22/9/2013

Outline of the Lecture

* Repeating where we are right now

EH2750 Computer App”cations in - Intelligent Agents of various types
- i i ?
Power Systems, Advanced Course. How does this appear in JACK:
novaL meTiruTe » Searching for solutions (Al book - Ch 3)
Lecture 4

* Informed Searches (Excerpt)

¢ Planning

Professor Lars Nordstrém, Ph.D.
Dept of Industrial Information & Control systems, KTH
larsn@ics.kth.se

What is an Intelligent Agent? The discussion so far

* The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

* Thus: an intelligent agent is a computer system capable

of flexible autonomous action in some environment in . .

. . . » Chapters 3, 4, & 5 describe three different approaches

order to meet its design objectives to describing and developing the apparent Intelligence
in the agents.

» Chapter 2 describes the idea of agents that perform
tasks in an environment and sets some definitions

) output
input System - Chapter 3 - Deductive Reasoning Agents
- Chapter 4 - Practical Reasoning Agents
- Chapter 5 - Reactive (and Hybrid Agents)
Environment » Today, we take a deeper look at searching & planning

Practical Reasoning

» Human practical reasoning consists of two activities:
- deliberation
deciding what state of affairs we want to achieve

- means-ends reasoning
deciding how to achieve these states of affairs

» The outputs of deliberation are intentions

What are i_nten- What is Plans
possible lons the best -

things I
could do?

way to do
it?

Planning is a big thing in Al

goal/ state of possible
intention/ environment action
task\

planner

|

plan to achieve goal

How this can look in JACK

PlanSelected

StartThinking

Outline of the Lecture

» Searching for solutions (Al book - Ch 3)

22/9/2013

22/9/2013

Tree Search Algorithms A Plan < ‘
» Tree searching is a classic structure for finding Q< ‘ 7 al42
solutions to a problem. al ‘
* The program searches through a Tree (graph) to find N _
a solutions
» States are the nodes in the tree and actions are the ‘
edges i)
» Nodes are expanded into sucessor nodes using a am ‘
successor function
* Which nodes to expand are determined by which
search strategy the program has implemented. * What is a plan?
A sequence (list) of actions, with variables replaced by
constants.

First some assumptions:
The agent and the environment

Practical Reasoning Agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action) Lo
inputs: percept, a percept * In Lecture 2, we discussed the characteristics of the

static: seq, an action sequence. initially empty environment the agent exists within
state, some description of the current world state - Accessible vs Inaccessible
goal, a goal, initially null P P
g . - Deterministic vs non-deterministic
problem, a problem formulation - i
. - Static vs Dynamic
state «— UPDATE-STATE(statc, percept) . .
if seq is empty then do - Continuous vs Discrete

goal «— FORMULATE-GOAL(state)
problem +— FORMULATE-PROBLEM(state, goal)

seq — SEARCH(problein) e For the searching & planning discussion we assume:
action —FIRST(seq) - Accessible, Deterministic, Static & Discrete
seq — REST(seq)
return action

Environments
Accessible vs. inaccessible

¢ An accessible environment is one in which the agent
can obtain complete, accurate, up-to-date information
about the environment’s state

e Most moderately complex environments (including, for
example, the everyday physical world and the
Internet) are inaccessible
- Subsets of the real-world can of course be made

accessible

- Measurements in a Power grid (U,I,P,Q, states, ¢ etc)

e The more accessible an environment is, the simpler it
is to build agents to operate in it

Environments —
Deterministic vs. non-deterministic

* A deterministic environment is one in which any
action has a single guaranteed effect — there is
no uncertainty about the state that will result
from performing an action

*The physical world can to all intents and
purposes be regarded as non-deterministic
- Again, subsets of the real world can appear
deterministic
* Non-deterministic environments present greater
problems for the agent designer

Environments
Static vs. dynamic

e A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the
agent

¢ A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond
the agent’s control

» Other processes can interfere with the agent’s

* The real world is obviously a highly dynamic environment
- But is a distribution grid a highly dynamic environment?

