 N S 2
0.02 =
0.01 5
\ T T
-60° < .
3 -90° I I
=-120° N
G]
o0 -150° .8
S 180° 1. 4] _ 9%
-210°
‘ T ‘ T ‘ I ‘ T
0.02 0.03 0.050.07 0.1 0.2 03 0507 1
wp = 0.22 w [rad/s]
0.154
Figure 7.1b

The Bode plot in Figure [7.15] gives that, again, the gain crossover frequency and phase margin are undefined, but
we have a gain margin:
wp =0.22rad/s A, =19

A gain margin of 2 is obtained when K - 5 = 1, which leads to K; = 9.5. This results in a new gain crossover of

9
0.15 rad/s (and a new phase margin of 21°). As above, we get the controll error for step references:

. 1
i et) = 7og 5o = 009

We conclude that due to the internal feedback, the system in a) is faster (higher bandwidth) as well as more precise
(smaller stationary error).
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=
0o F ~ h
O & & ¢ —

Figure 7.2a

7.2 Consider the block diagram in Figure The change in tank volume per time unit is given by

dt

or, equivalently,

which gives

H(s) = - (X(s) = V(5))
Furthermore,
X(s) =Gy (s)U(s)
where 1
=1

a) We let the input u(t) be a function of v(t) only, that is,

U(s) = Fi(s)V(s)

The level h(t) as a function of v(t) then becomes

H(s) = 4 (Guls)Fils) ~ DV (5)

If we choose
——=1+4s/2

the level becomes independent of v(t), but to get the controller Stu uses, we remove the derivative term:
Ff(S) =1

The level as a function of v(t) then becomes

H(s) = Ais(l +1s/2 ~DV(s) = *i 1 +1s/2 Vis)

With V(s) = 0.1/s this yields

0.1 1 0.1 /1 1
B == asi+s2) - 24 ( - 2+>

that is
0.1

At) = -4

_ e—2t)
which gives the steady state error —0.05/A.

b) We now choose the input u(t) to be a function of both h(t) and v(t), that is, we add the term —Kh(t) to the control
law from a). (See Figure [7.2b]) Thus
u(t) = —Kh(t) + v(t)

or, equivalently,
U(s)=—KH(s)+V(s)
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F;
+ —
: @2*@— 6 [=O— ¢
Figure 7.2b

This gives

AsH(s) = Gy(s)(—KH(s)+V(s)) —V(s)
(As + KGy(s)H(s) = (Gu(s) = 1)V (s)

H(s) _ —5/2 _ —$

V(s) A/2-82+As+ K  A(s2+2s+2K/A)

To select K, we may compard’
2+ 25 +2K/A=0

with the standard equation
5%+ 2¢wos +wi =0

which gives
wg=2-K/A (w=1

To obtain approximately 5% overshoot we choose ¢ = 0.707, and from

VA/2K) = ¢ =0.707

we get K = A. Hence,
H(s) -5

V(s) A(s2+2s5+2)
If v(t) is a step of amplitude 0.1, the final level becomes

lim h(t) =0

t—o0

that is, there will be no steady state error in the level for a step disturbance.

v
F;
Gy
) Y
o=
Figure 7.3a

7.3 a) A block diagram of the system is given in Figure The output is given by
Y = (Gy + G Fy)V

where
2 3

Gu(s)zs—i—i’) GV(8)25+4

*Note that any K > 0 results in a stable closed loop system, and that the steady state error computations below are independent of the
particular value of K. Hence, selecting K is not necessary for the solution of this problem.
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Chose F} such that (G, + G Fy)V = 0:

G, 3(s+3)
Ff = —— = —
Gy 2(s+4)
Compute the controller. >> s = tf( ’s’ );

>Gu=2/(s+3);
> Gv =3/ (s +4);
>>F = - Gv / Gu;
b) If v(t) = 2sinwt then
u(t) = 2| Fr(iw)| sin(wt + arg Fr(iw))

The amplitude is then

v
Iy
Gy
() - ¥
L Fo-Le EOae
1]
Figure 7.3b

¢) A block diagram of the system with both feedforward and feedback is shown in Figure The output is now
given by

Y =G,V +GuU = (Gy + GuF)V — GuKY

where b
Gia(s) =
() s+3
The transfer function from V to Y is given by
=~ 3 3b
Gy + GulF: 5+~ 3(s+A)
Y(s) = Ty (s) = 2L 2
14+ G K 1+ K75
1-5/2
BU-b2(6+3)

T (s+4)(s+3) + Kb(s + 4)
This is stable for K > 0 and b > 0. The final value theorem can therefore be used (with V(s) = 1):

. L . 3(1—b/2)(s +3) 1 9(1-1b/2)
A y(t) = i sV (s) = limy s o e 7 0 s~ 12 £ 4KD

a) The output is given by

where




Create the system and the feedforward con- >> s = tf( ’s’ );

troller. > Gv=4/((s+2)/ (s +5);
>Gu=3/(s+1);
>> F = - Gv / Gu;

b) The constant to replace F:(s) is given by

~ 4
Fy=F(0) = ——
= F(0) = —55
The output is then given by
12 4 40(s+1) —4(s+2)(s +5)
v (- + ACE V(s
30(s+1) (s+2)(s+5) 10(s+1)(s +2)(s+5)
—4s% +12
_ s° 4+ 12s V(s)
10(s + 1)(s +2)(s +5)
Taking the Laplace transform of v(t) = —1 — 0.1t we get V(s) = —1 — %} The final value theorem then gives
(verify that the system is stable)
_ . —4s% + 125 1 01
lim y(t) = lim s - - =
t—00 s=0 10(s+1)(s+2)(s +5) s s?
12
= —-(—-0.1) = —-0.012
100 ( )
Create the system with the controller and >> F = -4/30;
create the disturbance signal. >> G =F % Gu + Gv;
>t = (0 : 0.001 : 20 ).°;
>> v = -1 - 0.1%t;

>> 1sim( G, v, t )

Linear Simulation Results
0.03 T T T

0.01 i

-0.01 |

-0.02- i

Amplitude

-0.03 i

-0.04 .

-0.05 i

-0.06 - 4

-0.07 I I I I I
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

¢) With the P controller the output is given by

3

12 4
Vi) =Y+ < 30(s+1) | (s+2)s+ 5)> v

which means that
40(s+1)—4(s+2)(s+5)
s s —04s%+1.2
Y(s) = 10(s+1)(s+2)(s+5) V(s) = s° + S (s)

1+jf1 (s +3K +1)(s+2)(s+5)
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Using the same disturbance, V (s) = f% — %, the final value theorem gives (verify that the system is stable)

lim (1) = 1 —0.4s% +1.2s 1 01
im = lim s —_ = —
oY 50 (s+ 3K +1)(s+2)(s+5) s s?
1.2 0.012
=—(—01) = ————
(3K +1)-10 ( ) 3K +1

Create the new closed loop system with dif- >> K = 1;
ferent values on K. >> Gc = minreal( G / (1 + K *x Gu ) );

>> 1sim( Gec, v, t )

Linear Simulation Results
0.02 T T T

0.01 R i

-0.01 i

Amplitude

-0.02 4

-0.03 i

-0.04 I I I I I
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

d) When only a P controller is used we have the following relationship between the disturbance and the output

3 4
Y(s)=——=KY —V
&= e
which means that
4(s+1)
Y(s)= Vv
)= 663k
Again using the same disturbance, V(s) = =1 — %} a careful inspection of Y (s) gives that there is no final value

of y, hence the final value theorem does not apply[f] However, the possibility to simulate the system remains.

*If it is assumed that the final value exists, a contradiction follows since then the final value theorem would apply, but give

, , A(s+1) 1 01
lim y(t) = lim s - - —
t—o0 s—0 (s+2)(s+5)(s+3K+1) s 82
4(s+1) s+0.1

520 (5+2)(+5) (13K +1) s
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Simulate the output. >> Gc = minreal( Gv / (1 + K * Gu ) );
>> 1sim( Gec, v, t )

Linear Simulation Results

0 T T T
-0.05 B
—01F J
o —0.15f R
E-
< o2t R
-0.25 B
-0.3[
_035 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
. G1G2Fr
7.5 Y=GG3(F,FR-F)Y)=Y=——"""R.
3,) 1) 1 2( Yy ) 1 T GlGQFy
Svar: 7GIG2FT
" 1+ G1GoF,
. G2(1+ G1Fy)
Y=G;(D+G1FyD-G1F,)Y)=Y=—_—————+-
11) 2( + 148f 14y ) 1+G1G2EJ
Svar: —G2(1 +G1ly)
1+ G1G2Fy
a) Enligt boken (eller s& inses det fran Gverforingsfunktionen ovan) sa elimineras d om Fy(s) = —1/G1(s). I detta
s24+2s+1

fallet alltsd F(s) = 19
s

(Detta val av Fy(s) kan dock ej implementeras eftersom det har deriverande verkan for hoga frekvenser.) For
att eliminera konstanta stérningar récker det att framkoppla med den statiska forstarkningen av Fjy(s), d.v.s.
F¢(0) = —1/2.
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8 State Space Description

8.1 According to Solution [2.1] the differential equation for the motor is
. 1.
0+ —0=Ku
T
where
JRa+koky 1 kg
JR, T JR,
Introduce the state variables ;1 and x5 according to

Xr1 = 0 To = 9
This gives the state space equations
i’l = 9 = T2

. 1. 1
To=0=—0+Ku=——x29+ Ku
T T

(0 4)es (2

y=(1 0)x

In matrix form we get

where 2* = (JL‘l 1'2).

