# Concept Learning

### Concepts and Hypotheses

- Definitions
- Example
- Hypotheses

### 2 Search-based Learning

- Find-S
- List-then-Eliminate
- Candidate Elimination

### 3 Unbiased Learning

- Bias
- Unbiased Learner

Örjan Ekeberg Machine Learning

Concepts and Hypotheses De Search-based Learning Ex Unbiased Learning Hy

### Concepts and Hypotheses

- Definitions
- Example
- Hypotheses

### 2 Search-based Learning

- Find-S
- List-then-Eliminate
- Candidate Elimination

### **3** Unbiased Learning

- Bias
- Unbiased Learner

Machine Learning

Concepts and Hypotheses Search-based Learning Unbiased Learning Hypotheses

Örjan Ekeberg

## Concept Learning

### Concept Learning

Learning of a boolean function from examples

### Categories

- "Nice weather"
- "Dog"
- "Motor vehicle"
- "Criminal offence"

### Subsets of a superset X

#### Concepts and Hypotheses Search-based Learning Unbiased Learning Hypotheses

## Terminology

c The concept to learn

$$c(x) \rightarrow 0/1, \quad x \in X$$

*h* Hypothesis, Result of the learning ("guessed c")

$$h(x) \rightarrow 0/1, \quad x \in X$$

*H* Hypotheses space, All conceivable hypotheses (before data arrives)

 $h \in H$ 

D Set of available training data

 $D \subseteq X$ 

Örjan Ekeberg Machine Learning

| Definitions    | Concepts and Hypotheses |
|----------------|-------------------------|
| <b>Example</b> | Search-based Learning   |
| Hypotheses     | Unbiased Learning       |

| Example of a <i>concept</i> |                 |
|-----------------------------|-----------------|
|                             | " Nice Weather" |

Let each "weather instance"  $x_i$  be composed of four attributes:

 $x_1 = \langle Sunny, Warm, Windy, Dry \rangle$   $x_2 = \langle Cloudy, Warm, Calm, Dry \rangle$  $x_3 = \cdots$ 

Generally:  $Sky \times Temperature \times Wind \times Humidity$ 

#### Concepts and Hypotheses Search-based Learning Unbiased Learning Hypotheses

## Terminology

Two kinds of training examples

### Positive example:

 $x: c(x) = 1, x \in D$ 

Negative example:

 $x: c(x) = 0, x \in D$ 

Örjan Ekeberg Machine Learning

Concepts and Hypotheses Definition Search-based Learning Example Unbiased Learning Hypothes

Assume that the attributes can only take on certain discrete values:

Number of possible weathers:  $|X| = 3 \cdot 2 \cdot 2 \cdot 2 = 24$ 

What does the hypotheses space H look like?



Each hypothesis h corresponds to one subset of X

Örjan Ekeberg Machine Learning

Concepts and Hypotheses Definitions Search-based Learning Unbiased Learning Hypotheses

### Example of a Restriction

Assume that the concept is always a conjunction of attribute values

Examples of concepts c of this kind

Sunny & Warm Cold & Calm & Dry

How many hypotheses do we have now?

| Sky    | Temperature | Wind  | Humidity |
|--------|-------------|-------|----------|
| Sunny  |             |       |          |
| Cloudy | Warm        | Windy | Dry      |
| Rainy  | Cold        | Calm  | Humid    |
| *      | *           | *     | *        |

 $4\cdot 3\cdot 3\cdot 3=108$ 

Typical training samples

 $x_1 =$ <Sunny, Warm, Windy, Dry> $\rightarrow$  Nice $x_2 =$ <Sunny, Warm, Windy, Humid> $\rightarrow$  Nice $x_3 =$ <Rainy, Cold, Windy, Humid> $\rightarrow$  Bad $x_4 =$ <Sunny, Warm, Calm, Humid> $\rightarrow$  Nice

Concepts and Hypotheses Search-based Learning Unbiased Learning

Example

Concepts and HypothesesDefinitionsSearch-based LearningExampleUnbiased LearningHypotheses

Örjan Ekeberg

Machine Learning

How many hypotheses can we choose from? How many subsets does *X* have?

$$|H| = 2^{|X|}$$
  
 $|H| = 2^{24} = 16777216$ 

It is necessary to make restrictions!

