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Artificial Neural Networks (ANN)

Inspired from the nervous system

Parallel processing

We will focus on one class of ANNs:

Feed-forward Layered Networks
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Applications

Operates like a general ”Learning Box”!

Classification

Yes/No

Function Approximation

[−1, 1]

Multidimensional Mapping
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Classical Examples

ALVINN

Autonomous driving

Video image Steering

Trained to mimic the behavior of human drivers
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Classical Examples

NetTalk

Speech Synthesis

"Hello"

Written text

Phonem

Coded pronunciation

Trained using a large database of spoken text
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How do real neurons (nerve cells) work?

Soma AxonDendrites

Dendrites
Passive reception of (chemical) signals

Soma (Cell Body)
Summing, Thresholding

Axon
Aktive pulses are transmitted to other cells
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Nerve cells can vary in shape and other properties
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ANN-caricatures

(simplified view of the neural information processing)

Σ

Weighted input signals

Summing

Thresholded output
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What do we mean by a Single Layer Network?

Each cell operates independently of the others!

It is sufficient to understand what one cell can compute
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What can a single ”cell” compute?

Σ

~x Input in vector format

~w Weights in vector format

o Output

o = sign

(∑
i

xiwi

)
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o = sign

(∑
i

xiwi

)
Geometrical interpretation

x
1

w

x
2

Separating hyper plane
Linear separability
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Learning in ANNs

What does learning mean here?

The network structure is normally fixed

Learning means finding the best weights wi

Two good algorithms for single layer networks:

Perceptron Learning

Delta Rule
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Perceptron Learning

Incremental learning

Weights only change when the output is wrong

Update rule: wi ← wi + η(t − o)xi

Always converges if the problem is solvable
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Delta Rule (LMS-rule)

Incremental learning

Weights always change

wi ← wi + η(t − ~wT~x)xi

Converges only in the mean

Will find an optimal solution even if the problem can not be
fully solved
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What is the point of having multiple layers?

A two layer network can implement arbitrary decision surfaces
...provided we have enough hidden units

Örjan Ekeberg Machine Learning

Artificial Neural Networks
Single Layer Networks
Multi Layer Networks

Generalization

Possible Mappings
Backprop Algorithm
Practical Problems

Will it be even better with more layers?

Two layers can describe any classification

Two layers can approximate any ”continuous” function

Three layers can sometimes do the same thing more efficiently

More than three layers are rarely used

Örjan Ekeberg Machine Learning



Artificial Neural Networks
Single Layer Networks
Multi Layer Networks

Generalization

Possible Mappings
Backprop Algorithm
Practical Problems

How can we train a multi layer network?

Neither perceptron learning, nor the delta rule can be used

Fundamental problem:

When the network gives the wrong answer
there is no information on in which direction

the weights need to change to improve the result

Fundamental trick:
Use threshold-like, but continuous functions

Σ Σ
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Basic idéa:

Minimize the error (E ) as a function of all weights (~w)

1 Compute the direction in weight space where the error
increases the most grad~w (E )

2 Change the weights in the opposite direction

wi ← wi − η
∂E

∂wi
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Normally one can use the error from each example separately

E =
1

2

∑
k∈Out

(tk − ok)2

A common ”threshold-like function” is

ρ(y) =
1

1 + e−y

x

1
1+e−x
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The gradient can be expressed as a function of a local generalized
error δ

∂E

∂wji
= −δixj wji ← wji + ηδixj

Output layer:
δk = ok · (1− ok) · (tk − ok)

Hidden layers:

δh = oh · (1− oh) ·
∑

k∈Out

wkhδk

The error δ propagates backwards through the layers
Error backpropagation (BackProp)
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Things to think about when using BackProp

Sloooow
Normal to require thousands of iterations through the dataset

Gradient following
Risk of getting stuck in local minima

Many parameters

Step size η
Number of layers
Number of hidden units
Input and output representation
Initial weights
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Generalization

The net normally interpolates smoothly between the data points

f
(x
)

x

Results in good generalization
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Risk for overfitting!

If the network has too many degrees of freedom (weights), the risk
increases that learning will find a ”strange” solution

f
(x
)

x
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Limiting the number of hidden units tends to improve
generalization

f
(x
)

x
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