Probability Based Learning

Lecture 7, DD2431 Machine Learning

J. Sullivan, A. Maki

September 2013

Advantages of Probability Based Methods

- Work with sparse training data. More powerful than deterministic methods decision trees when training data is sparse.
- **Results are interpretable.** More transparent and mathematically rigorous than methods such as *ANN*, *Evolutionary methods*.
- Tool for interpreting other methods. Framework for formalizing other methods *concept learning, least squares.*

- Probability Theory Basics
 - $\checkmark~$ Bayes' rule
 - $\checkmark~$ MAP and ML estimation
 - $\checkmark~$ Minimum Description Length principle
- Naïve Bayes Classifier
- EM Algorithm

Probability Theory Basics

- A random variable x denotes a quantity that is uncertain
 - $\checkmark~$ the result of flipping a coin,
 - $\checkmark~$ the result of measuring the temperature
- The probability distribution P(x) of a random variable (r.v.) captures the fact that
 - $\checkmark~$ the r.v. will have different values when observed ${\bf and}$
 - $\checkmark\,$ Some values occur more than others.

Random Variables

- A discrete random variable takes values from a predefined set.
- For a **Boolean discrete random variable** this predefined set has two members {0,1}, {yes, no} etc.
- A continuous random variable takes values that are real numbers.

Figures taken from Computer Vision: models, learning and inference by Simon Prince.

Joint Probabilities

- Consider two random variables x and y.
- Observe multiple paired instances of x and y. Some paired outcomes will occur more frequently.
- This information is encoded in the joint probability distribution P(x, y).
- $P(\mathbf{x})$ denotes the joint probability of $\mathbf{x} = (x_1, \dots, x_K)$.

Figure from Computer Vision: models, learning and inference by Simon Prince.

Joint Probabilities (cont.)

Figure from Computer Vision: models, learning and inference by Simon Prince.

The probability distribution of any single variable can be recovered from a joint distribution by summing for the discrete case

$$P(x) = \sum_{y} P(x, y)$$

and integrating for the continuous case

$$P(x) = \int_{\mathcal{Y}} P(x, y) \, dy$$

Marginalization (cont.)

Figure from Computer Vision: models, learning and inference by Simon Prince.

Conditional Probability

- The conditional probability of x given that y takes value y^* indicates the different values of r.v. x which we'll observe given that y is fixed to value y^* .
- The conditional probability can be recovered from the joint distribution P(x, y):

$$P(x \mid y = y^*) = \frac{P(x, y = y^*)}{P(y = y^*)} = \frac{P(x, y = y^*)}{\int_x P(x, y = y^*) \, dx}$$

• Extract an appropriate slice, and then normalize it.

Figure from Computer Vision: models, learning and inference by Simon Prince.

Bayes' Rule

$$P(y \,|\, x) = \frac{P(x \,|\, y) P(y)}{P(x)} = \frac{P(x \,|\, y) P(y)}{\sum_y P(x \,|\, y) P(y)}$$

Each term in Bayes' rule has a name:

- $P(y | x) \leftarrow Posterior$ (what we know about y given x.)
- $P(y) \leftarrow Prior$ (what we know about y before we consider x.)
- P(x | y) ← Likelihood (propensity for observing a certain value of x given a certain value of y)
- $P(x) \leftarrow Evidence$ (a constant to ensure that the l.h.s. is a valid distribution)

In many of our applications y is a discrete variable and \mathbf{x} is a multi-dimensional data vector extracted from the world.

$$P(y \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid y)P(y)}{P(\mathbf{x})}$$

Then

- P(x | y) ← Likelihood represents the probability of observing data x given the hypothesis y.
- $P(y) \leftarrow Prior \text{ of } y$ represents the background knowledge of hypothesis y being correct.
- P(y | x) ← Posterior represents the probability that hypothesis y is true after data x has been observed.

- Bayesian Inference: The process of calculating the posterior probability distribution $P(y | \mathbf{x})$ for certain data \mathbf{x} .
- Bayesian Learning: The process of learning the likelihood distribution $P(\mathbf{x} | y)$ and prior probability distribution P(y) from a set of training points

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$$

Example: Which Gender?

Task: Determine the gender of a person given their measured hair length.

Notation:

- Let $g \in \{$ 'f', 'm' $\}$ be a r.v. denoting the gender of a person.
- Let x be the measured length of the hair.

