Support Vector Machines

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

High Dimensional Spaces

- Revisiting Linear Separation
 - High Dimensional Spaces
- 2 Structural Risk Minimization
 - Margins
 - Mathematical Formulation
- Support Vector Machines
- 4 Kernels
 - Bypassing High-Dimensional Computations
 - Re-Formulation of the Minimization Task
 - Support Vector Machines with Kernels
- Slack Variables

- Revisiting Linear Separation
 - High Dimensional Spaces
- Structural Risk Minimization
 - Margins
 - Mathematical Formulation
- Support Vector Machines
- 4 Kernels
 - Bypassing High-Dimensional Computations
 - Re-Formulation of the Minimization Task
 - Support Vector Machines with Kernels
- Slack Variables

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

High Dimensional Spaces

Observation

Almost everything becomes linearly separable when represented in high-dimensional spaces

"Ordinary" low-dimensional data can be "scattered" into a high-dimensional space.

Two problems emerge

- lacktriangledown Many free parameters o bad generalization
- Extensive computations

Örjan Ekeberg Machine Learning

Linear Separation

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

Margins Mathematical Formulation

- Revisiting Linear SeparationHigh Dimensional Spaces
- Structural Risk Minimization
 - Margins
 - Mathematical Formulation
- 3 Support Vector Machines
- 4 Kernels
 - Bypassing High-Dimensional Computations
 - Re-Formulation of the Minimization Task
 - Support Vector Machines with Kernels
- Slack Variables

Many acceptable solutions o bad generalization

Structural Risk

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

Margins Mathematical Formulation

Hyperplane with margins

Training data points are at least a distance d from the plane

Less arbitrariness \rightarrow better generalization

$$\vec{w}^T \vec{x} + b = 0$$

• Hyperplane with a margin

$$\vec{w}^T \vec{x} + b \ge 1$$
 when $t = 1$
 $\vec{w}^T \vec{x} + b \le -1$ when $t = -1$

Combined

$$t(\vec{w}^T\vec{x}+b)\geq 1$$

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization

Best Separating Hyperplane

Minimize

Constraints

Mathematical Formulation

• Wide margins restrict the possible weights to choose from

- Less risk to choose bad weights by accident
- Reduced risk for bad generalization

Minimization of the structural risk \equiv maximization of the margin

Out of all hyperplanes which solve the problem the one with widest margin will generalize best

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization

Mathematical Formulation

How wide is the margin?

1 Select two points, \vec{p} and \vec{q} , on the two margins:

$$ec{w}^T ec{p} + b = 1 \qquad ec{w}^T ec{q} + b = -1$$

② Distance between \vec{p} and \vec{q} along \vec{w} :

$$2d = \frac{\vec{w}^T}{||\vec{w}||}(\vec{p} - \vec{q})$$

Simplify:

$$2d = \frac{\vec{w}^T \vec{p} - \vec{w}^T \vec{q}}{||\vec{w}||} = \frac{(1-b) - (-1-b)}{||\vec{w}||} = \frac{2}{||\vec{w}||}$$

Maximal margin corresponds to minimal length of the weight vector

 $t_i(\vec{w}^T\vec{x}_i+b)\geq 1$

 $\vec{w}^T \vec{w}$

Support Vector Machines

- Transform the input to a suitable high-dimensional space
- Choose the separation that has maximal margins

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

Bypassing High-Dimensional Computation Re-Formulation of the Minimization Tas Support Vector Machines with Kernels

- Revisiting Linear Separation
 - High Dimensional Spaces
- 2 Structural Risk Minimization
 - Margins
 - Mathematical Formulation
- Support Vector Machines
- 4 Kernels
 - Bypassing High-Dimensional Computations
 - Re-Formulation of the Minimization Task
 - Support Vector Machines with Kernels
- Slack Variables

- Revisiting Linear SeparationHigh Dimensional Spaces
- 2 Structural Risk Minimization
 - Margins
 - Mathematical Formulation
- Support Vector Machines
- 4 Kernels
 - Bypassing High-Dimensional Computations
 - Re-Formulation of the Minimization Task
 - Support Vector Machines with Kernels
- Slack Variables

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

Support Vector Machines

- Advantages
 - Very good generalization
 - Works well even with few training samples
 - Fast classification
- Disadvantages
 - Non-local weight calculation
 - Hard to implement efficiently