8.2 We start with the differential equations )
£0 + gsinf + Zcosf =0
The state variables )
Xr1 = 0 T = 0

input

and output

gives the (nonlinear) state space description
1 = x9 =: fi(x,u)

. ; g . Z .
Tog=0=—Zgsin6 — ZCOSQZ fwgsm:cl —ucosxzy =: fo(x,u)

L
where wi = g/¢. We get that

f1

B = (0 1)
of
ou
of
or
of
ou

Introduce z1A = x1 — 7, T2aA = T3, ua = u, and ya = y — 7. Linearization around xy; = 7, 9 = 0 and u = 0 gives

= (—wg cos x1 + usin zp 0)

= —cosx

T1A = T2A
. 2
ToA = WoT1A +UA

Ya = T1A
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8.3 Introduce the state variables
1=y x2=0 x3=12

According to the figure, the variables are related as
1
Xi(s) =Y(s) = ~(Mi(s) + K2Xa(s))

L (Xs(s) - X1(s))

S

Xa(s) =0(s)
Xo(s) = 2(5) = ~(KaI(5) ~ o X))

Inverse Laplace transformation gives, in the time domain,

j?l (t) = Kg.l?g(t) + M](t)
Ll":g(t) = —CEl(t) + .%‘3(75)
.’Eg(t) = —K2$2(t) + Kli(t)

In matrix notation this becomes

0 Ky O 0 1
i(t) = (—1 0 1) o(t) + ( 0 ) it) + (o) Mi(t)
0 K, 0 K 0

y(t) = (1 0 0) x(t)

84 a) [ ,
Cv(t) 6 (1) + 11 Sy(0) + 6y(t) = 6u(t)
The state variables
ri(t) =y x2(t) =9 x3(t) =7
gives
il(t) = xg(t)
o (t) = w3(t)
3
a(t) = Su(t) = —6ii(t) — 115(1) — 6y(1) + 6u(r)
= —6x3(t) — 11za(t) — 621 (¢) + 6u(?)
In matrix form we get
0 1 0 0
z(t) = < 0 0 1 ) x(t) + (0) u(t)
—6 —11 -6 6
v =(1 0 0)a()
b)

oo+ w5 Lum 1300 = 45w + Luw) + 20
as? a2? ac? YW =22 at” Y

If we introduce z1(t) = y(t) in the equation and collect all terms without differentiation on the right hand side we
get

d3 d? d d2 d

that is
A+ L)+ 501(0) - 4L () — u(t) ) = —301(8) + 2u(t)
at \ae ™ a’t i ETR R Y

Now introduce the expression within the parenthesis as a new state variable

2
a(t) = %xl(t) + %xl(t) 5 (1) — %u(t) —u(t)
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that is
Zo(t) = —3x1(t) + 2u(t)
Repeating this procedure yields
d, d
&(&xl(t) + 21 (t) — 4u(t)) = x2(t) — 5z1(t) + u(t)

and we can introduce
x3(t) = %xl(t) + x1(t) — 4u(t)
that is
iy (t) = w3(t) — w1 (t) + 4u(t)
Equation , , and define the state space equations

-1 0 1 4
zt)=1-3 0 0] z(t)+ | 2] u()
-5 1 0 1

y(t)=(1 0 0)a(t)

c¢) Partial fraction expansion of

2543
Yis) = s2 +5s+ 6U(S)
gives
Y(s) = ——5U(s) + —Us)
s+ 2 s+ 3
Introducing the state variables ) 5
Xi(9) = =5 U(s) Xals) = —=Us)

gives

in the time domain. Furthermore, we have

In matrix form

8.5 The impulse response

gives the transfer function
2 3

3+1+s+4

The output can then be written
2 3
U U
syl

X1(s) Xa(s)

Y(s) =

Defining the state variables as above gives
sXi(s) + X1(s) =2U(s)
sXo(s) +4X5(s) =3

which in time domain can be written as

J?l(t) = 7()’]1(t) + QU(t)
dfg(f) = —41)2@) + 3U(t)
y(t) = z1(t) + 22(t)
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8.6 The transfer function is given by

8.7

The state space equations have the general solution

t
z(t) = eA0) g (tg) +/ eA=%) Bu(s) ds

to

The input signal w is constant, that is, u(t) = ug, on the interval (¢o,to + 7). This implies

to

to+T
z(to+T) = e Ta(ty) + / et +T=9) 45 | Bug

where

to+T
AT and / eAlotT=s) 45 B
to

are constant matrices.

8.8 a) Introduce the state variables x1 = h, xo = fot(href — h)dr and z3 = fot(href — h)dr. This gives the following
expressions for the control signals

UL = Prer — T1 + 2

U = hpet — 1 + X3
by using these expressions we can eliminate u; and us form h + h = uy + us. This gives
T1 = =1 + Reef — T1 + T2 + Nyt — 21 + T3

By taking the Laplace transform on the expressions for zo and x3 we obtain
- Href(S) — H(S)

S
_ Hyet(s) — H(s)
Inverse Laplace transformation gives

o = Npet — 71

T3 = href — T

In matrix notation this becomes

-3 1 1 2
i) =1-1 0 0]ax@)+ 1] hwt(t)
-1 0 0 1

h(t)=(1 0 0)xz(t)
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b) The observability matrix is

C 1 0 0
O=|CA|=[-3 1 1
CA? 7 -3 -3

A vector which span the null space of a matrix must satisfy Oz = 0.

1 0 0 0 0
-3 1 1 -1] =10
7T =3 =3 1 0

This means in practise that you can’t say if it is u; or us or a combination of the two which fills the tank.

¢) With hyer =0 and u; = —h—n—l—fg —h —ndr we get

$2 = =1 — N
T3 = —T1
and
T1=—21—T1—N+2To— T+ 3
this gives in matrix form
-3 1 1 -1
zt)=1-1 0 0)z(@)+ | -1]n()
-1 0 0 0
h(t)=(1 0 0)xz(t)

8.9 The controllability matrix is
1 0
S—(B AB)= (1 _1)

Since det S = —1 # 0 the system is controllable and it is possible to control the system from the origin to 2™ = (1 3)
within 4 seconds.

8.10 a) The controllability matrix becomes

1 -2 4
S=(B AB A’B)=[-1 3 -9
2 -6 18

and det S = 0 since rank S = 2. The controllable subspace is spanned by

1 -2
-1, 3
2 —6
The observability matrix is
C 1 3 1.5
Oo=|(CA|=[-2 -3 -15
CA? 4 3 15

with det O = 0. Solving for the unobservable subspace
Ox=0
gives (Gauss elimination)

z1+3x9+1.523=0
3r9+1.523=0

T =0
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Introducing x5 = a gives x5 = —0.5a and 2™ = (O —0.5a a), that is, the silent (unobservable) subspace is spanned

by
0
-1
2
b) The controllability matrix becomes
0 0 0
S=14 -8 16
-2 8 =32

with rank § = 2. The controllable subspace is spanned by, for example,

0 0
4 -8
-2 8
The observability matrix is
0 3 0
O=13 -6 0
-9 12 0
Solving for the unobservable subspace Ox = 0 gives
0
x=10
a
The unobservable subspace is spanned by
0
0
1
811 a)
i =-x14+u = x;=1—¢"

By =2ry+u = xo=05(e*—1)

b) The system is not asymptotically stable since zo — o0 as t — 0o, but input-output stable because the transfer
function has its pole in the complex left hand plane.

The system is controllable.

-1 0

()

This implies that the second component of the state vector cannot be seen in the output.

0:(1 0) det © =0

The system is not observable. Ox = 0 has solutions

d) Because the second component of the state vector has unconstrained growth and this is not reflected in the output,
the system will finally collapse.
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8.12

G(s)=C(sI — A)"'B

N

This gives poles in 1 +iy/2 and zeros in —1.

8.13 a)

For pendulum 1 we have )
Zcos(¢p1) + agy = sin(¢q)
and for pendulum 2

% cos(¢2) + do = sin(¢)
Linearization gives
i+ ag = ¢
£t o= o
Consider Z as an input to the system (the acceleration of the trolley ~ the force applied to the system). Introduce
the state variables _ _
T1=¢1 Te=¢1 T3 =2 T4 = P2

This gives the state space equations

Xr1 = T2
1 U
X9 = —T1 — —
« «
X3 = T4

In matrix form

0 1 0 0 1 0
. |1l/a 0 0 O T2 -1/
=10 o0 1]||a]T| o |
0 0 1 0 Ty -1
The controllability matrix becomes
0 -1/« 0 —1/a?
[ -1/ O —1/a? 0 1 1.
-1 0 -1 0

Thus, the system is controllable except for the case a = 1, that is, when the two pendulums have the same lengths.
If the pendulums have different lengths they react differently to the input, but if they have the same length there
is no possibility to act upon them separately using the input.

8.14 The figure gives

1

Xi(s) = G 1)U(s) = sXi(s) = —X1(s) + U(s)
and 1
Xo(s) = 519 (U(s)+ X1(s)) = sXa(s)=—-3Xa2(s)+U(s)+ X1(s)
Inverse Laplace transformation gives
T =—-T1+u
To=—3x0+x1+u
In matrix form this becomes
-1 0 1
T = ( 1 _3>a:—|— (1>u
y=(1 1)z
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8.15 a) Mass balance gives

d(Vv
(dtCA) =Vra +qcain —qca
d((V
(dtCB) =Vrg+qcs
By using ra = —kic} and rg = —4 the following expression is obtained
de
Vd—: = —Vkich + gCA.in — gCA
deg Vklci
B _ —ac
dat 3 1B

b) Linearization around cj, cg, and cj ;, gives
i (o) - ) @)+ (h)
dt \cB,a kich /) \cBa 0
=0 0(53)
8.16 a) Linjérisera systemet runt jaimvikspunkten y(t) = yo. Stationért innebdr & = 0, alltsd 0 = —yqug + v, eller ug = y%

Taylorutveckling av § = f(y, u) runt jaimviktspunkten y = yo + Ay, u = ug + Au, dar alltsd f(yo,uo) = 0 ger

y = Ay = f(yo+ Ay, uo + Ay)

3f(y0, Uo) 8f(y07 Uo)
— A — A
oy SVt A

= 0—uAy —yoAu = —iAy — yoAu.
Yo

~ f(yo,uo) +

b) Laplacetransformera det linjéariserade systemet fran a).
sAY (s) = —yleAY(s) — oAU (s), dvs.
AY (s) = —2-AU(s) = G(s)AU(s).

Yos+v

Det aterkopplade systemet fas fran

U(s) = F(s)(Yo—Y(s))
Y(s) = G(s)U(s)
vilket ger
Fs)G(s) K=o

G.(s) =

1+ F(s)G(s) 14+ Kmstl _—vg

TiS YoS+v
—Kyd(ris +1)
(7o) (o5 + ) — Koyl — Ko
—Kyd(ris+1)
yo7is? +vris — Kriyds — Ky’

Enligt t.ex. Routh’s algoritm, krav fér stabilitet hos det &terkopplade systemet ir K < 0 samt att v — Ky2 > 0
vilket da ar uppfyllt for alla v > 0 da 77 > 0.