Information given:

• The hair length observation was made at a boy's school thus

$$P(g = \text{'m'}) = .95, \quad P(g = \text{'f'}) = .05$$

• Knowledge of the likelihood distributions $P(x | g = {}^{\circ}f)$ and $P(x | g = {}^{\circ}m')$

Task: Determine the gender of a person given their measured hair length.

Notation:

- Let $g \in \{$ 'f', 'm' $\}$ be a r.v. denoting the gender of a person.
- Let x be the measured length of the hair.

Information given:

• The hair length observation was made at a boy's school thus

$$P(g = \text{'m'}) = .95, \quad P(g = \text{'f'}) = .05$$

• Knowledge of the likelihood distributions $P(x | g = {}^{\circ}f)$ and $P(x | g = {}^{\circ}m')$

Example: Which Gender?

Task: Determine the gender of a person given their measured hair length.

Notation:

- Let $g \in \{$ 'f', 'm' $\}$ be a r.v. denoting the gender of a person.
- Let x be the measured length of the hair.

Information given:

• The hair length observation was made at a boy's school thus

$$P(g = \text{'m'}) = .95, \quad P(g = \text{'f'}) = .05$$

• Knowledge of the likelihood distributions $P(x | g = {\rm `f'})$ and $P(x | g = {\rm `m'})$

Task: Determine the gender of a person given their measured hair length \implies calculate $P(g \mid x)$.

Solution:

Apply Bayes' Rule to get

$$\begin{split} P(g = \text{'m'} | x) &= \frac{P(x | g = \text{'m'})P(g = \text{'m'})}{P(x)} \\ &= \frac{P(x | g = \text{'m'})P(g = \text{'m'})}{P(x | g = \text{'f'})P(g = \text{'m'}) + P(x | g = \text{'m'})P(g = \text{'m'})} \end{split}$$

Can calculate $P(g = \mathbf{\dot{f}} | x) = 1 - P(g = \mathbf{\dot{m}} | x)$

Selecting the most probably hypothesis

• Maximum A Posteriori (MAP) Estimate:

Hypothesis with highest probability given observed data

$$y_{\text{MAP}} = \arg \max_{y \in \mathcal{Y}} P(y \mid \mathbf{x})$$
$$= \arg \max_{y \in \mathcal{Y}} \frac{P(\mathbf{x} \mid y) P(y)}{P(\mathbf{x})}$$
$$= \arg \max_{y \in \mathcal{Y}} P(\mathbf{x} \mid y) P(y)$$

• Maximum Likelihood Estimate (*MLE*): Hypothesis with highest likelihood of generating observed data

$$y_{\text{MLE}} = \arg \max_{y \in \mathcal{Y}} P(\mathbf{x} \mid y)$$

Useful if we do not know prior distribution or if it is uniform.

Selecting the most probably hypothesis

• Maximum A Posteriori (MAP) Estimate:

Hypothesis with highest probability given observed data

$$y_{\text{MAP}} = \arg \max_{y \in \mathcal{Y}} P(y \mid \mathbf{x})$$
$$= \arg \max_{y \in \mathcal{Y}} \frac{P(\mathbf{x} \mid y) P(y)}{P(\mathbf{x})}$$
$$= \arg \max_{y \in \mathcal{Y}} P(\mathbf{x} \mid y) P(y)$$

• Maximum Likelihood Estimate (*MLE*):

Hypothesis with highest likelihood of generating observed data.

$$y_{\text{MLE}} = \arg \max_{y \in \mathcal{Y}} P(\mathbf{x} \mid y)$$

Useful if we do not know prior distribution or if it is uniform.

Scenario:

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, 0.8% of the entire population have cancer.

Scenario in probabilities:

- Priors:
- $P(\text{disease}) = .008 \qquad P(\text{not disease}) = .992$

• Likelihoods:

 $\begin{aligned} P(+ | \text{disease}) &= .98 \\ P(- | \text{disease}) &= .03 \\ P(- | \text{disease}) &= .02 \end{aligned} \qquad P(+ | \text{not disease}) &= .97 \end{aligned}$

Example: Cancer or Not?

