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Advantages of Probability Based Methods

e Work with sparse training data. More powerful
than deterministic methods - decision trees - when
training data is sparse.

e Results are interpretable. More transparent and
mathematically rigorous than methods such as ANN,
Evolutionary methods.

e Tool for interpreting other methods. Framework
for formalizing other methods - concept learning, least
squares.



@ Probability Theory Basics
v" Bayes’ rule
v MAP and ML estimation
v" Minimum Description Length principle

e Naive Bayes Classifier

e EM Algorithm



Probability Theory Basics



Random Variables

e A random variable x denotes a quantity that is
uncertain

v’ the result of flipping a coin,

v’ the result of measuring the temperature

e The probability distribution P(z) of a randam variable
(r.v.) captures the fact that

v' the r.v. will have different values when observed and

V' Some values occur more than others.



Random Variables

o A discrete random variable takes values from a
predefined set.

o For a Boolean discrete random variable this
predefined set has two members - {0, 1}, {yes, no} etc.

o A continuous random variable takes values that
are real numbers.
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Figures taken from Computer Vision: models, learning and inference by Simon Prince.



Joint Probabilities

e Consider two random variables x and y.

@ Observe multiple paired instances of x and y. Some
paired outcomes will occur more frequently.

e This information is encoded in the joint probability
distribution P(z,y).

@ P(x) denotes the joint probability of x = (z1,...,2k).

Pr(z,y)
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Figure from Computer Vision: models, learning and inference by Simon Prince.



Joint Probabilities (cont.)
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Marginalization

The probability distribution of any single variable can be
recovered from a joint distribution by summing for the
discrete case

P(z) =) P(z,y)
y
and integrating for the continuous case

P(r) = / Pla.y) dy

Y



Marginalization (cont.)
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Figure from Computer Vision: models, learning and inference by Simon Prince.
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Conditional Probability

@ The conditional probability of x given that y takes
value y* indicates the different values of r.v.  which

we’ll observe given that y is fixed to value y*.
@ The conditional probability can be recovered from the
joint distribution P(z,y):
o Plry=y") Pz, y =y*)
P = = =
wly=v) Ply=y*) [, Plx,y=y")ds

e Extract an appropriate slice, and then normalize it.

Pr(z,y)

Pr(zly =)

Pr(zly =y2)

Figure from Computer Vision: models, learning and inference by Simon Prince.



Bayes’ Rule

Bayes’ Rule

_ P(x|y)P(y)  P(x|y)P(y)
PUlD) = =30 =%, Paly)PW)

Each term in Bayes’ rule has a name:
e P(y|x) < Posterior (what we know about y given z.)
e P(y) + Prior (what we know about y before we consider z.)

e P(x|y) < Likelihood (propensity for observing a certain

value of = given a certain value of y)

° P(I) < Euvidence (a constant to ensure that the Lh.s. is a
valid distribution)



Bayes’ Rule

In many of our applications y is a discrete variable and x is
a multi-dimensional data vector extracted from the world.

_ Pix|y)Py)
Then
e P(x|y) < Likelihood represents the probability of
observing data x given the hypothesis y.

e P(y) < Prior of y represents the background knowledge of
hypothesis y being correct.

@ P(y|x) < Posterior represents the probability that
hypothesis y is true after data x has been observed.



Learning and Inference

e Bayesian Inference: The process of calculating the
posterior probability distribution P(y|x) for certain
data x.

e Bayesian Learning: The process of learning the
likelihood distribution P(x|y) and prior probability
distribution P(y) from a set of training points

{(le yl)? (X27 y2)a SR (Xm yn)}



Example: Which Gender?

Task: Determine the gender of a person given their
measured hair length.



Example: Which Gender?

Task: Determine the gender of a person given their
measured hair length.

Notation:
@ Let g € {’f’, 'm’} be a r.v. denoting the gender of a person.

@ Let x be the measured length of the hair.



Example: Which Gender?

Task: Determine the gender of a person given their

measured hair length.

Notation:
@ Let g € {'f’, 'm’} be a r.v. denoting the gender of a person.

@ Let x be the measured length of the hair.

Information given:
@ The hair length observation was made at a boy’s school thus

Plg="wm’)=.95, P(g="f")=.05
@ Knowledge of the likelihood distributions P(x | g = ’f’) and

P(z|g="m’)
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Example: Which Gender?

Task: Determine the gender of a person given their
measured hair length = calculate P(g|x).

Solution:

Apply Bayes’ Rule to get




Selecting the most probably hypothesis

e Maximum A Posteriori (MAP) Estimate:
Hypothesis with highest probability given observed data

YMAP = arg r;nax P(y|x)

[Sh%
_ P(x|y) P(y)
TUELE T P

= P P
arg max (x|y) P(y)



Selecting the most probably hypothesis

e Maximum A Posteriori (MAP) Estimate:
Hypothesis with highest probability given observed data

=argmax P(y|x
YMAP gmax (y]x)

e P10 )
A yEY P(x)

- P P
arg max (x|y) P(y)

e Maximum Likelihood Estimate (MLFE):
Hypothesis with highest likelihood of generating observed data.