8.17 a) Systemet kan skrivas som

& = A(a)z + Bu
y=Cx

96



dar

=)
Ale) = _—12 2}

o- L)

c=1[0 1]

Egenvirdena av systemmatrisen A ges av losningarna till den karakteristiska ekvationen

det (A(a) — sI) = det ([_12 g] s [é (1)]) — det <[1__28 Y S])

=1-9)(a—s)=0

alltsd s; = 1 och so = . Da egenvéirdet s; > 0 &r systemet instabilt for alla «.

OBS! Notera att
det(A(a)) — sI) = 0 < det(s] — A(a)) =0,

och att den senare formen ar den som vi anvant oftast 1 kursen for att rakna ut den karakteristiska ekvationen. Av
ekvivalensen foljer att bada formerna &ar ratt.

Systemet dr observerbart da observerbarhetsmatrisen

0= {cxﬁa)] - {—02 clv}

(8 oo

Systemet ar styrbart da styrbarhetsmatrisen

ej ar singular. D4
ar systemet observerbart for alla «.

s=[5 a@s =Y b ]

ej dr singuldr. Da

det([_ll _21_aD 1 (=2—a)—(~1)=-1—a

ar systemet styrbart precis da o # —1.
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9 State Feedback

9.1

2)

The control law
u=—Lx + Yref

gives the closed loop system
& = (A — BL)x + Byyet

and the poles of the closed loop system are given by the eigenvalues of A — BL.

Ao (3 3)=@)e =" 70)

The characteristic equation is given by
det(s] —A+BL) =5+ (2+1l)s+1+15=0
Poles in { —3, =5} implies that we will have the equation
(5+3)(s+5)=s>+8+15=0

Identification of the coefficients gives
lh=6 Il,=14
This gives the control law
u = _61'1 - 14372 + Yref
Similarly, poles in { —10, —15} gives
lh =23 1y =149
corresponding to the control law
u = —23x1 — 14979 + Yot

One observes that the coefficients in the control law increase when the poles are placed further into the left half
plane. In a physical system, this means that larger forces are required to realize to the control law.

Employ an observer _
z(t) = Az(t) + Bu(t) + K(y(t) — C&(t))

w= (1)

By combining the differential equations for the system and the observer we obtain an equation for the estimation
error, £ = x — I,

where

i = Az + Bu— A3 — Bu— K(Cz — Ci) = (A— KC)&

If K is chosen so that A — KC' gets eigenvalues in the complex left hand plane, then Z(t) — 0 ast — oco. It is
desirable that the estimation error approaches zero faster than the dynamics of the system. Thus, one should place
the eigenvalues of the observer to the left of the poles of the closed loop system, for example, in —20. Regarding the
influence of the pole placement, placing the poles too far into the left half plane will make the observer unneccessary
sensitive to measurement noise. The characteristic equation is given by

det(s] —A+KC) =5+ (2+k)s+1—ky=0
Two poles in —20 corresponds to the equation
s° +40s + 400 = 0

Identification of the coefficients gives
k1 =38 ko= -399

The resulting observer becomes
s (=2 =1\, 1 38 N
z<1 O)x+(0>u+(_399>(y(1 O)x)

98



9.2 a) Introduce the state variables

The figure gives the state equations

Xl(S) = %KQXQ(S)
Xo(s) = éxg(s)
1

Inverse Laplace transformation gives
-jjl (t) = Kgxg(t) j?g(t) = .Ig(t) i,‘g(t) = Klu(t)

In matrix form we get

0 Ky O 0
z#)=(0 0 1])z@®)+ | 0 |u(®)
0 0 O K

b) Since it is assumed that all states are measurable we apply a state feedback
U= =Lz + Yres

which gives the closed loop system
& = (A— BL)x + Byt

where
0 Ky 0
A— BL = 0 0 1
-Kily —Kils —Kils

The characteristic equation
det(sI — A+ BL) = s + K1l35* + Kilos + Ko Kqlp = 0
All three poles in —0.5 implies that we will have the equation
(5 +0.5)% = 8% + 1.55% + 0.755 + 0.125 = 0

Identification of the coefficients gives

L1 3,3
PTSKIK, 74K U 2K
c¢) If only z; is measurable we have
Y= (1 0 0) z

Employ the observer

where

The characteristic equation is
det(sI — A+ KC) = 8% + ky5* + ko Kas + k3 Ko = 0

To get a similar behavior as in a), the poles of the observer are placed to the left of the poles of the closed loop
system, for example, in —2. This pole placement corresponds to the equation

3 +6s24+125+8=0
Identification of the coefficients gives

ki =6 ky=12/K, ks=8/K,
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9.3 Introduce the state variables
1 =0 x9=w

b e () ()

u=—Lx + g0t = =110 — low + 19Bet

This gives the state equations

a) The feedback

gives

0 1
A-BL= (Clll (Cll2+1/7)>

The characteristic equation

1
det(sI — A+ BL) = 5% + (lac; + ;)s +cali =0

Poles in 1/7(—1 £ i) corresponds to

1—1i 141 5 2 2
- Zsr 2 =0
(s+ )(s+ )=s +75+72
Identification of the coefficients gives
2 1
h=—F lb=—
1T TC1

This gives the closed loop system

. (0 1 0 0
x<_2/72 _2/T>x+<cl) zoaref+<cz)T

At steady state, that is, when &, = &9 = 0, we should have 6§ = 0, when T' = 0. #; = 0 implies that zo = 0, and
Zo = 0 then gives

-2
—5 @1 + c1lobres =0
-

so that
I 2
07 o2
The resulting control law becomes
2 1 2
u=——750—-—w+ ——0
1T TC1 1T

b) Introduce the integrated control error as an extra state:
&3 = brer — 0

The new state equations become

0 1 0 0 0 0
t=10 =1/t Ofla+|c|u+|c]|T+ 0] 0
-1 0 0 0 0 1
Using the feedback law
u = 7[19 — lgw — 13’133
we get the state derivative term
0 0 0
C1 u = —Clll —01l2 —C1l3 X
0 0 0 0
and hence the closed loop system
0 1 0 0 0
T=|—cily —1/T—Cll2 —cils|x+ e | T+ 0] Ot
-1 0 0 0 1
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9.4

9.5

The poles of the closed loop system are the eigenvalues of the “A” matrix, that is, they are given by the characteristic

equation
—A 1 0
det —Clll —]./T—Cllg—)\ —Cll3 =0
-1 0 -

Writing out and changing sign yields
3 Lo
A +(Cll2+;)/\ +cilid—cl3 =0

Poles in { £(—1+1), 1(—2) } correspond to the equation

4 6 4
NN+ oA+ —==0
. T2 -3
where the coefficients may be identified as:
6 3 4
h=—7 lb=— lzg=——
! 017'2 2 1T 3 61T3

The resulting control law becomes (note that the static gain is 1 by construction, so there is no “ly” in this controller)

T3 = eref -0
3

6
u:——gﬂ——w—&——?)xg
C1T 1T C1T

The feedback u = —Lx + yrof gives the closed loop system

&= (A— BL)x + Byyet
with characteristic equation

24+ (14+l +l)s+1,=0
Poles in { —2, —3} implies that we will have the equation
(s+3)(s+2) =s>+55+6=0
Identification of the coefficients gives
lh =6 lp=-2

and the control law becomes

u = *6501 + 2I2 + Yref
Introduce the observer .

Z(t) = Az + Bu(t) + K(y(t) — Cz(t))

It is desirable that the estimation error converges to zero faster than the dynamics of the system. Thus, we should place
the eigenvalues of the observer to the left of the poles of the closed loop system, for example, in —4. The characteristic
equation of the observer is

82+(1+/€1 —ka)s+ k1 =0

and poles in —4 corresponds to the equation

s> +8s+16=0
Identification of coefficients gives

k1=16 ky=9

The complete system, that is, the closed loop system with reconstructed states, will have poles in { —2, —3 }, and the
observer will have poles in { —4, —4 }.

The system has the observability matrix
1 0 00
01 11
0= 0 0 1 3
0 0 0 4

that is, det O # 0. The system is observable and thus the poles of the observer may be placed arbitrarily.
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9.6 The system is described in matrix form by

a)

-2 1 0 1
zt)=11 -2 1 |z@)+[0]wu)
0 1 -2 0

Arbitrary values of the states can be obtained if the system is controllable. The controllability matrix becomes

1
S=10 1 -4
0 O 1

and since det S = 1 the system is controllable and an arbitrary temperature profile can be obtained.

How the state decays depends on the poles of the closed loop system. Poles in —3 will yield the desired result. The
closed loop system,
& = (A — BL)x + Byret

22— 1=l -3
A—-BL= 1 -2 1
0 1 -2

has the characteristic equation
2+ (64+11)s* + (10 +4ly +1o)s +4+ 3l +2ls+13 =0
Poles in —3 implies that this coincide with the equation
(5+3)°=5"4+9s2 +27s +27=0

Identification of the coefficients gives
h=3 lp=5 l3=4

Thus, the control law is given by
U = —3T1 — dxy — 4T3 + Yref

Check when the system is observable. The sensor at 1 corresponds to C' = (1 0 O)7 and results in

0o 0 1
O=[1-2 1 0 detO =1
5 —4 1
The sensor at x5 corresponds to C' = (0 1 0), and results in
0 1 0
o=11 -2 1 det O =0
-4 6 —4
The sensor at x3 corresponds to C' = (0 0 1)7 and results in
0 0 1
Oo=10 1 =2 det O = —1
1 -4 5

The system is hence observable when the sensor is placed at x; or x3, but not with the sensor placed at x5. That is,
the specifications may be fulfilled with the sensor placed at x; or x3. If the sensor is placed at x1, the characteristic
equation of the observer is given by

8 4+ (64 k1)s® 4+ (10 + 4ky + ko)s + 4 + 3k +2ky + k3 =0
Placing the poles in —4 (which is somewhat faster than the nominal closed loop system) corresponds to the equation
(s+4)° =% +125% + 4854+ 64 =0

Identification of coefficients gives
ki=6 ko=14 k3=14
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9.7 From Solution [9.2] we have the state space description

0 Ky O 0
zt)=(0 0 1)z@+ | 0 |ul)
0 0 0 K

yt)=(1 0 0)xz(t)
Introduce a reduced observer to estimate x3 from mso. The last row in the state space description implies
i3 = Kiu+ K(xs — 23) = Kju+ K(iy — 23)
The estimation error becomes _
T3 =x3 — 23 = —Ki3

With a suitable choice of K, the estimation error can be made to decrease arbitrarily fast. To avoid differentiation of
T we introduce
z = Lﬁg — KCEQ
which implies )
z2=23— Kiy = —K(Z—f—Kl‘g) + Kju
This gives
K K?2s