Find MAP estimate:

When test returned a positive result,

 $y_{\text{MAP}} = \arg \max_{\substack{y \in \{\text{disease, not disease}\}}} P(y \mid +)$ $= \arg \max_{\substack{y \in \{\text{disease, not disease}\}}} P(+ \mid y) P(y)$

Substituting in the correct values get

 $P(+ | \text{disease}) P(\text{disease}) = .98 \times .008 = .0078$ $P(+ | \text{not disease}) P(\text{not disease}) = .03 \times .992 = .0298$

Therefore $y_{\text{MAP}} =$ "not disease".

The Posterior probabilities:

$$P(\text{disease} | +) = \frac{.0078}{(.0078 + .0298)} = .21$$
$$P(\text{not disease} | +) = \frac{.0298}{(.0078 + .0298)} = .79$$

Example: Cancer or Not?

Find MAP estimate:

When test returned a positive result,

$$y_{\text{MAP}} = \arg \max_{\substack{y \in \{\text{disease, not disease}\}}} P(y \mid +)$$
$$= \arg \max_{\substack{y \in \{\text{disease, not disease}\}}} P(+ \mid y) P(y)$$

Substituting in the correct values get

 $P(+ | \text{disease}) P(\text{disease}) = .98 \times .008 = .0078$ $P(+ | \text{not disease}) P(\text{not disease}) = .03 \times .992 = .0298$

Therefore $y_{MAP} =$ "not disease".

The Posterior probabilities:

$$P(\text{disease} | +) = \frac{.0078}{(.0078 + .0298)} = .21$$
$$P(\text{not disease} | +) = \frac{.0298}{(.0078 + .0298)} = .79$$

Example: Cancer or Not?

Find MAP estimate:

When test returned a positive result,

$$y_{\text{MAP}} = \arg \max_{\substack{y \in \{\text{disease, not disease}\}}} P(y \mid +)$$
$$= \arg \max_{\substack{y \in \{\text{disease, not disease}\}}} P(+ \mid y) P(y)$$

Substituting in the correct values get

 $P(+ | \text{disease}) P(\text{disease}) = .98 \times .008 = .0078$ $P(+ | \text{not disease}) P(\text{not disease}) = .03 \times .992 = .0298$ Therefore $y_{\text{MAP}} =$ "not disease".

The Posterior probabilities:

$$P(\text{disease} | +) = \frac{.0078}{(.0078 + .0298)} = .21$$
$$P(\text{not disease} | +) = \frac{.0298}{(.0078 + .0298)} = .79$$

Relation to Occams's Razor

Occam's Razor:

Choose the simplest explanation for the observed data

- Information theoretic perspective Occam's razor corresponds to choosing the explanation requiring the fewest bits to represent.
- The optimal representation requires $-\log_2 p(y | \mathbf{x})$ bits to store. (Remember: the Shannon information content)
- Minimum description length principle: Choose hypothesis

$$y_{\text{MDL}} = \arg\min_{y \in \mathcal{Y}} -\log_2 P(y \mid \mathbf{x})$$
$$= \arg\min_{y \in \mathcal{Y}} -\log_2 P(\mathbf{x} \mid y) - \log_2 P(y)$$

• The MDL estimate is equal to the MAP estimate $y_{\text{MAP}} = \arg \max \log_2 P(\mathbf{x} \mid y) + \log_2 P(\mathbf{x} \mid y)$

Relation to Occams's Razor

Occam's Razor:

Choose the simplest explanation for the observed data

- Information theoretic perspective Occam's razor corresponds to choosing the explanation requiring the fewest bits to represent.
- The optimal representation requires $-\log_2 p(y | \mathbf{x})$ bits to store. (Remember: the Shannon information content)
- Minimum description length principle: Choose hypothesis

$$y_{\text{MDL}} = \arg\min_{y \in \mathcal{Y}} -\log_2 P(y \mid \mathbf{x})$$
$$= \arg\min_{y \in \mathcal{Y}} -\log_2 P(\mathbf{x} \mid y) - \log_2 P(y)$$

• The MDL estimate is equal to the MAP estimate

$$y_{\text{MAP}} = \arg \max_{y \in \mathcal{Y}} \ \log_2 P(\mathbf{x} \,|\, y) + \log_2 P(y)$$

- Sensors give *measurements* which can be converted to *features*.
- Ideally a feature value is identical for all *samples* in one *class*.

Samples

Feature space

Feature Space

• Sensors give *measurements* which can be converted to *features*.