Örjan Ekeberg

Transform input data non-linearly into a high-dimensional feature space

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

Bypassing High-Dimensional Computations Re-Formulation of the Minimization Task Support Vector Machines with Kernels

Example

Points in 2D

$$\vec{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

Transformation to 4D

$$\phi(\vec{x}) = \begin{bmatrix} x_1^3 \\ \sqrt{3}x_1^2x_2 \\ \sqrt{3}x_1x_2^2 \\ x_2^3 \end{bmatrix}$$

$$\phi(\vec{x})^{T} \cdot \phi(\vec{y}) = x_{1}^{3}y_{1}^{3} + 3x_{1}^{2}y_{1}^{2}x_{2}y_{2} + 3x_{1}y_{1}x_{2}^{2}y_{2}^{2} + x_{2}^{3}y_{2}^{3}$$

$$= (x_{1}y_{1} + x_{2}y_{2})^{3}$$

$$= (\vec{x}^{T} \cdot \vec{y})^{3}$$

$$= \mathcal{K}(\vec{x}, \vec{y})$$

Idea behind Kernels

Utilize the advantages of a high-dimensional space without actually representing anything high-dimensional

- Condition: The only operation done in the high-dimensional space is to compute *scalar products* between pairs of items
- Common in ANN
- Trick: The scalar product is computed using the original (low-dimensional) representation

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels Slack Variables

Bypassing High-Dimensional Computations Re-Formulation of the Minimization Task Support Vector Machines with Kernels

Common Kernels

Polynomials

$$\mathcal{K}(\vec{x}, \vec{y}) = (\vec{x}^T \vec{y} + 1)^p$$

Radial Bases

$$\mathcal{K}(\vec{x}, \vec{y}) = e^{-\frac{1}{2\rho^2}||\vec{x} - \vec{y}||^2}$$

Örjan Ekeberg Machine Learning

Örjan Ekeberg

Machine Learning

Structural Risk Minimization

Minimize

$$\vec{w}^T \vec{w}$$

Constraints

$$t_i(\vec{w}^T\vec{x}_i+b)\geq 1 \quad \forall i$$

- Include b in the weight vector
- Non-linear transformation ϕ of input \vec{x}

New formulation

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w}$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 \quad \forall i$$

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

Bypassing High-Dimensional Computation Re-Formulation of the Minimization Task Support Vector Machines with Kernels

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

$$\frac{\partial L}{\partial \vec{w}} = 0 \implies \vec{w} - \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i}) = 0$$

$$\vec{w} = \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i})$$

Structural Risk Minimization

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w}$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) > 1 \quad \forall$$

Lagranges Multiplier Method

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

Minimize w.r.t. \vec{w} , maximize w.r.t. $\alpha_i \geq 0$

Revisiting Linear Separation Structural Risk Minimization

Support Vector Machines

Kernels Slack Variables

$$\frac{\partial L}{\partial \vec{w}} = 0$$

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels

Bypassing High-Dimensional Computation Re-Formulation of the Minimization Task Support Vector Machines with Kernels

Use

$$\vec{w} = \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i})$$

to eliminate \vec{w}

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

$$L = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) - \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) + \sum_i \alpha_i$$
$$L = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j)$$

The Dual Problem

Maximize

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$$

Under the constraints

$$\alpha_i \geq 0 \quad \forall i$$

- \vec{w} has disappeared
- $\phi(\vec{x})$ only appear in scalar product pairs

Örjan Ekeberg

Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines Kernels Slack Variables

None-Separable Training Samples

Allow for Slack

- Choose a suitable kernel function
- **2** Compute α_i (solve the maximization problem)
- **3** $\vec{x_i}$ corresponding to $\alpha_i \neq 0$ are called support vectors
- Classify new data points via

$$\sum_{i} \alpha_{i} t_{i} \mathcal{K}(\vec{x}, \vec{x_{i}}) > 0$$

Örjan Ekeberg

Machine Learning

Revisiting Linear Separatic Structural Risk Minimizatic Support Vector Machine Kerne Slack Variable

Re-formulation of the minimization problem

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w} + C\sum_i \xi_i$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 - \xi_i$$

 ξ_i are called *slack variables*

Örjan Ekeberg Machine Learning

Örjan Ekeberg

Machine Learning

Dual Formulation with Slack

Maximize

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$$

With constraints

$$0 \le \alpha_i \le C \quad \forall i$$

Otherwise, everything remains as before

Örjan Ekeberg Machine Learning