Environments
Discrete vs. continuous

* An environment is discrete if there are a fixed, finite
number of actions and percepts in it

* A chess game is an example of a discrete
environment, and taxi driving an example of a
continuous one

» Continuous environments have a certain level of
mismatch with computer systems

» Discrete environments could in principle be handled
by a kind of “lookup table”

22/9/2013

Problem Formulation

» Before starting the search for a solution, we need to
define the problem we are trying to solve

* A Problem formulation has the following parts:
- An initial state

- Actions possible in terms of successor
function, that is a list of tuples:

* (Action, Successor)
- A goal state and a test if we are at the goal
- A path cost related to the cost of a path/action*

*It is easy to think of the steps along the path as separate actions, this is OK,
but formally not correct at this stage.

Example - Searching in Romania

Figure32 A simplified road map of part of Romania.

Problem Formulation - Romania

o Initial State In(Arad)

e Actions possible Successor function F(state)
For example:
- F(Arad) = ((Go(Sibiu),In(Sibiu)), (Go
Timisoara),In (Timisoara)),
(Go(Zerind),In(Zerind))

* The Goal test In(Bucharest)

» Path cost Distances in Kilomters.

General Idea of Search algorithm

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
ioop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Figure 3.7 Aninformal description of the general tree-search algorithm.

So, which search strategy should we use?

22/9/2013

22/9/2013

Quality of Problem Solutions Strategies Measuring Complexity

* How do we rate one strategy over another

» Completeness
- Is the strategy guaranteed to find a solution?
» Optimality
« Does the strategy find the solution with the lowest path cost?
* Space complexity
+ How much memory is needed bythe strategy
* Time complexity
- How long time does it take to find the goal using the strategy

* The complexity of the solution in time & space
represents the CPU processing time, and memory
needs for the algorith.

» Measurement (indices for complexity) are:

- b - branchingfactor, maximum number of sucessors to
any node.

- d - depth, number of layers to reach the first optimal
solution

- m - maximum length that a path can have.

Some typical (uninformed) strategies

» Breadth First Search

» Uniform cost (breadth first) Search
» Depth First Search

» Backtracking Search

» Depth Limited Depth First Search
o Iterative Deepening search

General tree search algorithm

function TREE-SEARCH(problem, fringe) returns a solution, or failure

fringe — INSERT(MAKE-NODE(INITIAL-STATE] problem)), fringe)
loop do
if EMPTY?(fringe) then return failure
node —REMOVE-FIRST(fringe)
if GOAL-TEST| problem] applied to STATE[node] succeeds
then return SOLUTION(node)
fringe — INSERT-ALL(EXPAND(node, problem),fringe)

function EXPAND(node, problem) returns a set of nodes

successors «— the empty set
for each (action,result)in SUCCESSOR-EN| problem|(STATE| node|y do
$¢anew NODE
STATE[s] <+ result
PARENT-NODE[s]— node
ACTION|[s]— action
PATH-COS'T[3] «—PATH-COST[node | + STEP-COST(STATE| nodel, action, result)
DEPTH[s] «—DEPTH[node] + |
add s to successors
return successors

Where....

*» We implement the nodes in the tree as a queue.

* And implement the following functions to work on the queue.

o MAKE-QUEUE(element, ...) creates a queue with the given element(s).

e EMPTY?(queue) returns true only if there are no more elements in the queue.

o FIRST(gueue) returns the first element of the queue.

& REMOVE-FIRST(queue) returns FIRST(queue) and removes it from the queue.

& INSERT(element, queue) inserts an element into the queue and returns the resulting
queue. (We will see that different types of queues insert elements in different orders.)

o INSERT-ALL(elements, queue) inserts a set of elements into the queue and returns the
resulting queue.

Breadth First Search

Figure 3.10 Breadth-first search on a simple binary tree. At each stage, the node to be
expanded next is indicated by a marker.

» The queue of Nodes is a FIFO queue (First in First Out)
« If d and b are limited, then BFS is Complete
» Optimal only if all Path costs are similar at same level.
» Unfortunately very memory and time-consuming, i.e. Complex
- Number of nodes generated (memory need)
b+B 84 b 4 (B —b) = O(b™Y).