Feature space

• However in the real world

Samples

because of

- $\checkmark~$ Measurement noise
- $\checkmark~$ Intra-class variation
- $\checkmark~$ Poor choice of features

End result: a *K*-dimensional space

- in which each dimension is a **feature**
- containing *n* labelled **samples** (objects)

Problem: Large Feature Space

- Size of feature space exponential in number of features.
- More features ⇒ potential for better description of the objects but...

More features \implies more difficult to model $P(\mathbf{x} | y)$.

- Extreme Solution: Naïve Bayes classifier
 - $\checkmark\,$ All features (dimensions) regarded as independent.
 - $\checkmark~$ Model k one-dimensional distributions instead of one k-dimensional distribution.

Problem: Large Feature Space

- Size of feature space exponential in number of features.
- More features ⇒ potential for better description of the objects but...

More features \implies more difficult to model $P(\mathbf{x} | y)$.

- Extreme Solution: Naïve Bayes classifier
 - $\checkmark\,$ All features (dimensions) regarded as independent.
 - $\checkmark~$ Model k one-dimensional distributions instead of one k-dimensional distribution.

- One of the most common learning methods.
- When to use:
 - $\checkmark\,$ Moderate or large training set available.
 - ✓ Features x_i of a data instance **x** are conditionally independent given classification (or at least reasonably independent, still works with a little dependence).
- Successful applications:
 - \checkmark Medical diagnoses (symptoms independent)
 - $\checkmark\,$ Classification of text documents (words independent)

- **x** is a vector (x_1, \ldots, x_K) of attribute or feature values.
- Let $\mathcal{Y} = \{1, 2, \dots, Y\}$ be the set of possible classes.
- The MAP estimate of y is

$$y_{\text{MAP}} = \arg \max_{y \in \mathcal{Y}} P(y \mid x_1, \dots, x_K)$$

=
$$\arg \max_{y \in \mathcal{Y}} \frac{P(x_1, \dots, x_K \mid y) P(y)}{P(x_1, \dots, x_K)}$$

=
$$\arg \max_{y \in \mathcal{Y}} P(x_1, \dots, x_K \mid y) P(y)$$

- Naïve Bayes assumption: $P(x_1, ..., x_K | y) = \prod_{k=1}^K P(x_k | y)$
- This give the *Naïve Bayes classifier*:

$$y_{\text{MAP}} = \arg \max_{y \in \mathcal{Y}} P(y) \prod_{k=1}^{K} P(x_k \mid y)$$

- **x** is a vector (x_1, \ldots, x_K) of attribute or feature values.
- Let $\mathcal{Y} = \{1, 2, \dots, Y\}$ be the set of possible classes.
- The MAP estimate of y is

$$y_{\text{MAP}} = \arg \max_{y \in \mathcal{Y}} P(y \mid x_1, \dots, x_K)$$

=
$$\arg \max_{y \in \mathcal{Y}} \frac{P(x_1, \dots, x_K \mid y) P(y)}{P(x_1, \dots, x_K)}$$

=
$$\arg \max_{y \in \mathcal{Y}} P(x_1, \dots, x_K \mid y) P(y)$$

- Naïve Bayes assumption: $P(x_1, \ldots, x_K | y) = \prod_{k=1}^K P(x_k | y)$
- This give the Naïve Bayes classifier:

$$y_{\text{MAP}} = \arg \max_{y \in \mathcal{Y}} P(y) \prod_{k=1}^{K} P(x_k \mid y)$$

Question: Will I go and play tennis given the forecast?

My measurements:

• forecast \in {sunny, overcast, rainy},

2 temperature \in {hot, mild, cool},

3 humidity \in {high, normal},

windy $\in \{ false, true \}.$

Possible decisions: $y \in \{\text{yes, no}\}$

What I did in the past:

outlook	temp.	humidity	windy	play	outlook	temp.	humidity	windy	play
sunny	hot	high	false	no	sunny	mild	high	false	no
sunny	hot	high	true	no	sunny	cool	normal	false	yes
overcast	hot	high	false	yes	rainy	mild	normal	false	yes
rainy	mild	high	false	yes	sunny	mild	normal	true	yes
rainy	cool	normal	false	yes	overcast	mild	high	true	yes
rainy	cool	normal	true	no	overcast	hot	normal	false	yes
overcast	cool	normal	true	yes	rainy	mild	high	true	no

Counts of when I played tennis (did not play)