LU (8) + ——

s+ K s+ K

X3(s) = X, (s)

which results in the block diagram in Figure

X2

+
U 1 S\ T3
+@_‘ oy R

Figure 9.7a
9.8 a) The equations
T¢=—q+ku
Ah=q—v

with k& =1, T = 0.5 and A =1 give, in state space form,
g\ (-2 0\ (q 2 0
()= (7 0) () ()= (%)

u:711Q712h+7’

()= ) 0 6)r e (B)

(s +24201)s+2ly = 5%+ (24+21)s + 2l = 0

The feedback

gives the closed loop system

with characteristic equation

Comparison with the desired characteristic equation
(s+2)2=s>+45+4=0

gives
lh=1 Il;=2
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b) At steady state we have ¢ = 0 and h=0. With v = 0.1 and r = 0 we get

0= —4q — 4h
0=¢q—0.1

which gives h = —0.1.
¢) In order to determine the feedforward controller we start from the description
Y(s) = Gi(s)R(s) + H(s)V (s)

The state space description

gives
1 s —4 0
- (0 1
0o = oia O )(1 s+4>(1)
_ (s+4)
T 244544
and

Gi(5) = 57 O ) G 3144> @
2

T 2445+ 4

To eliminate v completely we shall choose the feedforward controller

R(s) = Fi(s)V(s)

where H(s)
s
Fi(s) = —
£(s) Gi(s)

The computations above give

(s+4) 1

Fi(s) = ==-5+2
t(s) 5 5 s+

Removing the differentiation term yields Fy(s) = 2 or

r=2v

At steady state this gives
0=—-4qg—4h+ 4v
0=q—v
that is h = 0.
d) Because k; # 1 the feedback u = —g — 2h + 2v gives, at steady state,
0= —2(1 + k’l)q —4k1h + 4kv
0=qg—v

which gives
k1—1
h = v
2k
Because k1 # 1 we get a steady state control error. In order to determine when the expression for h is valid we
consider the stability. The characteristic equation

s+ (2+2k))s +4k, =0

has both roots in the complex left hand plane for &£y > 0, that is, the expression is valid for all k; > 0.
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e) Introduce the integral of the height as a new state

z(t):/oth(s)ds = Z=h

With the state vector

this gives
-2 0 0 2k 0
=1 0 O]+ 0 Ju+|—-1]vw
0 1 0 0 0
The state feedback © = —Lx gives
—2 =2kl —2k1ly  —2k4l;5 0
T = 1 0 0 z+ | —1]wv
0 1 0 0

The third equation gives h = 0 at steady state, independent of k1 provided L stabilizes the system.

r +C U a Lz
L —

Figure 9.9a

9.9 The transfer function u to y is given by

Y (s) = C(s — A)"'BU(s) = S%U(s)

In order to study the effect of the time delay we consider the block diagram in Figure The block diagram corresponds
to the situation where the observer uses the measured input (not the computed input). To determine the effect of the
time delay, we study the loop gain, G (s)e™*T, where G (s) is the transfer function from U(s) to Z(s) = LX(s).

The equation for the observer )
=A%+ Bu+ K(y — C#%)

gives
X(s)=(s] — A+ KC)(BU(s) + KY (s))
= (s — A+ KC) " (BU(s) + KS%U@)

Using this together with Z(s) = LX(s) gives
Z(s) = G1(s)U(s)
1
=L(sI-A+KC) " (B+ K-3)U(s)

0 (O3

EEER TR

2

We shall analyze the stability using the Nyquist curv for G, = G1(s)e™*T, that is,

Gl(iw)eﬂ“’T = Lt 12w67“"T

—Ww

*Using a Bode plot instead of the Nyquist curve would perhaps be more straightforward. However, for no particular reason, we use the Nyquist
curve here.
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9.10

9.11

The crossover frequency is obtained from

or

V14 4dw? 4

2
We

wC:\/2+\/5

|G1 (iwe e iweT

The phase of G, is

_“T) = —7 + arctan 2w — wWT

arg (G1(iw)e

In order to obtain a stable closed loop system it is required that

—7 + arctan 2w, — weIl > —7

which gives

2)

b)

tan 2w,
T Artansle o e

We

The observability matrix:

2 1
O:(—Q—i—a 0) detO=2-a

The system is observable (and the poles of the observer can be placed arbitrarily) when a # 2.

_(~1=2k; 1-2k
A_KC_<1—k1 —2—k2>

We desire that the eigenvalues be { =5, —10 }. Use that the determinant is the product of the eigenvalues and the

tracd®] is the sum of the eigenvalues:

5k1 +3ka +1 =50
—2k1 —ky—3=-15

which gives
k1 =—-13 ky=38

The equation for the estimation error is
z(t) = (A - KO)#(t) — Ko(t)

The transfer function from v to 27 is

13s — 12

_Cy(sI— A+ KC) 'K = ——25 ==
Ci(s + KC) 52 + 155 + 50

where C7 = (1 0).

According to the initial value theorem we have that

y(0) = lim sG(s)U(s)

S$—00
For a step input, that is, U(s) = 1/s, we get
. . . 3(1 — S/O[) ﬁQ
9(0) = s]i)rélos -sG(s)U(s) = Slggo W =-=

Hence 3(0) decreases as a decreases, that is, as the zero of the system approaches the origin.

No. This problem is caused by a RHP zero and it is impossible to move the zeros with state feedback.

*The trace of a matrix is the sum of its diagonal elements.
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9.12 A very fast closed loop system:

e implies that the poles are far into the LHP which implies a need for generating large input signals.
e casily becomes unstable in case of model uncertainties.
e becomes sensitive to measurement noise.

e has a sensitivity function with a large peak.

9.13 a) The system G(s) = C(sI — A+ BL)™! B has poles where
det(sI — A+ BL) =35>+ (5—1; +2l5)s +5+6l5 =0
The poles in —2 + i implies the characteristic equation
(s+241i)(s+2—i)=s>4+4s+5=0

Identification of coefficients gives
h=1 =0

b) The closed loop system is given by

The condition y(t) = 0 gives x1 + x2 = 0, and hence @7 = —i3. From the state equations we get

=21+ 22— 7T =21 + 220 — 21 &

—3xr1 =x9— 7T
Together with 21 + z2 = 0 we get ©1 = —x9 = /2 and
7":2.’E1 :2(72331 +ZL’2 77”') = 757‘

Since 7(t) = e** we have a = —5. Moreover, for y(t) to be zero for all ¢, the system must start in the initial
condition z1(0) = —x2(0) = r(0)/2.

9.14 a) Enter the transfer function and generate the >> s = tf( ’s’ );
state space model. > G=ss(1/ (s*x (s+1)))
a =
x1 x2
x1 -1 -0
x2 1 0
b =
ul
x1 1
x2
c =
x1 x2
yi o0 1
d =
ul
yi O

Continuous-time model.
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We hence have the state space representation

From the last equation we have x5(t) = y(¢), that is, x5 is the motor angle. From the first equation we have
Zo(t) = x1(t), that is, 1 is the angular velocity.

b) Compute feedback gains. This time, the >> L = acker( G.a, G.b, [ -2.2 -2.2 1 );
gain [y is computed by explicitly construct- >> GcO = ss( G.a - G.b * L, G.b, G.c, 0);
ing a system with lp = 1 first, and then cor- >> 1.0 =1/ dcgain( GecO );

recting by the inverse of that system’s static >> Gec = 1_0 * GcO;
gain. Note that if we don’t need ly, this

approach simplifies to Gc = GcO / dcgain(

GcO ). However, we do need Iy in order to

compute the control signal.

Calculate the step response and the corre- > [y, t, x] = step( Gec, 10 );
sponding control signal of the closed loop >u=10-x%*L.>;

system. To calculate the control sig- >> plot( t, y, °-’, ...

nal magnitude use [ y, t, x 1 = step( t, u, ’-.7 );

Gc ). The function step will in this case re- >> grid

turn y, the output of the closed loop system,

t the time vector, and = the states of the 5

system. To compute the control signal, use
that u(t) = lor(t) — Lz(t), where r(t) = 1. ;
Then plot the result. '

0 1 2 3 4 5 6 7 8 9 10
Compute a new feedback. This time, we >> L = acker( G.a, G.b, [ -1+i -1-i ] );
compute the gain ly by using the formula > 1. 0=1/ (G.c * inv( -G.a + G.b*¥L ) * G.b );
for the static gain of the system with lp = 1 >> Gc = ss( G.a-G.b*xL, G.b x 10, G.c, 0);

(put s = 0 in the generic expression for the
transfer function).
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Calculate the step response and the corre-
sponding control signal. Plot the result.

> [y, t, x 1 = step( Gec, 10 );
> u=10-x%*L.";
J

>> plot( t, y, ’-7,
t: u, =7 ))
>> grid
2
\
\
\
\
151" -

10

The step responses have approximately the same rise and settling times. By choosing the closed loop poles complex,
and hence allowing a small overshoot in the step response, we have however reduced the maximum value of the

input signal significantly.

Case (i): Compute the feedback gain L, lo, >> L = 1qr( G.a, G.b, diag([ 01 1), 1 );
and the closed loop system. > 10=1/ (G.c * inv( -G.a + G.bxL ) * G.b );
>> Gc =ss( G.a-G.b*xL, G.b *x 1.0, G.c, 0);

Simulate the system and plot the result.

>>

[y, t, x]1 = step( Gc, 10 );

> u=10-x%*1L.";

>> plot( t, y, -7, ..
ts u, -7 );

>> grid

1.2

109

8 9 10



Compute the closed loop poles. This time, >> eig( Gec.a )
via the eigenvalues of the “A” matrix. ans =

-0.8660 + 0.50001
-0.8660 - 0.50001

Case (ii): Repeat, this time with larger >> L

= 1gr( G.a, G.b, diag([ 0 10 1), 1 );
weight on the motor angle. > 10 =

1/ (G.c * inv( -G.a + G.b*xL ) * G.b );
>> Gc =ss( G.a-G.bxL, G.b *x10, G.c, 0);

Simulate the system and plot the result. > [y, t, x1 = step( Gec, 10 );

The step response is now significantly faster. >u=10-x*L.%;
>> plot( t, y, -7, ..
t, u, =2 );
>> grid
35
37
|
|
25
\
u
oL |
|
\
|
150
\
\
\
T
\
\
0.5+
\
\
0 \ D R
N
-0.5 | | | | | | |
0 1 2 3 4 5 6 7
Compute the closed loop poles. This time >> pole( Gc )
using a dedicated command from the tool- ans =
box. The poles are now further away -1.3532 + 1.1537i
from the origin and the relative damping is -1.3532 - 1.1537i

slightly reduced.