Uniform Cost Search

 Utilising the information about Path cost to select
which path to follow.

« If all Path costs are equal, this is equal to Breadth
First Search

Depth First Search - 1

22/9/2013

Depth First Search - II

» The fringe is implemented as a LIFO (Last in First Out)
or commonly known as stack.

* Very modest memory requirements, only one path
needs to be stored, since paths can be discarded after
search to end.

- Memory need is b*m +1 << 0O(bd*l)

» DFS is not complete, since it can get stuck in loops
* DFS is not optimal, since it can find a solution, deep
down one part of the tree, even if optimal solution is

higher.

Backtracking Search

» Variant of Depth First Search, where only one of a
nodes successors is generated before moving on to
that successor.

» Additionally, we do not keep the pre-decessor states
in memory either, they are regenerated as we go
back.

» This leaves un-expanded Nodes higher up, that must
be recorded.

* Even less memory requirements — 0(m)

Depth limited search

* By setting an 1 (length), that limits the maximum
depth that a DFS can go.

» Basically, when the path lentgh reaches 1, we do not
expand further successors

» Basic DFS can be considered as having infinite 1

» Basing 1 on some knowledge about the problem can
be useful, this is an example of heuristics

Iterative Deepening DFS

function [TERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
inputs: problem,a problem
for depth — 0 to oo do

result «— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Figure 3.14 The iterative deepening search algorithm, which dly applies depth-
limited search with increasing limits. It terminates when a solution 1s found or if the depth-
limited search returns failure, meaning that no solution exists.

*Do a DFS with | =1
» If No solution found, set I=2 do same thing again.

» Repeated creation of states at higher levels in the tree
is a small cost compared to the benefits gained by
combining DFS and BFS.

» Preferred uninformed method, if state space is
unknown

22/9/2013

"

Limit=0 _*® N

Limit = 1 Lol

Limit =2 L8

Figure3.5 Fouriterations of iterative deepening search on a binary tree.

Comparison of Search Strategies

Criteri Breadth- Uniform- Depth- Depth- Iterative Bidirectional
merion First Cost First ~ Limited Deepening Gf applicable)
Complete? Yes® Yes™® No No Yes* Yes®¢
Time op*) Oy gpm) o@ry O(Y) o
Space O(*Y) O™ Hm)y O(be) O(bd) 0(1%72)
Optimal? Yes® Yes No No Yes® Yes™*

Figure 3.17 Evaluation of search strategies. b is the branching factor: d is the depth of
the shallowest solution; m is the maximum depth of the search tree; 1 is the depth limit.
Superscriptcaveats are as follows: * complete if b is finite; b completeif step costs > ¢ for
positive €; € optimalif step costs are all identical; ? if both directions use breadth-first search.

How to avoid repeated states?

“If an algorithm forgets its past, it is
doomed to repeate it”

* Simple answer is, keep track if a state has been
expanded previously.

Graph Search algorithm

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if EMPTY?(fringe) then return failure
node — REMOVE-FIRST(fringe)
if GOAL-TEST| problem|(STATE[node]) then retarn SOLUTION(node)
if STATE[node] is notin closed then
add STATE[node] to closed
fringe < INSERT-ALL(EXPAND(node, problem), fringe)

Figure3.19 The general graph-searchalgorithm. The set closed can be implemented with
a hash table to allow efficient checking for repeated states. This algorithm assumes that the
first path to a state § is the cheapest (see text).

22/9/2013

Outline of the Lecture

* Informed Searches (Excerpt)

Heuristics

* Often, we (the programmer) has some knowledge
about the problem we are asking the agent (the
computer) to solve.

» We can add different sorts of clever heuristics to our
algorithm.

» Essentially, we use an evaluation function £(n) to
select which successor node to expand, creating a
priority queue, where £ (state) is the ranking of the
nodes.

* Normally node the lowest value (distance to goal) is
expanded first.

Greedy
First

* GFS always selects
the node with
apparent cheapest
solution to reach
goal.

¢ In Romania, we set
for example:

*hg,=shortest
line distance

» Always expand
node with lowest

hSLD

(a) The initial state p@

36

(b) After expanding Arad G

253 329 3

() After expanding Sibiu

Figure 4.2 Stages in a greedy best-first search for Bucharest using the straight-line dis-
tance heuristic /L5 Nodes are labeled with their h-values.