Outlook			Temperature			Hur	nidity	Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
2 (3)	4 (0)	3(2)	2(2)	4 (2)	3(1)	3(4)	6 (1)	6 (2)	3(3)

Prior of whether I played tennis or not

	Pl		Play		
Counts:		Prior Probabilities:			
			$\frac{9}{14}$		

Likelihood of attribute when tennis played $P(x_i | y=yes)(P(x_i | y=no))$

Outlook			Temperature			Hun	nidity	Windy	

Counts of when I played tennis (did not play)

Outlook			Temperature			Hur	nidity	Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
2 (3)	4 (0)	3(2)	2(2)	4 (2)	3(1)	3(4)	6 (1)	6 (2)	3(3)

Prior of whether I played tennis or not

	Pl	ay		Play	
Counts:	yes	no	Prior Probabilities:	yes	no
	9	5		$\frac{9}{14}$	$\frac{5}{14}$

Likelihood of attribute when tennis played $P(x_i | y=yes)(P(x_i | y=no))$

Outlook			Temperature			Hun	nidity	Windy	

Counts of when I played tennis (did not play)

Outlook			Temperature			Hur	nidity	Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
2 (3)	4 (0)	3(2)	2(2)	4 (2)	3(1)	3(4)	6 (1)	6 (2)	3(3)

Prior of whether I played tennis or not

	Pla	ay		Play		
Counts:	yes	no	Prior Probabilities:	yes	no	
	9	5		$\frac{9}{14}$	$\frac{5}{14}$	

Likelihood of attribute when tennis played $P(x_i | y=yes)(P(x_i | y=no))$

Outlook			Temperature			Hun	nidity	Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
$\frac{2}{9}(\frac{3}{5})$	$\frac{4}{9}(\frac{0}{5})$	$\frac{3}{9}(\frac{2}{5})$	$\frac{2}{9}(\frac{2}{5})$	$\frac{4}{9}(\frac{2}{5})$	$\frac{3}{9}(\frac{1}{5})$	$\frac{3}{9}(\frac{4}{5})$	$\frac{6}{9}(\frac{1}{5})$	$\frac{6}{9}(\frac{2}{5})$	$\frac{3}{9}(\frac{3}{5})$

Inference: Use the learnt model to classify a new instance. **New instance:**

$$\mathbf{x} = (\text{sunny, cool, high, true})$$

Apply Naïve Bayes Classifier:

$$y_{\text{MAP}} = \arg \max_{y \in \{\text{yes, no}\}} P(y) \prod_{i=1}^{4} P(x_i | y)$$

 $P(\text{yes}) P(\text{sunny} | \text{yes}) P(\text{cool} | \text{yes}) P(\text{high} | \text{yes}) P(\text{true} | \text{yes}) = \frac{9}{14} \times \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} = .005$ $P(\text{no}) P(\text{sunny} | \text{no}) P(\text{cool} | \text{no}) P(\text{high} | \text{no}) P(\text{true} | \text{no}) = \frac{5}{14} \times \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} = .021$

 $\implies y_{MAP} = no$

Naïve Bayes: Independence Violation

• Conditional independence assumption:

$$P(x_1, x_2, \dots, x_K | y) = \prod_{k=1}^K P(x_k | y)$$

often violated - but it works surprisingly well anyway!

- Note: Do not need the posterior probabilities $P(y | \mathbf{x})$ to be correct. Only need y_{MAP} to be correct.
- Since dependencies ignored, naïve Bayes posteriors often unrealistically close to 0 or 1. Different attributes say the same thing to a higher degree than we expect as they are correlated in reality.

Naïve Bayes: Independence Violation

• Conditional independence assumption:

$$P(x_1, x_2, \dots, x_K | y) = \prod_{k=1}^K P(x_k | y)$$

often violated - but it works surprisingly well anyway!

- Note: Do not need the posterior probabilities $P(y | \mathbf{x})$ to be correct. Only need y_{MAP} to be correct.
- Since dependencies ignored, naïve Bayes posteriors often unrealistically close to 0 or 1. Different attributes say the same thing to a higher degree than we expect as they are correlated in reality.

Naïve Bayes: Independence Violation

• Conditional independence assumption:

$$P(x_1, x_2, \dots, x_K | y) = \prod_{k=1}^K P(x_k | y)$$

often violated - but it works surprisingly well anyway!

