
22/9/2013	

1	

EH2750 Computer Applications in
Power Systems, Advanced Course.

Professor Lars Nordström, Ph.D.
Dept of Industrial Information & Control systems, KTH
larsn@ics.kth.se

Lecture 4

Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  How does this appear in JACK?

• Searching for solutions (AI book - Ch 3)

• Informed Searches (Excerpt)

• Planning

What is an Intelligent Agent?

• The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

• Thus: an intelligent agent is a computer system capable
of flexible autonomous action in some environment in
order to meet its design objectives

System

Environment

input
output

The discussion so far

• Chapter 2 describes the idea of agents that perform
tasks in an environment and sets some definitions

• Chapters 3, 4, & 5 describe three different approaches
to describing and developing the apparent Intelligence
in the agents.

-  Chapter 3 – Deductive Reasoning Agents
-  Chapter 4 – Practical Reasoning Agents
-  Chapter 5 - Reactive (and Hybrid Agents)

• Today, we take a deeper look at searching & planning

22/9/2013	

2	

Practical Reasoning

• Human practical reasoning consists of two activities:
-  deliberation

deciding what state of affairs we want to achieve
- means-ends reasoning

deciding how to achieve these states of affairs
• The outputs of deliberation are intentions

What are
possible
things I
could do?

What is
the best

way to do
it?

Inten-
tions Plans

goal/
intention/
task

state of
environment

possible
action

planner

plan to achieve goal

Planning is a big thing in AI

How this can look in JACK Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  How does this appear in JACK?

• Searching for solutions (AI book - Ch 3)

• Informed Searches (Excerpt)

• Planning

22/9/2013	

3	

Tree Search Algorithms

• Tree searching is a classic structure for finding
solutions to a problem.

• The program searches through a Tree (graph) to find
a solutions

• States are the nodes in the tree and actions are the
edges

• Nodes are expanded into sucessor nodes using a
successor function

• Which nodes to expand are determined by which
search strategy the program has implemented.

A Plan

• What is a plan?
A sequence (list) of actions, with variables replaced by
constants.

I G
a1

a17

a142

Practical Reasoning Agent
First some assumptions:
The agent and the environment

• In Lecture 2, we discussed the characteristics of the
environment the agent exists within
-  Accessible vs Inaccessible
-  Deterministic vs non-deterministic
-  Static vs Dynamic
-  Continuous vs Discrete

• For the searching & planning discussion we assume:
-  Accessible, Deterministic, Static & Discrete

22/9/2013	

4	

Environments
Accessible vs. inaccessible

• An accessible environment is one in which the agent
can obtain complete, accurate, up-to-date information
about the environment’s state

• Most moderately complex environments (including, for
example, the everyday physical world and the
Internet) are inaccessible
-  Subsets of the real-world can of course be made

accessible
- Measurements in a Power grid (U,I,P,Q, states, φ etc)

• The more accessible an environment is, the simpler it
is to build agents to operate in it

Environments –
Deterministic vs. non-deterministic

• A deterministic environment is one in which any
action has a single guaranteed effect — there is
no uncertainty about the state that will result
from performing an action

• The physical world can to all intents and
purposes be regarded as non-deterministic
-  Again, subsets of the real world can appear

deterministic
• Non-deterministic environments present greater
problems for the agent designer

Environments
Static vs. dynamic

• A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the
agent

• A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond
the agent’s control

• Other processes can interfere with the agent’s

• The real world is obviously a highly dynamic environment
-  But is a distribution grid a highly dynamic environment?

16

Environments
Discrete vs. continuous

• An environment is discrete if there are a fixed, finite
number of actions and percepts in it

• A chess game is an example of a discrete
environment, and taxi driving an example of a
continuous one

• Continuous environments have a certain level of
mismatch with computer systems

• Discrete environments could in principle be handled
by a kind of “lookup table”

22/9/2013	

5	

Problem Formulation

• Before starting the search for a solution, we need to
define the problem we are trying to solve

• A Problem formulation has the following parts:
- An initial state
- Actions possible in terms of successor
function, that is a list of tuples:
•  (Action, Successor)!