Find-S List-then-Eliminate Candidate Elimination

### Concepts and Hypotheses

- Definitions
- Example
- Hypotheses

## 2 Search-based Learning

- Find-S
- List-then-Eliminate
- Candidate Elimination

### 3 Unbiased Learning

- Bias
- Unbiased Learner

Learning  $\equiv$  search for a hypothesis which matches all examples

Use the structure of H to search faster

Find-S

Concepts and Hypotheses Find-S Search-based Learning List-then-Eliminate Unbiased Learning Candidate Elimination

Machine Learning

Some hypotheses are more general than others

Örjan Ekeberg

Partial order between pairs of hypotheses





Concepts and Hypotheses Search-based Learning

Unbiased Learning

Most General in our example: "All weathers are nice" Most Special in our example: "No weather is nice" (!)





### Find-S algorithm

Start from the Most Special hypothesis and generalize when necessary.

 $\hat{h} \leftarrow \text{most special hypothesis in } H$ for  $e \leftarrow \text{next example:}$ if positive example: generalize  $\hat{h}$  to cover e too

Returns the most special hypothesis which is consistent with all examples.

Örjan Ekeberg Machine Learning

Concepts and Hypotheses Search-based Learning Unbiased Learning Find-S List-then-Eliminate Candidate Elimination

## Problems with Find-S

- Impossible to know if only one unique hypothesis remains.
- Why should we prefer the most specific hypothesis?
- We will not detect inconsistent data since all negative examples are ignored.
- What happens if there are more equally specific hypotheses?

Concrete example: "Nice Weather" assuming that this concept is a conjunction of attributes.

Machine Learning

Find-S

Initial Hypothesis: Current Hypothesis:  $\langle \emptyset, \emptyset, \emptyset, \emptyset \rangle$  (Maximally pessimistic)  $\langle$ Sunny, Warm, Windy, Dry $\rangle$   $\langle$ Sunny, Warm, Windy,  $\star \rangle$   $\langle$ Sunny, Warm,  $\star, \star \rangle$ 

Training examples:

 $x_1 = \langle \mathsf{Sunny}, \mathsf{Warm}, \mathsf{Windy}, \mathsf{Dry} \rangle \to \mathsf{Nice}$ 

Örjan Ekeberg

epts and Hypotheses

Search-based Learning

- $x_2 = \langle \mathsf{Sunny}, \mathsf{Warm}, \mathsf{Windy}, \mathsf{Humid} \rangle \rightarrow \mathsf{Nice}$
- $x_3 = \langle \mathsf{Rainy}, \mathsf{Cold}, \mathsf{Windy}, \mathsf{Humid} \rangle \rightarrow \mathsf{Bad}$
- $x_4 = \langle \mathsf{Sunny}, \mathsf{Warm}, \mathsf{Calm}, \mathsf{Humid} \rangle \rightarrow \mathsf{Nice}$

Final hypothesis: "Nice Weather"  $\equiv$  Sunny  $\land$  Warm

s Find-S List-then-Eliminate Candidate Eliminatio

### Version Space (VS)

The set of all hypotheses consistent with the examples seen so far.

- *VS* ⊆ *H*
- |VS| = 1 One unique solution
- $VS = \emptyset$  Inconsistent examples

### The List-then-Eliminate algorithm

Direct representation of the Version Space (VS)

 $VS \leftarrow H$ for  $e \leftarrow$  next example: remove all hypotheses from VS which are not consistent with e

**Problem:** *H* is normally too large!



### Induction Bias

Bias

The choice of learning algorithm influences the result

Restriction Bias Restriction of which hypotheses are allowed

Preference Bias Tendency to prefer certain hypotheses before others

Unbiased Learner A learning algorithm without bias All hypotheses are treated equally Is an Unbiased Learner better?

All subsets of X are equally likely.

Knowledge about  $x_1, x_2, \ldots, x_n$  will reveal nothing about  $x_{n+1}$ 

Without bias it becomes impossible to generalize to unseen examples  $x \notin D$ .

Örjan Ekeberg Machine Learning

Örjan Ekeberg Machine Learning