- Note: Do not need the posterior probabilities $P(y | \mathbf{x})$ to be correct. Only need y_{MAP} to be correct.
- Since dependencies ignored, naïve Bayes posteriors often unrealistically close to 0 or 1. Different attributes say the same thing to a higher degree than we expect as they are correlated in reality.

Naïve Bayes: Estimating Probabilities

• **Problem:** What if none of the training instances with target value y have attribute x_i ? Then

$$P(x_i \mid y) = 0 \quad \Longrightarrow \quad P(y) \prod_{i=1}^{K} P(x_i \mid y) = 0$$

• Solution: Add as prior knowledge that $P(x_i | y)$ must be larger than 0:

$$P(x_i \mid y) = \frac{n_y + mp}{n+m}$$

where

n = number of training samples with label y $n_y =$ number of training samples with label y and value x_i p = prior estimate of $P(x_i | y)$ m = weight given to prior estimate (in relation to data)

Naïve Bayes: Estimating Probabilities

• **Problem:** What if none of the training instances with target value y have attribute x_i ? Then

$$P(x_i \mid y) = 0 \quad \Longrightarrow \quad P(y) \prod_{i=1}^{K} P(x_i \mid y) = 0$$

• Solution: Add as prior knowledge that $P(x_i | y)$ must be larger than 0:

$$P(x_i \mid y) = \frac{n_y + mp}{n + m}$$

where

n = number of training samples with label y $n_y =$ number of training samples with label y and value x_i p = prior estimate of $P(x_i | y)$ m = weight given to prior estimate (in relation to data)

• Aim: Build a classifier to identify spam e-mails.

• How:

Training

- ✓ Create dictionary of words and tokens $W = \{w_1, ..., w_L\}$. These words should be those which are specific to spam or non-spam e-mails.
- ✓ E-mail is a concatenation, in order, of its words and tokens: $\mathbf{e} = (e_1, e_2, \dots, e_K)$ with $e_i \in \mathcal{W}$.
- ✓ Must model and learn $P(e_1, e_2, ..., e_K | _{spam})$ and $P(e_1, e_2, ..., e_K | _{not spam})$

- Aim: Build a classifier to identify spam e-mails.
- How: Training
 - ✓ Create dictionary of words and tokens $W = \{w_1, ..., w_L\}$. These words should be those which are specific to spam or non-spam e-mails.
 - ✓ E-mail is a concatenation, in order, of its words and tokens: $\mathbf{e} = (e_1, e_2, \dots, e_K)$ with $e_i \in \mathcal{W}$.
 - ✓ Must model and learn $P(e_1, e_2, ..., e_K | _{spam})$ and $P(e_1, e_2, ..., e_K | _{not spam})$

- Aim: Build a classifier to identify spam e-mails.
- How:
 - Training
 - ✓ Create dictionary of words and tokens $W = \{w_1, ..., w_L\}$. These words should be those which are specific to spam or non-spam e-mails.
 - ✓ E-mail is a concatenation, in order, of its words and tokens: $\mathbf{e} = (e_1, e_2, \dots, e_K)$ with $e_i \in \mathcal{W}$.
 - ✓ Must model and learn $P(e_1, e_2, ..., e_K | _{spam})$ and $P(e_1, e_2, ..., e_K | _{not spam})$

Email: E

Vector: e

('dear', 'customer', ',', 'a', 'fully', 'licensed',, '/')

• Aim: Build a classifier to identify spam e-mails.

• How:

Training

- ✓ Create dictionary of words and tokens $W = \{w_1, ..., w_L\}$. These words should be those which are specific to spam or non-spam e-mails.
- ✓ E-mail is a concatenation, in order, of its words and tokens: $\mathbf{e} = (e_1, e_2, \dots, e_K)$ with $e_i \in \mathcal{W}$.
- ✓ Must model and learn $P(e_1, e_2, ..., e_K | _{spam})$ and $P(e_1, e_2, ..., e_K | _{not spam})$ Inference
 - ✓ Given an e-mail, E, compute $\mathbf{e} = (e_1, \ldots, e_K)$.
 - $\checkmark~$ Use Bayes' rule to compute

 $P(\text{spam} | e_1, \dots, e_K) \propto P(e_1, \dots, e_K | \text{spam}) P(\text{spam})$

• How is the joint probability distribution modelled?

$$P(e_1,\ldots,e_K \,|_{\mathrm{spam}})$$

Remember K will be very large and vary from e-mail to e-mail.