= argmax P(x
YMLE g e (x]y)

Useful if we do not know prior distribution or if it is uniform.



Example: Cancer or Not?

Scenario:

A patient takes a lab test and the result comes back positive. The
test returns a correct positive result in only 98% of the cases in which
the disease is actually present, and a correct negative result in only
97% of the cases in which the disease is not present. Furthermore,
0.8% of the entire population have cancer.

Scenario in probabilities:

e Priors:
P(disease) = .008 P(not disease) = .992
e Likelihoods:

P(+ | disease) = .98 P(+ | not disease) = .03
P(— | disease) = .02 P(— | not disease) = .97



Example: Cancer or Not?

Find MAP estimate:
When test returned a positive result,

YMAP = arg max P(y|+)

y€{disease, not disease}

= arg max P(+ | y) P(y)

ye {disease, not disease}



Example: Cancer or Not?

Find MAP estimate:
When test returned a positive result,

YMAP = arg max  P(y|+)
ye{disease, not dlsease}
= arg max P(+]y) P(y)

ye {disease, not disease}

Substituting in the correct values get
P(+ | disease) P(disease) = .98 x .008 = .0078
P(+ | not disease) P(not disease) = .03 x .992 = .0298

Therefore yyap = "not disease".



Example: Cancer or Not?

Find MAP estimate:
When test returned a positive result,

YMAP = arg max  P(y|+)
ye{disease, not dlsease}
= arg max P(+]y) P(y)

yE{disease, not disease}
Substituting in the correct values get

P(+ | disease) P(disease) = .98 x .008 = .0078
P(+ | not disease) P(not disease) = .03 x .992 = .0298

Therefore yyap = "not disease".

The Posterior probabilities:

. .0078
P(disease| +) = 55751 oa0s) ~ 2
.0298
P(not disease | +) = (O()’78——|—0298) = 79



Relation to Occams’s Razor

Occam’s Razor:

Choose the simplest explanation for the observed data

@ Information theoretic perspective Occam’s razor corresponds to
choosing the explanation requiring the fewest bits to represent.

@ The optimal representation requires — log, p(y | x) bits to store.
(Remember: the Shannon information content)



Relation to Occams’s Razor

Occam’s Razor:

Choose the simplest explanation for the observed data

@ Information theoretic perspective Occam’s razor corresponds to
choosing the explanation requiring the fewest bits to represent.

@ The optimal representation requires — log, p(y | x) bits to store.
(Remember: the Shannon information content)

@ Minimum description length principle: Choose hypothesis
ympr, = argmin — log, P(y|x)
yey
= argmin — log, P(x|y) — log, P(y)
yeY
@ The MDL estimate is equal to the MAP estimate
ymap = argmax log, P(x|y) +log, P(y)



Naive Bayes Classifier



Feature Space

@ Sensors give measurements which can be converted to
features.

o Ideally a feature value is identical for all samples in
one class.

CXENy

Samples Feature space




Feature Space

@ Sensors give measurements which can be converted to
features.

@ However in the real world

XAy

-'b ™
..-.-
Mne

Samples Feature space
because of

v" Measurement noise
V' Intra-class variation

v Poor choice of features



Feature Space

End result: a K —dimensional space

@ in which each dimension is a feature

@ containing n labelled samples (objects)

“elephants™ |

Feature |



Problem: Large Feature Space

e Size of feature space exponential in number of features.

o More features = potential for better description of
the objects but...

More features = more difficult to model P(x|y).



Problem: Large Feature Space

e Size of feature space exponential in number of features.

o More features = potential for better description of
the objects but...

More features = more difficult to model P(x|y).

e Extreme Solution: Naive Bayes classifier
v All features (dimensions) regarded as independent.

V" Model k one-dimensional distributions instead of one
k-dimensional distribution.



Naive Bayes Classifier

@ One of the most common learning methods.

e When to use:
v" Moderate or large training set available.

v Features x; of a data instance x are conditionally
independent given classification (or at least reasonably
independent, still works with a little dependence).

@ Successful applications:
v Medical diagnoses (symptoms independent)

v Classification of text documents (words independent)



Naive Bayes Classifier

e x is a vector (z1,...,xk) of attribute or feature values.

o Let Y ={1,2,...,Y} be the set of possible classes.
@ The MAP estimate of y is

ymap = argmax P(y|xy,...,2x)
yey
= arg max
yey P(xy,...,2K)

=argmax P(z1,...,2x |y) P(y)
yeY



Naive Bayes Classifier

e x is a vector (z1,...,xk) of attribute or feature values.

o Let Y ={1,2,...,Y} be the set of possible classes.
@ The MAP estimate of y is

ymap = argmax P(y|xy,...,2x)
yey
P(‘TlaaxK|y)P(y)
= arg max
yey P(xy,...,2K)

=argmax P(z1,...,2x |y) P(y)
yeY

e Naive Bayes assumption: P(zy,...,2x|y) = [Tr—y P(zr|y)

o This give the Naive Bayes classifier:

yMApzargmaXP Hka|y



Example: Play Tennis?