Case (iii): Repeat, this time with smaller >> L

= 1gr( G.a, G.b, diag([ 0 0.1 1), 1 );
weight on the motor angle. >> 10 = ) *

1/ (G.c * inv( -G.a + G.b*L
>> Gc = ss( G.a-G.b*xL, G.b *x 1.0, G.c,

G.b );
0);

)
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Simulate the system and plot the result. > [y, t, x 1 = step( Gec, 10 );
The step response is now much slower. >u=10-x*L.%;
>> plot( t, y, ’-7,
t, u, ’-.7 );
>> grid

09r- .

0.8 .

0.7r- .

0.6 . -

0.2 S 4

0.1 T~ n

Compute the closed loop poles. We now get >> pole( Gc )

two real closed loop poles, where the pole in ans =

—0.34 causes the slow step response. -0.9420
-0.3357

If we start from case (ii) and increase Q5 the closed loop system gradually becomes slower, since we put an increasing
weight on the control signal magnitude. When we reach @2 = 10 we get exactly the same result as for case (i).
Since it is the “ratio” between @)1 and Q)2 that determines the closed loop property we get the same feedback gain
if we scale (1 and Q5 by the same scalar.

Compute feedback gains, adjust static gain, >> L = 1qr( G.a, G.b, diag([ 1 1 1), 1 );
and compute closed loop system. > 1. 0=1/ (G.c * inv( -G.a + G.b*xL ) * G.b );
>> Gc = ss( G.a-G.b*xL, G.b *x 1.0, G.c, 0);

Simulate the system and plot the result. > [y, t, x]1 = step( Gc, 10 );
Then we also plot the states, 1 and x2, in >u=10-x*L.%;
two different diagrams. >> plot( t, y, ’-7,
t, u, ’-.7 );
>> grid
>> figure

>> subplot( 2, 1, 1 );
>> plot( t, x(:,1) );
>> grid; ylabel( ’x1’ );
>> subplot( 2, 1, 2 );
>> plot( t, x(:,2) );
>> grid; ylabel( ’x2’ );
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L A o 1 2 3 4 5 6 7T 8 9 10

Increasing the weight on the angular velocity forces the motor to move slower, and then also the step response
becomes slower.

9.15 Introduce the state variables
T1=4q T2=Y

s (0050 N (1),
~ 1005 —0.02 0

yz(() l)x

This gives the state space description

a) The system has the controllability matrix

S=(B AB)= ((1) _0%055> det S = 0.05

Thus, the system is controllable.

b) The control law
u=—Lx

gives the closed loop system
#=(A-BL)x

and the poles of the closed loop system is given by the eigenvalues of A — BL.

(0051 Iy
A-BL= ( 0.05 —0.02)

The characteristic equation is given by
det(s] — A+ BL) = s> + (0.07 + [1)s + 0.001 + 0.02; + 0.05l5 = 0
Both poles in —0.1 implies that we shall have the equation
(s+0.1)2 =5 +0.25s + 0.0l = 0

Identification of the coefficients gives
Iy, =013 [5=0.128

This gives the control law
u = —0.13z7 — 0.128z4
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)

It is desirable that the estimation error converges to zero faster than the dynamics of the system. Thus, we should
place the eigenvalues of the observer to the left of the poles of the closed loop system. To avoid large amplification
of the measurement noise the poles of the observer should not be placed to far into the left hand plane.

Only y = x5 is measurable. Employ the observer

2(t) = Az(t) + Bu(t) + K (y(t) — C2(t))
k1
v (i)

det(s] — A+ KC) = s> + (0.07 + ka)s + 0.05k; + 0.05ks + 0.001

where

The characteristic equation is

Both poles in —0.2 implies that we shall have the equation
s> +0.4s+0.04 =0

Identification of the coefficients gives
k1 =045 ke =0.33

9.16 Are the specifications 14 fulfilled?

M

2

The bandwidth is wg &~ 1.1 < 5 which is seen from the gain curve of the closed loop system.

The bandwidth requirement is not fulfilled.

Stability despite model errors and disturbances?

We have Y(s) = ke "°G(s)U(s) + E(s) instead of Y(s) = G(s)U(s). The factor x thus represents the gain
uncertainty, while the factor e”"® represents a phase uncertainty. These uncertainties are also present (with the
same magnitudes) in the loop gain G, = FG.

Looking in the Nyquist curve of G, where amplitudes near 1 are easiest to read, one can see that there is always
just one intersection with |G,(iw)| = 1, independently of the present uncertainties in gain and phase. Thus the
stability criterion based on the Bode plot applies.

The uncertain phase lag is wr at the frequency w. Thus the maximum negative phase lag occurs for 7* = 0.3 s.

Next, we must find the worst case gain crossover frequency in order to see if the worst case phase lag causes
instability by reducing the phase margin below 0. Study the amplitude and phase curves for the loop gain G,(s).
Since the phase of G, is decreasing, higher gain crossover will always be more critical since it both means a smaller
phase margin to begin with, and also a bigger phase lag due to the worst case time delay.

From the gain curve of G, it is clear that higher values of x are more critical since those give the higher gain
crossovers. By very careful inspection of the gain curve, one can see that the most critical value, x* = 1.1, leads to
wi ~ 2.3rad/s < 3rad/s, and @} > 55°.

Combining the worst case x (leading to the w} and ¢ above) with the worst case and 7% = 0.3 s results in a total
worst case phase margin of at least 55° — w¥7* = 55° — 3 rad/s-0.3 s = 55° — 0.9 rad ~ 3° > 0. Thus the system is
guaranteed to be stable.

The system is stable despite the model errors.
Remark: The robustness criterion Vw : |Q(iw)| < m is sufficient but not necessary to show stability.
Both the Bode plot and the Nyquist curve of the loop gain tells us that the loop gain does not contain an integration

which could remove static errors. This implies the model errors will influence the static gain. The details of this
argument follow.

With u = Fyr — Fyy, the closed loop system is

__E(5)G(s)
Gels) = 14 Fy(s)G(s)
The real closed loop system is
GO(s) = Fi(s)ke™™G(s)




9.17

2)

Since the system is stable (see|2) the final value theorem gives the final value of the step response as

lim y°(t) = lim s~ G2(s) £ = T 1 0yaG0)
y

t—o0

1 F(0)xG(0)

which cannot be 1 for all possible values of k.
The gain will be different from 1 for some possible value of .
If e(t) is measurement noise, then the complementary sensitivity function, T'(s), should be checked. If e(t) is

process noise, then the sensitivity function, S(s), should be checked. Both T'(s) and S(s) have peaks > 1 at exactly
w = 10 rad/s, which implies the both measurement and process noise are amplified.

The (measurement) noise is amplified by the system.

The linearized system is given by

. (0 1 -1 .
x(_l _3>x+<1>u.Ax+Bu

Using the state feedback law v = —Lx = —lyx1 — loxo gives

i:A+Bpmg:m_Bmz:< h 1+b>x

-1-0 -3-1

The poles of this closed loop system are given by the eigenvalues of A — BL, which are the roots of the characteristic
polynomial

1+ s+3+1
= (S*ll)(8+3+l2)f(1+ll)(71712)
=82+ (=l +la+3)s—2l1 + 12+ 1

P(s) = det(sI — (A — BL)) = det (8—[1 11 >

To place the poles in { —2, —4 }, P(s) must be the polynomial
(s +2)(s+4)=s>+65+8
This gives the system of equations

—lL+1l+3=6
—2l1+12+1:8

which has the solution
li=—4 lyg=-1

The state feedback law thus becomes u = —Lx = 4x1 + ©s.
If only x5 is measured, the output equation is given by
Y =To = (0 l)x::C’z

Given y (x2) and u, z1 can be estimated if the system is observable. The observability matrix becomes

C 0 1

Hence the system is observable and x; can be estimated using an observer.

It is essential that the input u is known since u is required in the observer design to get an asymptotically vanishing
state estimation error.
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9.18

)

a)

If u is unknown but constant, we can introduce a third state 3 = v which has the dynamics @3 = 0. Introducing
2T = (a:l To xg), the system dynamics can be rewritten as

0 1 -1 3
z=|-1 -3 1 |z2=:Az
0 0 0

=0 1 0)z=:Cz

The observability matrix becomes

[} 0 1 0
O=|CA|=(-1 -3 1 det O =1
CA? 3 8 -2

(Tip: det(O) # 0 can be established without computing the determinant, by checking that the rows of O are
linearly independent.) The fact that the system is observable means that x; (and also u) can be estimated from
measurements of xo using an observer of the form

F=A24+ K(y—C2)=(A-KC)2+ Ky

where the observer gain K is selected so that the observer poles, that is, the eigenvalues of A — KC, are all in the
left half plane.

The system is described by

. (0 1 n 0 n 1
t={_1 o)* 1) 0w
A P controller corresponds to u = K (r — x1), this means that the closed loop system is given by
. 0 1 0 1
x-(lK 0>m+(K)T+(O>w

The poles to the closed loop system are given by

s -1
det (1 +K s ) =0
which leads to s2 +1 + K = 0. The poles are pure complex and thus the system doesn’t have a well defined

stationary error or speed of response.

A linear combination of r and x5 is given by

with this controller the closed loop is

(4 Do )

The poles to the closed loop system are given by

s —1
det (1 s+ b) =
which means s2 + lys + 1 = 0. The poles can be placed with I, as

8:;l2:|: 15 —4
2 4

We have that & = 0 at stationary which gives that xo = —w and 7 = lor — lazy if w = 0. If we select [y = 1 then
the stationary error will be zero. If w # 0 and Iy = 1 then there will be stationary error of size low.
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¢) Introduce a new state x3 = w to estimate the unknown signal. The extended system is described by

0 1 1 0
t=|-1 0 O)z+[1]u
0 0 O 0
:(0 1 0)3:

Create an observer to estimate the states
i=(A-KC)%+ Bu+ Ky
the poles of the observer can be placed with
det(sI — (A—KC))=0

which gives s + kgs? + (1 — k1)s — k3 = 0. Place the poles for example in —2, that is, seek the polynomial
5% + 652 + 125 + 8 = 0. Comparison gives

ki =—11 ke=6 kz=—8

Now, let u = lgr — loZo — I3%3. At stationary we have 3 = w = —Z9, so with I3 = ls we have x; = lgr, and with
lo = 1 there will be no error.

