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Revisiting Linear Separation

Revisiting Linear Separation

High Dimensional Spaces

High Dimensional Spaces

@ Revisiting Linear Separation
@ High Dimensional Spaces Observation

Almost everything becomes linearly separable
when represented in high-dimensional spaces

"Ordinary” low-dimensional data can be "scattered” into a
high-dimensional space.

Two problems emerge
@ Many free parameters — bad generalization

© Extensive computations

érjan Ekeberg Machine Learning Orjan Ekeberg Machine Learning



Revisiting Linear Separation Revisiting Linear Separation

High Dimensional Spaces High Dimensional Spaces

Linear Separation
Many acceptable solutions — bad generalization
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@ Structural Risk
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Structural Risk Minimization . Structural Risk Minimization .
V Margins

g
Mathematical Formulation Mathematical Formulation

Hyperplane with margins
Training data points are at least a distance d from the plane

@ Structural Risk Minimization

@ Margins ° )
@ Mathematical Formulation ° o
o
°
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Less arbitrariness — better generalization
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Structural Risk Minimization MevoSrs
Margins
Mathematical Formulation

Structural Risk Minimization -
Margins
Mathematical Formulation

Mathematical Formulation

@ Separating Hyperplane

@ Wide margins restrict the possible weights to choose from
@ Less risk to choose bad weights by accident

@ Reduced risk for bad generalization

Minimization of the structural risk = maximization of the margin T#+b>1 whent=1
T

w' X+b< -1 when t = —1

Out of all hyperplanes which solve the problem
the one with widest margin will generalize best
@ Combined
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Structural Risk Minimization MevorSrs
Margins
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Structural Risk Minimization e
Margins

Mathematical Formulation

Mathematical Formulation

How wide is the margin?
© Select two points, g and g, on the two margins:

wipg+b=1 wg+b=-1

@ Distance between g and g along w: Best Separating Hyperplane

- Minimize

w'o, QT

w

Constraints
@ Simplify: (W' +b) >1 Vi
0y — w'p—w'g (1—-b)—(-1—-b) 2
||| [|w]| [|w]|

Maximal margin corresponds to minimal length of the weight vector |




Support Vector Machines Support Vector Machines

Support Vector Machines

il

© Support Vector Machines
@ Transform the input to a

suitable high-dimensional
space

@ Choose the separation that
has maximal margins
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Bypassing High-Dimensional Computations
Support Vector Machines Re-Formulation of the mization Task
Kernels Support Vector Machines with Kernels

Support Vector Machines

@ Advantages

e Very good generalization
o Works well even with few training samples
o Fast classification

o Disadvantages Q Kermels
o Non-local weight calculation @ Bypassing High-Dimensional Computations
o Hard to implement efficiently @ Re-Formulation of the Minimization Task
@ Support Vector Machines with Kernels
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Bypassing High-Dimensional Computations Bypassing High-Dimensional Computations
Re-Formulation of the Minimization Task Re-Formulation of the Minimization Task

Kernels Support Vector Machines with Kernels Kernels Support Vector Machines with Kernels

Transform input data non-linearly into a high-dimensional feature

space Idea behind Kernels

Utilize the advantages of a high-dimensional space
without actually representing anything high-dimensional

o Condition: The only operation done in the high-dimensional
space is to compute scalar products between pairs of items

@ Common in ANN

@ Trick: The scalar product is computed using the original
(low-dimensional) representation
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Bypassing High-Dimensional Computations

Bypassing High-Dimensional Computations
Re-Formulation of the Minimization Task i

Re-Formulation of the Minimization Task

Kernels Support Vector Machines with Kernels Kernels Support Vector Machines with Kernels

Example
Transformation to 4D

Points in 2D

3
3X12 Common Kernels
o X1 - X% X
X = { } (X)) = L
X \@X31X2 Polynomials
X5
K(%,y)=(XTy+1)P
O(X) - 0(¥) = 4yi + 3G yixoy2 + 3xay18y5 + x3y3 Radial Bases
= (ay1 +xys)° K(z.7) = e ¥
= ()_(’T . )7)3 )
= K(X,Y)
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Bypassing High-Dimensional Computations
Re-Formulation of the Minimization Task
Kernels Support Vector Machines with Kernels

Structural Risk Minimization

Minimize
ww

Constraints
(WK +b)>1 Vi

@ Include b in the weight vector
@ Non-linear transformation ¢ of input X

New formulation

Minimize

S
S

N —

Constraints
twip(x)>1 Vi
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Bypassing High-Dimensional Computations
Re-Formulation of the Minimization Task

Kernels Support Vector Machines with Kernels
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Bypassing High-Dimensional Computations
Re-Formulation of the Minimization Task
Kernels Support Vector Machines with Kernels

Structural Risk Minimization

Minimize

Sy
Sy

N —

Constraints
twip(x)>1 Vi

Lagranges Multiplier Method

Wl -3 o [t,w%(z,-) - 1]

i

I\)\l—l

Minimize w.r.t. w, maximize w.r.t. a; > 0

oL

o7
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Bypassing High-Dimensional Computations
Re-Formulation of the Minimization Task
Kernels Support Vector Machines with Kernels

Use

to eliminate w

Za ajt,tjqb(x, Za ajtitio(X;) " (%) + Za,
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Bypassing High-Dimensional Computations Bypassing High-Dimensional Computations
Re-Formulation of the Minimization Task Re-Formulation of the Minimization Task

Kernels Support Vector Machines with Kernels Kernels Support Vector Machines with Kernels

The Dual Problem

Maximize |
Do i =5 D aiati(%) T 6(%)
i iy
Under the constraints @ Choose a suitable kernel function
@>0 Vi Q Sompute Q; (.solve the maximization problem)
© X; corresponding to «; # 0 are called support vectors
e w has disappeared @ Classify new data points via
@ ¢(X) only appear in scalar product pairs Za-t-lC()? %)>0
[d] 9 M
i
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Slack Variables Slack Variables

None-S ble Training S I . C
one-weparable Training samples Re-formulation of the minimization problem

Allow for Slack

) Minimize 1
Psaas o ST -
° N\ W W+CZ§i
[ ) [0) ]
, o
o ' Constraints
[ ] \ © o t/V_‘}TQS()?I) > ]-_f/

&; are called slack variables
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Slack Variables

Dual Formulation with Slack
Maximize

1 — -
Z aj — 5 Z a;ajt;tj¢(Xi)T¢()9)
i 1J
With constraints

OSOé,'SC Vi

Otherwise, everything remains as before
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