- A goal state and a test if we are at the goal
- A path cost related to the cost of a path/action*

*It is easy to think of the steps along the path as separate actions, this is OK,
but formally not correct at this stage.

Example - Searching in Romania

Problem Formulation - Romania

• Initial State In(Arad)!

• Actions possible Successor function F(state)!
For example: !

•  F(Arad) = ((Go(Sibiu),In(Sibiu)), (Go ! !
! !Timisoara),In (Timisoara)), !! !
! ! !(Go(Zerind),In(Zerind))!

• The Goal test In(Bucharest)!

• Path cost ! !Distances in Kilomters.!

General Idea of Search algorithm

So, which search strategy should we use?

22/9/2013	

6	

Quality of Problem Solutions Strategies

• How do we rate one strategy over another

• Completeness
•  Is the strategy guaranteed to find a solution?

• Optimality
•  Does the strategy find the solution with the lowest path cost?

• Space complexity
•  How much memory is needed bythe strategy

• Time complexity
•  How long time does it take to find the goal using the strategy

Measuring Complexity

• The complexity of the solution in time & space
represents the CPU processing time, and memory
needs for the algorith.

• Measurement (indices for complexity) are:
-  b – branchingfactor, maximum number of sucessors to

any node.
-  d – depth, number of layers to reach the first optimal

solution
-  m – maximum length that a path can have.

Some typical (uninformed) strategies

• Breadth First Search
• Uniform cost (breadth first) Search
• Depth First Search
• Backtracking Search
• Depth Limited Depth First Search
• Iterative Deepening search

General tree search algorithm

22/9/2013	

7	

Where….

• We implement the nodes in the tree as a queue.

• And implement the following functions to work on the queue.

Breadth First Search

• The queue of Nodes is a FIFO queue (First in First Out)
• If d and b are limited, then BFS is Complete
• Optimal only if all Path costs are similar at same level.
• Unfortunately very memory and time-consuming, i.e. Complex

-  Number of nodes generated (memory need)

Uniform Cost Search

• Utilising the information about Path cost to select
which path to follow.

• If all Path costs are equal, this is equal to Breadth
First Search

Depth First Search - I

22/9/2013	

8	

Depth First Search - II

• The fringe is implemented as a LIFO (Last in First Out)
or commonly known as stack.

• Very modest memory requirements, only one path
needs to be stored, since paths can be discarded after
search to end.
- Memory need is b*m +1 << O(bd+1)!

• DFS is not complete, since it can get stuck in loops
• DFS is not optimal, since it can find a solution, deep

down one part of the tree, even if optimal solution is
higher.

Backtracking Search

• Variant of Depth First Search, where only one of a
nodes successors is generated before moving on to
that successor.

• Additionally, we do not keep the pre-decessor states
in memory either, they are regenerated as we go
back.

• This leaves un-expanded Nodes higher up, that must
be recorded.

• Even less memory requirements – O(m)!

Depth limited search

• By setting an l (length), that limits the maximum
depth that a DFS can go.

• Basically, when the path lentgh reaches l, we do not
expand further successors

• Basic DFS can be considered as having infinite l!

• Basing l on some knowledge about the problem can
be useful, this is an example of heuristics

Iterative Deepening DFS

• Do a DFS with l =1
• If No solution found, set l=2 do same thing again.
• Repeated creation of states at higher levels in the tree

is a small cost compared to the benefits gained by
combining DFS and BFS.

• Preferred uninformed method, if state space is
unknown

22/9/2013	

9	

Comparison of Search Strategies

How to avoid repeated states?

”If an algorithm forgets its past, it is
doomed to repeate it”

• Simple answer is, keep track if a state has been
expanded previously.

Graph Search algorithm

22/9/2013	

10	

Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  How does this appear in JACK?

• Searching for solutions (AI book - Ch 3)

• Informed Searches (Excerpt)

• Planning

Heuristics

• Often, we (the programmer) has some knowledge
about the problem we are asking the agent (the
computer) to solve.

• We can add different sorts of clever heuristics to our
algorithm.

• Essentially, we use an evaluation function f(n) to
select which successor node to expand, creating a
priority queue, where f(state) is the ranking of the
nodes.

• Normally node the lowest value (distance to goal) is
expanded first.