9.19 a) Overforingsfunktionerna finnes genom:

L X(s)G1(s)(U(s) — Ga(s) X (s)) = Gr(s)U(s) — G1(s)G2(5) X (s)
= X(s)(1 + G1(s)Ga(s) = G1(s)U(s)

_ G1(s)
= X(5) = Fa e U ()
G
= Gx(5) = ra s Emm

ii. Y(s) =G —4(s)U(s) + G3(s)X(s) = G4(s)U(s) + G3(s)Gx (s)U(s)
= (Ga(s) + 178 (et U (9)

G1(s)G3(s
éG(s):Gz;(S)JF%

b) Vi kan skriva G(s) = 252 som
s+2 s+2 _ bis+b
2 $240s4+0 s24a1s+as

Detta kan nu skrivas enkelt pa t.ex. styrbar kanonisk form:

X _(—fl —32)x+<é)u_@x+@u

y :(bl bg)x:(l 2)$
C

G(s) =

eller alternativt (det riacker med att svara med en korrekt form for att fa full podng) pa observerbar kanonisk form:

. (a1 0 bl o 0 1 1
o= tay 0)7 T )" T o o) \2)
~—— ~~~
A, B,
Y :(1 O)x
C

Ett system &r en minimal realisation om det dr bade styrbart och observerbart. Darfér maste styrbarhetsmatrisen
(8) och observerbarhetsmatrisen (O) ha full rang.

0 1

a0 —aer (| [ ) =aee ([ o)) =170
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Alternativt om en observerbar kanonisk representation anvéands:

0

det O :det([cfzj)zdet([é ?]):1%0

I bada fallen har styrbarhetsmatrisen och observerbarhetsmatrisen full rang, eftersom determianterna &r skillda fran
noll. Darfor ar systemet en minimal realisation.

detS = det ([By A,Bo]) = det ( B 2} ) =140

Med tillstandsaterkopplingen u(t) = —Lax(t) + lor(t), blir tillstandsekvationen
#(t) = Ax(t) + Bu(t) = (A — BL)z(t) + lor(t)

Polerna ges da av egenvérden till (A — BL), dvs. genom den karakteristiska ekvationen:

det(sI — (As — ByL)) = det ( [S 2] - ( ﬁ 8] - H [ o] )> _

—det<|:8jlll l§:|> :82+l18+12:0

Onskade poler i {—1,—1} ger féljande karakteristiska ekvation:
(s+1)2=s>4+25+1
Genom att identifiera kofficienter erhalles:
h=2 I=1

Notera: Detta kunde &dven inses snabbt genom att uppmérksamma att for system skrivna pa styrbar kanonisk
form &r koefficienterna i den 6nskade karakteristiska ekvationen samma som parametrarna [; i L-matrisen for
aterkopplingen.

Systemet fran r(t) ir Y (s) = C(sI — (A — BL))"'BlyR(s). Den statiska forstarkningen erhilles da s = 0, vilket

medfor:
1 1

C.(—A,+ B,L)"'B, 2
P& liknande sitt kan L och Iy erhallas om kanonisk observerbar form nyttjas, dvs. (A,, B,, C,). DA blir

f 1
i =3

lo =

L=

=

En observator infors i systemet enligt:
x(t) = Az(t) + Bu(t) + K(y(t) — C&(t))

Polerna ges nu av egenvirden till (A — KC):

det(sI — (A — KCy)) = det ( B ﬂ ~( [(1’ 8} - {Zj 12 )) _

_ S+k1 ng 2 _
_det<|:k2_1 s+2k2}>_8 + (k1 + 2k2)s + 2k1 =0

Onskade poler i {—10, —10} till observatoren ger foljande karakteristiska ekvation:
(s+1)% = s> +20s + 100

Och genom koefficientidentifiering erhélles:
k1=50 ky=-15 = K=[50 —-15]"
Pa likande sdtt kan K erhéllas om kanonisk observerbar form nyttjas. For system skrivna pa observerbar kanonisk

form &r koefficienterna i den onskade karakteristiska ekvationen samma som parametrarna k; i K-matrisen for
observatoren, dvs.

K=1[20 100]"
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11 Implementation

11.1

11.2

Inverse Laplace transformation of

s+b
gives the differential equation
u(t) + bNu(t) = KNé(t) + bKNe(t) (11.1)
At time ¢ — T we have
Wt —T)+bNu(t —T)=KNé(t—T)+bKNe(t—T) (11.2)

By replacing u(t) and é(¢) in (11.1) and (11.2) with A¢u(t) and Age(t), respectively, and then adding the equations we
get

Aqu(t) + Aqu(t = T) + bNu(t) + bNu(t — T')
= KNAe(t) + KNAge(t —T) + bKNe(t) + bKNe(t — T)

Tustins formula

1 1
S(Au(t) + At = T)) = L (u(t) - u(t — 7))

now gives

%(u(t) ot = T)) 4 bN(u(t) + ult — T))

_ %KN(e(t) —e(t = T)) + bEN(e(t) + e(t — T))

Inserting the numerical values, K =2, T = 0.1, N =10 and b = 0.1, we get

20(u(t) —u(t —1T)) + (u(t) +u(t - T))
=400(e(t) —e(t—T)) +2(e(t) + et —T))

which gives
19 402 398
= — — T _—
u(t) 21u(t )+ 57 ¢ 51
that is
u(t) = 0.905u(t — T) + 19.14e(t) — 18.95¢(t — T)

a) Consider the differential equation
§(t) = u(t)

during the sampling interval kT < t < kT + T. The input is constant during the sampling interval, u(t) = wug,
which gives
y(t) = uk
By integrating the left- and right-hand sides from ¢t = kT to t = kT + T we get
kT+T
y(kT +T)—y(kT) = / ug dt = Tuy,
kT

With the notation ygp+1 = y(kT + T') and yp = y(kT) this gives

Y1 — Ye = Tug
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b) The feedback
up = —Kyp,

gives
Y1 = (1= KTy yo=1y"

that is
yp = (1 — KT)kyO

The closed loop system is asymptotically stable if
lyx| — 0, t = oo

This gives the condition
1-KT| <1

or, equivalently, 0 < K < %

11.3 a) Because the prefilter is linear, the signal prior to sampling may be written
y(t) = yo(t) +y1(?)
where y1(t) stems from the disturbance w;(t) = sinwst. After all transients have disappeared, we get

y1(t) = Asin(wat + D)

where
. 1
A= |Gliwn)| = e
1+ (woT1)
& = arg G(iws) = —arctan w1

Let us introduce the notation w; = ws — we where wy denotes the sampling frequency, ws = 2w/T. When y; (t) is
sampled with the sampling interval T', we get

y1(KT) = Asin(w2kT + @) = Asin((ws — w1 )kT + D)
= Asin(2km — w1 kT + ®) = Asin(—w1 kT + D)
= —Asin(w kT — @) = Asin(w kT + 7 — D)

= Asin(wi1kT + @)
that is
1
A=
1+ (weTh)?
2m _
w1 = T w2

@ =7+ arctan wy T}

b) The bandwidth of the filter is obtained from the relation
1 1

- \/1 + (wBT1)2 - %

which gives wg = 1/T}. The signal wug is in the interval 0 < w < 7/T, and this gives the specification

|G (iws)|

T 1
L« =
T T
The limiting case
T 1
T T
gives T} = T'/m. Inserting this in the expression for A in a), we get the answer
1

A -
L+ (wal /)2
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11.4 Pl-regulatorn ges av
K

F(s)=K+ Trs'
Regulatorn ar alltsa
Tra(t) = KTre(t) + Ke(t).
Euler bakat ger
Tr(u(t) —u(t — 1)) = KTy(e(t) —e(t — 1)) + Ke(t)
KTy + K

=ut) =ult—1)+ T

(t) — Ke(t—1).
Vii dentifierar K =T = 1.

Svar: K =T; = 1.

11.5 a) Vi borjar med att skriva modellen pa tillstandsform, & = f(z,u). Om tillstandsvektorn véljs som

0
r=| z
z
kan ekvationerna skrivas
¥ = Ku = fi(z,u)
Ty = x3 = fo(,u)
. m . m 2 9
T3 = —mgsmxl + ml'QK u- = f3(l',’u)

Vid jamviktspunkten géller f(xg,ug) = 0, vilket ger
o = [0 20 O]T
Ug = Oa

for valfri konstant zg, d& ug = 6y = 29 = 0 enligt uppgiften. Vi véljer zy = 0 i fortsdttningen. Jakobianerna blir

0 0 0
? = 0 0 1
r i —%gcosxl %K2u2 0
of K
| w0
u i 1—70K2x2u
I jamviktspunkten far vi
[0 0 0
3]
A:aff(.’ﬂo,’uO): 0 0 1
v | =29 0 0
[ K
0
B= i(l‘o,’do) = 0
ou 0

Beteckna Az = x — g och Au = u — ug. Det linjariserade systemet ges da av

Ax = ANz + BAu.

b) Om y=60sd y= Ku. For kT <t < (k+ 1)T, har vi

y(f,) = Kuk.
Integrerar vi 6ver samplingsintervallet fas
kT+T
y(kT +T) —y(kT) = / Kugdt = TKuy
kT

Med y(kT) = yy, fas
Yk+1 = Yk + T Kug.
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c) Med uy = —Kpyg, far vi ypy1 = (1 — K,TK)ys.
Fér asymptotisk stabilitet (yx — 0, k — oo) kréivs [1 — K,TK| < 1. Detta ger oss 0 < K, < 27.
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1 Inledning

Denna skrift ar en kort inledning till hur MATLAB och Control System Toolbox (CST) anvéinds i kurserna i Reglerteknik.

2 System

I Control System Toolbox finns datastrukturer for att hantera s k LTI-objects, dvs linjira tidsinvarianta system, pa ett
bekvamt satt. Vi kommer inledningsvis framst att arbeta med system pa overforingsfunktionsform, men senare dven med
system pa tillstandsform. Ett objekt som representerar ett system pa Gverféringsfunktionsform skapas med funktionen tf.
Detta kan goras pa tva olika sétt, och det forsta alternativet visas i exemplet nedan.