A*
» A variant of Greedy First Search is A*
» Uses the evaluation function £(n) = h(n)+g(n)

* Where g(n) is the cost to get to where we are
*And h(n) is the estimated cost to reach goal.

22/9/2013

10

(a) The initial state
saetrs6s

A* example R ML o~

=)

() After expanding Sibin

P e e ey

(@) After expanding Rimnicu Vileea

Outline of the Lecture

¢ Planning

Planning approaches

» STRIPS based effort at a switching problem

* We need a problem definition

Problem Formulation

» Before starting the search for a solution, we need to
define the problem we are trying to solve

* A Problem formulation has the following parts:
- An initial state

- Actions possible in terms of successor
function, that is a list of tuples:

* (Action, Successor)
- A goal state and a test if we are at the goal
- A path cost related to the cost of a path/action*

*It is easy to think of the steps along the path as separate actions, this is OK,
but formally not correct at this stage.

22/9/2013

11

The Switching Ontology

*To represent this environment, need an ontology
Conducting(x) Circuit Breaker x is conducting
Breaking(x) CB x is breaking
LightsOn(y) Load y is on

» The closed world assumption is implicitly valid.

Representing Actions

* Actions are represented using a technique that was
developed in the STRIPS planner

* Each action has:
- a name
which may have arguments
- a pre-condition list
list of facts which must be true for action to be executed
- a delete list
list of facts that are no longer true after action is performed
- an add list
list of facts made true by executing the action

Each of these may contain variables

Actions in the problem

¢ Using STRIPS notation
» Closing Breaker x description is:

- Name: Close (X)

- Pre: Breaking(x)

- Add: Conducting (x)
- Del: Breaking (x)

So lets try this!

22/9/2013

12

22/9/2013

Outline of the Lecture

* Repeating where we are right now
- Intelligent Agents of various types
- Some words om JACK development

Back li
» Searching for solutions (Al book - Ch 3) ackup s des

* Informed Searches (Excerpt)

¢ Planning

The Blocks World The Blocks World

J * Here is a representation of the blocks world described
above:
Clear(4)
On(A, B)
B C OnTable(B)
OnTable(C)

» Use the closed world assumption: anything not stated
is assumed to be false

» We’ll illustrate the techniques with reference to the blocks world
Contains a robot arm, 3 blocks (A, B, and C) of equal size, and a
table-top

=]

S

13

The Blocks World

* A goal is represented as a set of formulae
e Here is a goal:
OnTable(4) n OnTable(B) A OnTable(C)

The Blocks World

* Actions are represented using a technique that was
developed in the STRIPS planner
e Each action has:
- a name
which may have arguments
- a pre-condition list
list of facts which must be true for action to be executed
- a delete list
list of facts that are no longer true after action is performed
- an add list
list of facts made true by executing the action

Each of these may contain variables

The Blocks World Operators
—

| 4
A

B

eExample 1:
The stack action occurs when the robot arm places

the object x it is holding is placed on top of object .

Stack(x, y)
pre Clear(y) n Holding(x)
del Clear(y) n Holding(x)
add ArmEmpty A On(x, y)

The Blocks World Operators
Ekample 2:
The unstack action occurs when the robot arm picks
an object x up from on top of another object .
UnStack(x, y)
pre On(x, y) A Clear(x) A ArmEmpty
del On(x, y) A ArmEmpty
add Holding(x) n Clear(y)
Stack and UnStack are inverses of one-another.

| 4
A

22/9/2013

14

The Blocks World Operators

eExample 3:

The pickup action occurs when the arm picks
up an object x from the table.

Pickup(x)
pre Clear(x) A OnTable(x) n ArmEmpty
del OnTable(x) A ArmEmpty
add Holding(x)

*Example 4:

The putdown action occurs when the arm
places the object x onto the table.

Putdown(x)
pre Holding(x)
del Holding(x)

add Clear(x) A OnTable(x) N ArmEmpty

22/9/2013

15