Greedy
First

• GFS always selects
the node with
apparent cheapest
solution to reach
goal.

• In Romania, we set
for example:

• hSLD=shortest
line distance!

• Always expand
node with lowest
hSLD !

A*

• A variant of Greedy First Search is A*

• Uses the evaluation function f(n) = h(n)+g(n)!
• Where g(n) is the cost to get to where we are
• And h(n) is the estimated cost to reach goal. !

22/9/2013	

11	

A* example
 Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  Some words om JACK development

• Searching for solutions (AI book - Ch 3)

• Informed Searches (Excerpt)

• Planning

Planning approaches

• STRIPS based effort at a switching problem

• We need a problem definition

Problem Formulation

• Before starting the search for a solution, we need to
define the problem we are trying to solve

• A Problem formulation has the following parts:
- An initial state
- Actions possible in terms of successor
function, that is a list of tuples:
•  (Action, Successor)!

- A goal state and a test if we are at the goal
- A path cost related to the cost of a path/action*

*It is easy to think of the steps along the path as separate actions, this is OK,
but formally not correct at this stage.

22/9/2013	

12	

The Switching Ontology

• To represent this environment, need an ontology
 Conducting(x) Circuit Breaker x is conducting
 Breaking(x) CB x is breaking
 LightsOn(y) Load y is on

• The closed world assumption is implicitly valid.

Representing Actions

• Actions are represented using a technique that was
developed in the STRIPS planner

• Each action has:
-  a name

which may have arguments
-  a pre-condition list

list of facts which must be true for action to be executed
-  a delete list

list of facts that are no longer true after action is performed
-  an add list

list of facts made true by executing the action
Each of these may contain variables

Actions in the problem

• Using STRIPS notation
• Closing Breaker x description is:

-  Name: Close (x)!
-  Pre: Breaking(x)!
-  Add: Conducting (x)!
-  Del: Breaking (x)!

So lets try this!

22/9/2013	

13	

Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  Some words om JACK development

• Searching for solutions (AI book - Ch 3)

• Informed Searches (Excerpt)

• Planning

Backup slides

The Blocks World

• We’ll illustrate the techniques with reference to the blocks world
Contains a robot arm, 3 blocks (A, B, and C) of equal size, and a
table-top

A

B C

The Blocks World

• Here is a representation of the blocks world described
above:

 Clear(A)
 On(A, B)
 OnTable(B)
 OnTable(C)

• Use the closed world assumption: anything not stated
is assumed to be false

A

B C

22/9/2013	

14	

4-53

The Blocks World

• A goal is represented as a set of formulae
• Here is a goal:

 OnTable(A) ∧ OnTable(B) ∧ OnTable(C)

A B C

The Blocks World

• Actions are represented using a technique that was
developed in the STRIPS planner

• Each action has:
-  a name

which may have arguments
-  a pre-condition list

list of facts which must be true for action to be executed
-  a delete list

list of facts that are no longer true after action is performed
-  an add list

list of facts made true by executing the action
Each of these may contain variables

The Blocks World Operators

• Example 1:
The stack action occurs when the robot arm places
the object x it is holding is placed on top of object y.

 Stack(x, y)
 pre Clear(y) ∧ Holding(x)
 del Clear(y) ∧ Holding(x)
 add ArmEmpty ∧ On(x, y)

A

B

The Blocks World Operators
• Example 2:
The unstack action occurs when the robot arm picks
an object x up from on top of another object y.

 UnStack(x, y)
 pre On(x, y) ∧ Clear(x) ∧ ArmEmpty
 del On(x, y) ∧ ArmEmpty
 add Holding(x) ∧ Clear(y)

Stack and UnStack are inverses of one-another.

A

B

22/9/2013	

15	

The Blocks World Operators
• Example 3:
The pickup action occurs when the arm picks
up an object x from the table.

 Pickup(x)
 pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty
 del OnTable(x) ∧ ArmEmpty
 add Holding(x)

• Example 4:
The putdown action occurs when the arm
places the object x onto the table.
 Putdown(x)

 pre Holding(x)
 del Holding(x)
 add Clear(x) ∧ OnTable(x) ∧ ArmEmpty

