# Understanding the influence of the P-, I-, and D-part in PID controllers 

Erik Henriksson

November 6, 2012

The aim here is to give a simple understanding of how the different parts of the PID-controller works and how they interact. The explanation is based on the P-, PI-, and PD-controller and how they can be approximated to give insight on how the PID-controller works. The PID-controller discussed is shown in Figure 1 showing how the controller may be represented by the sum of a PIcontroller, a PD-controller minus a P-controller


Figure 1: A PID controller

## 1 The PI-controller

The PI-control signal $u_{P I}$ in Figure 1 is given by

$$
u_{P I}=K e+\frac{1}{T_{I} s+1} u_{P I} \quad \Rightarrow \quad u_{P I} \quad=K e+\frac{K}{T_{I} s} e
$$

We note that when $T_{I} s$ is small the following hold

$$
\frac{1}{1+T_{I} s}=\sum_{n=0}^{\infty}\left(-T_{I} s\right)^{n} \approx 1-T_{I} s
$$

From this we may approximate the controller to be

$$
\begin{aligned}
u_{P I} & =K e+\frac{1}{T_{I} s+1} u_{P I} \approx K e+\left(1-T_{I} s\right) u_{P I} \Rightarrow \\
u_{P I}(t) & \approx K e(t)+u_{P I}(t)-T_{I} \frac{d}{d t} u_{P I}(t)
\end{aligned}
$$

We note that this is the first term in the Taylor expansion so that for small $T_{I}$ we have

$$
u_{P I}(t) \approx K e(t)+u_{P I}\left(t-T_{I}\right)
$$

## 2 The PD-controller

The PD-control signal $u_{P D}$ in Figure 1 is given by

$$
u_{P D}=K e+T_{D} s K e \Rightarrow u_{P D}(t)=K e(t)+K T_{D} \frac{d}{d t} e(t)
$$

We note that this is the first term in the Taylor expansion so that for small $T_{D}$ we have

$$
u_{P D}(t) \approx K e\left(t+T_{D}\right)
$$

## 3 The PID-controller

The PID-control signal in Figure 1 is given by $u_{P I D}=u_{P I}+u_{P D}-u_{P}$ or

$$
\begin{aligned}
u_{P I D} & =K e+\frac{K}{T_{I} s} e+K e+K T_{D} s e-K e \\
u_{P I D}(t) & =K e(t)+\frac{K}{T_{I}} \int_{0}^{t} e(s) d s+K T_{D} \frac{d}{d t} e(t)
\end{aligned}
$$

or in simplified terms

$$
\begin{aligned}
u_{P I D}(t) & \approx K e(t)+u_{P I}\left(t-T_{I}\right)+K e\left(t+T_{D}\right)-K e(t) \\
& =u_{P I}\left(t-T_{I}\right)+K e\left(t+T_{D}\right) .
\end{aligned}
$$

We may further express the following

$$
\begin{aligned}
u_{P I}\left(t-T_{I}\right) & =u_{P I D}\left(t-T_{I}\right)-u_{P D}\left(t-T_{I}\right)+u_{P}\left(t-T_{I}\right) \\
& \approx u_{P I D}\left(t-T_{I}\right)-K e\left(t+T_{D}-T_{I}\right)+K e\left(t-T_{I}\right)
\end{aligned}
$$

So that

$$
u_{P I D}(t) \approx K e\left(t-T_{I}\right)+K e\left(t+T_{D}\right)-K e\left(t+T_{D}-T_{I}\right)+u_{P I D}\left(t-T_{I}\right) .
$$

## 4 Summary

P-control: $\quad u(t)=K e(t)$
PI-control: $\quad u(t) \approx K e(t) \quad+u\left(t-T_{I}\right)$
PD-control: $u(t) \approx K e\left(t+T_{D}\right)$
PID-control: $u(t) \approx K e\left(t+T_{D}\right) \quad+u\left(t-T_{I}\right) \quad+\underbrace{K e\left(t-T_{I}\right)-K e\left(t+T_{D}-T_{I}\right)}_{\neq K e(t)}$