Betrakta overforingsfunktionen

4
G(s)= ——F=
() s(s2 +2s+4)
Mata in systemet och ge objektet namnet > G=tf(4, [12401])
G. Argumenten till funktionen tf utgors av
radvektorer innehéllande téljarens respektive Transfer function:
ndmnarens koefficienter. 4

sT3+2s72+4 s

Med det andra alternativet kan man mata in 6verféringsfunktionen pa symbolisk form genom att forst skapa ett objekt
bestdende av symbolen s. Darefter kan man t ex addera och multiplicera med denna symbol pa samma sétt som gors med
Laplace-variabeln s vid handrakning.

Skapa ett objekt bestdende av symbolen s. >> s = tf( ’s’ );
Bilda overféringsfunktionen genom att anvinda > G=4/ (s * (s™2+2%s +4) )
vanliga rdkneoperationer.

Transfer function:

sT3+2s72+4 s

En finess med 6verforingsfunktioner representerade som LTI-objekt ar att man kan multiplicera och addera éverféringsfunk-
tioner pa ett rattframt sitt.

Skapa en ny &verforingsfunktion G2 genom att > G6G2=G6G*1/ (s+1)
seriekoppla G(s) och 6verforingsfunktionen
Transfer function:

1
s+
s74 +3s"3+6s2+4s

3 Poler och nollstallen

Poler och nollstéllen till 6verforingsfunktioner berdknas med funktionerna pole respektive tzero. Poler och nollstéllen kan
dven ritas med funktionen pzmap.




Berékna polerna till G(s). Systemet har en reell >> pole( G )
pol i origo och tva komplexa poler.
ans =

0
-1.0000 + 1.7321i
-1.0000 - 1.73211i

Berdkna nollstdllena till G(s). Eftersom tal- >> tzero( G )
jaren i overforingsfunktionen &r konstant sak-
nar systemet nollstéllen. ans =

Empty matrix: O-by-1

Rita in systemets poler och nollstéllen i det >> pzmap( G )
komplexa talplanet. Poler markeras med kryss >> axis([ -2 0 -2 2 1)
och nollstéllen, i de fall de férekommer, mark-
eras med ringar. Pole-Zero Map
2 T T T
X
15F
1 |-
051

Imaginary Axis
o
T

|

o

2
T

-15F

2 I I I I I I I I I

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
Real Axis

4 Aterkoppling

I kursen behandlas aterkopplade reglersystem enligt figur [77}

O 1o | 60 O

Figure 1. Reglersystem

Med systembeskrivningen

och aterkopplingen

ges det aterkopplade systemet av



dar

_ F(s)G(s)
Gels) = T FH)G0)
och
S(s) !

Overforingsfunktionerna for det &terkopplade systemet kan berdknas med funktionen feedback.

Generera 6verforingsfunktionen for en propor- > F = tf( 0.7 )
tionell regulator med forstarkning K, = 0.7.

Transfer function:

0.7
Berdkna 6verforingsfunktionen for det aterkop- >> Gc = feedback( F * G, 1)
plade systemet.

Transfer function:

2.8

s”T3+2s"2+4 s + 2.8
Berikna kanslighetsfunktionen. >8S=1/(1+F=*G)

Transfer function:
s 3 +2s82+4 s

sT3+2s2+4s + 2.8

I exemplet ovan hade vi kunnat berdkna Gc pa motsvarande séatt som S berdknades, dvs Ge=F*G/ (1+F*G). Med denna metod
far dock téljaren och ndmnaren i Ge ett antal gemensamma faktorer som kan forkortas bort. Genom att anvidnda funktionen
feedback undviks detta. De gemensamma faktorerna i det forsta alternativet kan elimineras genom att anvinda funktionen
minreal (Gec) Testa sjdlv och jamfor.

5 Nyquistdiagram

Nyquistkurvor for en eller flera dverforingsfunktioner ritas med funktionen nyquist. Eftersom funktionen nyquist graderar
axlarna automatiskt kan diagrammet ibland bli svarlast. Lésbarheten kan forbattras genom att man sjalv véljer axlarnas
gradering med funktionen axis. Man kan fa ut mycket information ur figuren genom att anvinda vénster respektive hoger
musknapp. Med vénster musknapp kan man t ex markera en punkt pa kurvan och fa ut motsvarande virde pa w samt
nyquistkurvans viarde i denna frekvens. Med héger musknapp far man en meny med olika operationer som kan goras med
figuren.




Rita nyquistkurvan fér det 6ppna systemet
da systemet G(s) styrs med en proportionell
aterkoppling med férstarkning Kp = 0.7.
Justera axlarnas gradering och markera punk-
ten dar nyquistkurvan passerar negativa delen

>> nyquist( F * G )
>> axis([ -1 1-111)

Nyquist Diagram

av reella axeln.
0.8F

0.6

0.4r

System: untitled1

Real: -0.349

Imag: —0.000867
Frequency (rad/sec): -2

0.2r

Imaginary Axis
Q@
T

| | | | |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real Axis

6 Bodediagram

Bodediagram for en eller flera 6verforingsfunktioner ritas med funktionen bode. Aven i detta fall kan man lidsa av punkter i
figuren genom att markera med vanster musknapp. Med hoger knapp far man en meny dir man t ex kan vélja att markera
frekvenserna dér stabilitetsmarginalerna lases av.




Berakna frekvensfunktionen fér systemet G och >> bode( G )
rita upp den i ett bodediagram. Notera att am-

plitudkurvan graderas i decibel. Anvind hoger Bode Diagram
musknapp och ldgg in rutnit i figuren samt 50 A L
markera var fas- och amplitudskéarfrekvenserna

ligger. 0

Magnitude (dB)
|
(4]
o

-100

-160 : e e . e : g ar oo

-135 b

—180 |-~ i b N S S R L e S |

Phase (deg)

-225 - b

-270 i T S : T S
10 10 10 10
Frequency (rad/sec)

For att bestdmma skérfrekvenser samt fas- och amplitudmarginal kan man dven anvdnda funktionen margin, vilken férutom
att rita upp amplitud- och faskurvorna aven skriver ut dessa varden. Gm och Pm betecknar amplitud- respektive fasmarginal.

Berdkna frekvensfunktionen for systemet G och >> margin( G )
rita upp den i ett bodediagram.

Bode Diagram
Gm =6.02 dB (at 2 rad/sec) , Pm =50.3 deg (at 1.13 rad/sec)
50 ‘ ——————— : ————T : :

0
o
3
[0}
S -s0
=
(=2}
©
=

-100

-166 = : — + ——

-135 §

-180 §

Phase (deg)

-225- b

270 . . | . . ) .
10 10° 10' 10°
Frequency (rad/sec)

For att t ex kunna gora jamforelser mellan tva frekvensfunktioner kan dessa ritas i samma diagram.



Berdkna frekvensfunktionerna fér systemen G >> bode( G, G2 )
och G2.
Bode Diagram
100 ———— ———ry

Magnitude (dB)

-100} g

-168

-180

Phase (deg)

270

_360 & . | | . | =
10 10™ 10° 10’ 10%
Frequency (rad/sec)

Skalan pa frekvensaxeln kan véljas genom att som sista argument i funktionsanropet ange storsta och minsta frekvensvardet
mellan krullparenteser .

Berdkna frekvensfunktionen foér systemet G fran >> bode( G, { 0.1, 10 } )
0.1 till 10rad/s och rita upp den i ett bodedia-
gram. Bode Diagram

40 : ——————

Magnitude (dB)

-135

o -180

Phase (deg)

-225

-270
10

Frequency (rad/sec)




7 Simulering

7.1 Stegsvar

Den vanligaste typen av simulering &dr att berdkna ett systems stegsvar. Detta kan utforas med funktionen step, med
vilken man bade simulerar systemet och ritar dess stegsvar. I likhet med tidigare kan man ldsa av enskilda vérden i
figuren med vinster musknapp och f4 en meny med olika val med hoger knapp. Genom att t ex vilja Peak Response
fran Characteristics markeras tidpunkt och véarde for overslingen. Placera markoren 6ver punkten i diagrammet visas
tillhérande numeriska vérden.

Antag att systemet G styrs med proportionell aterkoppling med férstarkning K, = 0.7.

Berakna och rita upp det aterkopplade sys- >> step( Gc )
temets stegsvar. Markera stegsvarets 6verslang.
Step Response
1.4 T T

1.2f b

Amplitude
o
0

o
=)

0.4

0.2

0 I I I I I
0 1 2 3 4 5 6 7

Time (sec)

I normalfallet véljs simuleringstiden automatiskt, men genom att ange ett extra argument kan man vélja simuleringstiden
sjalv.




Berdkna det aterkopplade systemets stegsvar >> step( Gec, 15 )

under femton sekunder och rita upp resultatet.
Step Response

14

Amplitude

15

Time (sec.)

7.2 Allméan insignal

For att simulera linjara system med allmédnna insignaler kan man anvénda funktionen 1sim(G,u,t). Indata till denna
funktion ar ett (eller flera) system G, en insignalvektor u och en tidsvektor t.

Antag exempelvis att vi vill studera reglerfelet for det aterkopplade systemet ovan da referenssignalen &r en ramp. Vi vet
att sambandet mellan referenssignal och reglerfel ges av kédnslighetsfunktionen

dér
1
S(s) =
() 1+ F(s)G(s)
Skapa en tidsvektor mellan 0 och 10 med steget >t =(0:0.1:10).%;
0.1.



Simulera det aterkopplade systemet da refer- >> 1sim( S, 0.5%t, t )

enssignalen ar en ramp med lutning 0.5. Re-

glerfelet gar i detta fall mot 0.71. Funktionen Linear Simulation Results
ritar dven insignalen, men den kan vélja bort 0.8 \ \ T
pa menyn som nas via hoger musknapp.

0.7F b

0.6 b

o
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~
T
1

0.3F b

0.1 4

Time (sec)

For att skapa sinus- och fyrkantsignaler kan funktionen gensig anvéndas.

8 Rotort

For att avgora hur rotterna till ekvationen

P(s) + KQ(s) = 0

ror sig i komplexa talplanet da K gér fran noll och mot odndligheten kan man rita ekvationens rotort med funktionen rlocus.
Indata till funktionen &r en 6verforingsfunktion med polynomet Q(s) som téljare och polynomet P(s) som ndmnare. Med
hoger musknapp kan man markera relevanta punkter i figuren, sadsom t ex da rotorten passerar imaginaraxeln.




Rita upp rotorten for det aterkopplade sys-
temets karakteristiska funktion da systemet G
styrs med en proportionell aterkoppling. Mark-
era dir en av rétterna passerar imagindraxeln.