• Make conditional independence assumption:

$$P(e_1, \dots, e_K \,|_{\operatorname{spam}}) = \prod_{k=1}^K P(e_k \,|_{\operatorname{spam}})$$

Similarly

$$P(e_1,\ldots,e_K \mid ext{not spam}) = \prod_{k=1}^K P(e_k \mid ext{not spam})$$

• Have assumed the position of word is not important.

• How is the joint probability distribution modelled?

$$P(e_1,\ldots,e_K \,|_{\mathrm{spam}})$$

Remember K will be very large and vary from e-mail to e-mail.

• Make conditional independence assumption:

$$P(e_1, \dots, e_K \,|_{\operatorname{spam}}) = \prod_{k=1}^K P(e_k \,|_{\operatorname{spam}})$$

Similarly

$$P(e_1, \dots, e_K \mid \text{not spam}) = \prod_{k=1}^K P(e_k \mid \text{not spam})$$

• Have assumed the position of word is not important.

• How is the joint probability distribution modelled?

$$P(e_1,\ldots,e_K \,|_{\mathrm{spam}})$$

Remember K will be very large and vary from e-mail to e-mail..

• Make conditional independence assumption:

$$P(e_1, \dots, e_K \,|_{\operatorname{spam}}) = \prod_{k=1}^K P(e_k \,|_{\operatorname{spam}})$$

Similarly

$$P(e_1,\ldots,e_K \mid ext{not spam}) = \prod_{k=1}^K P(e_k \mid ext{not spam})$$

• Have assumed the position of word is not important.

Learning:

Assume one has n training e-mails and their labels - spam /non-spam

$$\mathcal{S} = \{(\mathbf{e}_1, y_1), \dots, (\mathbf{e}_n, y_n)\}$$

Note: $\mathbf{e}_i = (e_{i1}, \dots, e_{iK_i}).$

Learning:

Assume one has n training e-mails and their labels - spam /non-spam

$$\mathcal{S} = \{(\mathbf{e}_1, y_1), \dots, (\mathbf{e}_n, y_n)\}$$

Note:
$$\mathbf{e}_i = (e_{i1}, \dots, e_{iK_i}).$$

Create dictionary

Make a union of all the distinctive words and tokens in $\mathbf{e}_1, \ldots, \mathbf{e}_n$ to create $\mathcal{W} = \{w_1, \ldots, w_L\}$. (Note: words such as and, the, ... omitted)

Learning:

Assume one has n training e-mails and their labels - spam /non-spam

$$\mathcal{S} = \{(\mathbf{e}_1, y_1), \dots, (\mathbf{e}_n, y_n)\}$$

Note: $\mathbf{e}_i = (e_{i1}, \dots, e_{iK_i}).$

Learn probabilities

For $y \in \{\text{spam}, \text{not spam}\}$

• Set $P(y) = \frac{\sum_{i=1}^{n} \operatorname{Ind}(y_i=y)}{n} \leftarrow \text{proportion of e-mails from class } y.$

2 $n_y = \sum_{i=1}^n K_i imes \mathrm{Ind}\,(y_i = y) \leftarrow \mathrm{total} \ \# \ \mathrm{of} \ \mathrm{words} \ \mathrm{in} \ \mathrm{the} \ \mathrm{class} \ y \ \mathrm{e} ext{-mails}.$

3 For each word w_l compute $n_{yl} = \sum_{i=1}^{n} \operatorname{Ind} (y_i = y) \times \left(\sum_{k=1}^{K_i} \operatorname{Ind} (e_{ik} = w_l) \right) \leftarrow \# \text{ of}$

occurrences of word w_l in the class y e-mails.

3
$$P(w_l \mid y) = rac{n_{yl}+1}{n_y+|\mathcal{W}|} \leftarrow$$
 assume prior value of $P(w_l \mid y)$ is $1/|\mathcal{W}|$.

Inference: Classify a new e-mail $\mathbf{e}^* = (e_1^*, \dots, e_{K^*}^*)$

$$y^* = \arg \max_{y \in \{-1,1\}} P(y) \prod_{k=1}^{K^*} P(e_k^*|y)$$

- **Bayesian theory**: Combines prior knowledge and observed data to find the most probable hypothesis.
- Naïve Bayes Classifier: All variables considered independent.