>> rlocus( G )

Root Locus
4 T T T T
System: G
Gain: 2.03
3r Pole: 0.00739 + 2.01i
Damping: —0.00368
Overshoot (%): 101
oL Frequency (rad/sec): 2.01 |

Imaginary Axis
o

2+

_4 I I I

-5 -4 -3 -2

For att t ex kontrollera for vilken forstérkning polerna har viss ddmpning kan man med hoger

-1 0
Real Axis

vilket markerar polplaceringar med samma avstand till origo respektive samma ddmpning.

9 SISO Design Tool

musknapp ldgga in ett nit

Ett ytterligare anvindbart verktyg dr SISO Design Tool, vilket ar ett anvindargrdnssnitt med vilket man enkelt kan studera
ett system ur olika aspekter sdsom stegsvar, bodediagram, poler och nollstéllen, etc. Verktyget SISO Design Tool startas
genom att skriva sisotool. Automatiskt kommer de skapade LTI-objekten att finnas tillgdngliga for analys. I figuren nedan
visas ett exempel pa vilka figurer som kan visas samtidigt. Testa dig fram!

10 Tillstandsbeskrivning

I Control System Toolbox finns dven en datastruktur for att hantera system pa tillstandsform

z(t) = Az (t) + Bu(t)

y(t) = Cx(t)

For att skapa ett system pa denna form anvidnds funktionen ss, med vilken man kan skapa ett system pa tillstandsform fran
boérjan eller konvertera ett system fran éverféringsfunktionsform.
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Root Locus Editor (C) Open-Loop Bode Editor (C)

4 T T T 50
3r 7 0
2 B N _50 L
T -100}
G.M.: 6.02 dB
Freq: 2 rad/sec
0 - | Stable loop
-150
-90F
1+ 4
o} i
—180f— - —— =L
-3} i
P.M.: 50.3 deg
Freq: 1.13 rad/sec
4 w w w -270t ‘ : e
-6 -4 -2 0 2 10™ 10° 10’ 10
Real Axis Frequency (rad/sec)
Figure 1. SISO Design Tool.
Overfor systemet G till tillstandsform. >> G =ss(G)

x1 x2 x3
x1 -2 -1 -0
x2 4 0 0
x3 0 8 0



Matriserna A, B,C och D i tillstandsbeskrivningen ingar nu i datastrukturen G. For att komma &t matriserna kan man
referera till dem direkt genom att skriva G.a, G.b etc.

Berdkna egenviardena till matrisen A i till- >> eig( G.a )
stdndsmodellen
ans =

0
-1.0000 + 1.7321i
-1.0000 - 1.7321i

Denna mojlighet &r anvdndbar t ex ndr man skall berdkna polplacerande tillstandsaterkoppling pa formen

u(t) = —La(t) + r(t)

vilket kan goras med funktionerna acker och place. Funktionen acker anvinds med foérdel nir systemet har enbart en
insignal, medan place anvéinds for flervariabla reglerproblem.

Bestdm en tillstandsaterkoppling som placerar >> L = acker( G.a, G.b, [ -2 -2 -2 1)
det aterkopplade systemets poler i —2.
L =

16 8 1

Det aterkopplade systemet

i(t) = (A — BL)z(t) + Br(t)

y(t) = Cx(t)
kan nu skapas t ex med funktionen ss.
Generera tillstandsbeskrivningen for  det >> Gc = ss( G.a-G.b *xL, G.b, G.c, 0);
aterkopplade systemet. Kontrollera att polerna >> eig( Gc.a )
placerats pa onskat sétt.
ans =
-2.0000

-2.0000 + 0.0000i
-2.0000 - 0.0000i

Det aterkopplade systemets stegsvar kan nu berédknas och ritas upp med funktionen step.
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Berdkna och rita upp det aterkopplade sys- >> step( Gc )
temets stegsvar.
Step Response

0.5

0.45

0.4

0.35

0.3

0.25

Amplitude

0.2

0.15

0.1

0.05

Time (sec.)

Pa detta sétt ser vi endast den utsignal som definieras av vektorn C. Vill vi studera samtliga tillstand kan detta géras genom
att lata C' vara en enhetsmatris med dimension lika med systemets ordningstal.

Skapa det aterkopplade systemet pa nytt, men >> Gc = ss( G.a - G.b * L, G.b, eye(3), 0 );
med samtliga tre tillstand som utsignaler. >> step( Gc )

Step Response
0.03 T T

Amplitude
To: Out(2)
o
o
e
T
|

0 I I I I I I
0 1 2 3 4 5 6 7

Time (sec)

For att beridkna linjidrkvadratisk tillstandsaterkoppling kan funktionen 1qr anvindas.
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11 Sammanfattning av kommandon

11.1 Anvindbara kommandon i Control System Toolbox

tf System pa overforingsfunktionsform
ss System pa tillstdndsform

pole Poler

step Stegsvar

tzero Nollstéllen

feedback Aterkoppling

nyquist Nyquistdiagram

bode Bodediagram

bodemag  Bodediagrammets amplitudkurva
sigma Generalisering av bodemag

margin Bodediagram och stabilitetsmarginaler
rlocus Rotort

lsim Simulering med godtycklig insignal
acker Polplacerande tillstandsaterkoppling
place Polplacerande tillstandsaterkoppling
1lqr Linjarkvadratisk tillstandsaterkoppling
ctrb Styrbarhetsmatris

obsv Observerbarhetsmatris

ltiview Startar LTI Viewer

pzmap Pol-nollstéllediagram

minreal Forkortning av gemensamma faktorer
sisotool Grafiskt grénssnitt

11.2 Anvandbara MATLAB-kommandon

abs
eig
conv
det
diag
imag
inv
real
roots
grid
hold
loglog
plot
cd

dir
clear
load
save
who
helpdesk

Absolutbelopp

Egenvérden

Polynommultiplikation

Determinant

Diagonalmatris

Imaginardel

Matrisinvers

Realdel

Rotter till polynom

Nat i figurer

Frysning av figur

Diagram i log-log skala

Diagram i linjar skala

Byte av bibliotek

Listning av bibliotek

Radering av variabler och funktioner i arbetsminnet
Inldsning av variabler fran fil
Lagring av variabler pa fil

Listning av variabler i arbetsminnet
Startar HTML-baserad hjéalpfunktion
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1 Engelsk-svensk

actuator

amplitude
attenuation
bandwidth

bond graph

closed loop system
control law
controllability
controller
convolution
correlation analysis
credibility
crossover frequency
damping

damping ratio
describing function

discrete event systems
distributed parameter models

disturbance rejection
eigenvalue

feedback

feedforward

flow

gain

gain crossover frequency

gain margin
impulse response
initial value

loop gain
lumped models
magnitude
observability
observer
open-loop system

stalldon

amplitud

dampning

bandbredd

bindningsgraf

slutet system

styrlag

styrbarhet

regulator

faltning

korrelationsanalys
troviardighet

skarfrekvens

dampning

relativ ddmpning
beskrivande funktion
héndelseorienterade system
fordelade parametriska modeller
storningsundertryckning
egenvarde

aterkoppling

framkoppling

flode

forstarkning
(amplitud)skarfrekvens
amplitudmarginal
impulssvar
begynnelseviarde
kretsforstarkning, 6ppna systemet
aggregerade modeller
amplitud

observerbarhet

observator

Oppet system, kretsforstarkning



overfit

overshoot
parsimonious

peak frequency
peak resonance
phase crossover frequency
phase lag

phase lead

phase margin
ramp function
rank

reset windup
resonant frequency
rise time

root locus (pl. loci)
sensitivity function
sensor

settling time
sinusoidal

stability robustness
state

state feedback
static gain

steady state

step function

step repsonse
subspace

time delay

transfer function
unit step

unstable

validity

whitening filter

Overanpassning
oversliang

sparsam
resonansfrekvens
resonanstopp
fasskérfrekvens
fasretarderande
fasavancerande
fasmarginal

ramp

rang
integratoruppvridning
resonansfrekvens
stigtid

rotort
kénslighetsfunktion
givare
insvingningstid, 16sningstid
sinusformad
stabilitetsrobusthet
tillstand
tillstandsaterkoppling
statisk forstdrkning
stationdrt tillstand
steg

stegsvar

underrum
tidsfordrojning
overforingsfunktion
enhetsteg

instabil

giltighet
blekningsfilter



2 Svensk-engelsk

(amplitud)skérfrekvens
aggregerade modeller
amplitud

amplitud
amplitudmarginal
bandbredd
begynnelsevirde
beskrivande funktion
bindningsgraf
blekningsfilter
ddmpning

egenvirde

enhetsteg

faltning
fasavancerande
fasmarginal
fasretarderande
fasskérfrekvens

flode

framkoppling
fordelade parametriska modeller
forstarkning

giltighet

givare
héndelseorienterade system
impulssvar

instabil
insvingningstid, 16sningstid
integratoruppvridning
korrelationsanalys
kretsforstarkning
kénslighetsfunktion

gain crossover frequency
lumped models
amplitude

magnitude

gain margin

bandwidth

initial value

describing function
bond graph

whitening filter
damping, attenuation
eigenvalue

unit step

convolution

phase lead

phase margin

phase lag

phase crossover frequency
flow

feedforward

distributed parameter models

gain

validity

sensor

discrete event systems
impulse response
unstable

settling time

reset windup
correlation analysis

loop gain, open loop system

sensitivity function



observator
observerbarhet
ramp

rang

regulator

relativ ddmpning
resonansfrekvens
resonansfrekvens
resonanstopp
rotort

sinusformad

slutet system
skérfrekvens
sparsam
stabilitetsrobusthet
stationart tillstand
statisk férstdrkning
steg

stegsvar

stigtid

styrbarhet

styrlag

stalldon
storningsundertryckning
tidsfordrojning
tillstand
tillstandsaterkoppling
trovardighet
underrum
aterkoppling

oppet system
Overanpassning
overforingsfunktion
oversling

observer
observability

ramp function
rank

controller

damping ratio
peak frequency
resonant frequency
peak resonance
root locus (pl. loci)
sinusoidal

closed loop system
gain crossover frequency
parsimonious
stability robustness
steady state

static gain

step function

step repsonse

rise time
controllability
control law
actuator
disturbance rejection
time delay

state

state feedback
credibility
subspace

feedback

open-loop system, loop gain
overfit

transfer function
overshoot
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