Expectation-Maximization (EM) Algorithm

Mixture of Gaussians

This distribution is a weight sum of K Gaussian distributions

This model can describe **complex multi-modal** probability distributions by combining simpler distributions.

$$P(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \sigma_k^2)$$

- Learning the parameters of this model from training data x_1, \ldots, x_n is not trivial using the usual straightforward maximum likelihood approach.
- Instead learn parameters using the **Expectation-Maximization** (EM) algorithm.

Mixture of Gaussians as a marginalization

We can interpret the Mixture of Gaussians model with the introduction of a discrete hidden/latent variable h and P(x, h):

Figures taken from Computer Vision: models, learning and inference by Simon Prince.

Assume: We know the pdf of x has this form:

$$P(x) = \pi_1 \mathcal{N}(x; \mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(x; \mu_2, \sigma_2^2)$$

where $\pi_1 + \pi_2 = 1$ and $\pi_k > 0$ for components k = 1, 2.

Unknown: Values of the parameters (Many!)

$$\Theta = (\pi_1, \mu_1, \sigma_1, \mu_2, \sigma_2).$$

Have: Observed *n* samples x_1, \ldots, x_n drawn from p(x). **Want to:** Estimate Θ from x_1, \ldots, x_n .

How would it be possible to get them all???

For each sample x_i introduce a *hidden variable* h_i

$$h_i = \begin{cases} 1 & \text{if sample } x_i \text{ was drawn from } \mathcal{N}(x;\mu_1,\sigma_1^2) \\ 2 & \text{if sample } x_i \text{ was drawn from } \mathcal{N}(x;\mu_2,\sigma_2^2) \end{cases}$$

and come up with initial values

$$\Theta^{(0)} = (\pi_1^{(0)}, \mu_1^{(0)}, \sigma_1^{(0)}, \mu_2^{(0)}, \sigma_2^{(0)})$$

for each of the parameters.

EM is an *iterative algorithm* which updates $\Theta^{(t)}$ using the following two steps...

EM for two Gaussians: E-step

The responsibility of k-th Gaussian for each sample x (indicated by the size of the projected data point)

Look at each sample x along hidden variable h in the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.

E-step: Compute the "posterior probability" that x_i was generated by component k given the current estimate of the parameters $\Theta^{(t)}$. (responsibilities)

for i = 1, ... nfor k = 1, 2 $\gamma_{ik}^{(t)} = P(h_i = k | x_i, \Theta^{(t)})$ $= \frac{\pi_k^{(t)} \mathcal{N}(x_i; \mu_k^{(t)}, \sigma_k^{(t)})}{\pi_1^{(t)} \mathcal{N}(x_i; \mu_1^{(t)}, \sigma_1^{(t)}) + \pi_2^{(t)} \mathcal{N}(x_i; \mu_2^{(t)}, \sigma_2^{(t)})}$

Note: $\gamma_{i1}^{(t)} + \gamma_{i2}^{(t)} = 1$ and $\pi_1 + \pi_2 = 1$

EM for two Gaussians: M-step

Fitting the Gaussian model for each of k-th constinuent. Sample x_i contributes according to the responsibility γ_{ik} .

(dashed and solid lines for fit before and after update) Look along samples x for each h in the M-step

Figure from Computer Vision: models, learning and inference by Simon Prince.

EM for two Gaussians: M-step (cont.)

M-step: Compute the Maximum Likelihood of the parameters of the mixture model given out data's membership distribution, the $\gamma_i^{(t)}$'s:

for k = 1, 2

$$\mu_k^{(t+1)} = \frac{\sum_{i=1}^n \gamma_{ik}^{(t)} x_i}{\sum_{i=1}^n \gamma_{ik}^{(t)}},$$

$$\sigma_k^{(t+1)} = \sqrt{\frac{\sum_{i=1}^n \gamma_{ik}^{(t)} (x_i - \mu_k^{(t+1)})^2}{\sum_{i=1}^n \gamma_{ik}^{(t)}}},$$

$$\pi_k^{(t+1)} = \frac{\sum_{i=1}^n \gamma_{ik}^{(t)}}{n}.$$

EM in practice

- **Bayesian theory**: Combines prior knowledge and observed data to find the most probable hypothesis.
- Naïve Bayes Classifier: All variables considered independent.
- **EM algorithm**: Learn probability destribution (model parameters) in presence of hidden variables.

If you are interested in learning more take a look at: C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer Verlag 2006.