Question: Will I go and play tennis given the forecast?

My measurements:
@ forecast € {sunny, overcast, rainy},
© temperature € {hot, mild, cool},
@ humidity € {high, normal},
© windy € {false, true}.

Possible decisions:
y € {yes, no}



Example: Play Tennis?

What I did in the past:




Example: Play Tennis’

Counts of when I played tennis (did not play)

Outlook Temperature Humidity Windy

sunny overcast rain hot mild cool high normal false true

2 (3) 4 (0) 3(2) 2(2) 4(2) 3(1) 3(4) 6 (1) 6(2) 3(3)




Example: Play Tennis’

Counts of when I played tennis (did not play)

Outlook Temperature Humidity Windy
sunny overcast rain hot mild cool high normal false true
2 (3) 4 (0) 3(2) 2(2) 4(2) 3(1) 34 6 (1) 6(2) 3@

Prior of whether I played tennis or not

Play Play
Counts: vyes mo Prior Probabilities:
9 5

“
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Example: Play Tennis?

Counts of when I played tennis (did not play)

Outlook Temperature Humidity Windy
sunny overcast rain hot mild cool high normal false true
2 (3) 4 (0) 3(2) 2(2) 4(2) 3(1) 34 6 (1) 6(2) 3@

Prior of whether I played tennis or not

Play Play
Counts: vyes mo Prior Probabilities: _yes no
9 5
9 5 i i

Likelihood of attribute when tennis played P(x; | y=yes)(P(x;|y=no))

Outlook Temperature Humidity Windy
sunny overcast rain hot mild cool high normal false true
3@ @ 33 33 3 §®» 3G @ §HEH 3D




Example: Play Tennis?

Inference: Use the learnt model to classify a new instance.

New instance:
x = (sunny, cool, high, true)

Apply Naive Bayes Classifier:

ymap = arg  max  P(y) H P(x;|y)

y € {yes, no}

= .005

X
X

P(yes) P(sunny | yes) P(cool | yes) P(high | yes) P(true|yes) =

[ 2]e
X

X

G = o] w

X
Gk olw

alw olN
X
X
alw olw

P(no) P(sunny | no) P(cool | no) P(high | no) P(true|no) = =.021

X

1

'S

= Ymap — 1O



Naive Bayes: Independence Violation

e Conditional independence assumption:

K

P('Tl,l'g,...,x[(|y> :H P($k|y)
k=1

often violated - but it works surprisingly well anyway!



Naive Bayes: Independence Violation

e Conditional independence assumption:

K

P('Tl,l'g,...,x[(|y> :H P($k|y)
k=1

often violated - but it works surprisingly well anyway!

e Note: Do not need the posterior probabilities P(y | x)
to be correct. Only need yyap to be correct.



Naive Bayes: Independence Violation

e Conditional independence assumption:

K

P('Tl,l'g,...,xKH/) :H P($k|y)
k=1

often violated - but it works surprisingly well anyway!

e Note: Do not need the posterior probabilities P(y | x)
to be correct. Only need yyap to be correct.

e Since dependencies ignored, naive Bayes posteriors
often unrealistically close to 0 or 1.
Different attributes say the same thing to a higher degree than
we expect as they are correlated in reality.



Naive Bayes: Estimating Probabilities

e Problem: What if none of the training instances with
target value y have attribute x;? Then

P(zily)=0 = Py prz )=0



Naive Bayes: Estimating Probabilities

e Problem: What if none of the training instances with
target value y have attribute x;? Then

K
P(zily) =0 — P(y)HP(xi\y) =0

e Solution: Add as prior knowledge that P(z;|y) must
be larger than 0:

Ny + mp
P(x: 2y
(171|y) n+m
where

n = number of training samples with label y
n, = number of training samples with label y and value x;
p = prior estimate of P(x;|y)

m = weight given to prior estimate (in relation to data)



Example: Spam detection

e Aim: Build a classifier to identify spam e-mails.

o How:



Example: Spam detection

e Aim: Build a classifier to identify spam e-mails.

o How:
Training
v Create dictionary of words and tokens W = {w;,...,w.}.

These words should be those which are specific to spam or non-spam e-mails.

v/ E-mail is a concatenation, in order, of its words and
tokens: e = (e1,ea,...,ex) with e; € W.

v" Must model and learn
P(El, €2,..., €K | spam) and P(el, €2,..., €K |not spam)



Example: Spam detection

e Aim: Build a classifier to identify spam e-mails.

e How:
Training
v" Create dictionary of words and tokens W = {w;,...,wy}.

These words should be those which are specific to spam or non-spam e-mails.

v" E-mail is a concatenation, in order, of its words and
tokens: e = (e1,ea,...,ex) with e; € W.

v" Must model and learn
P(el, €2,..., €K | spam) and P(el, €2,..., €K | not spam)

Email: E Vector: e

Dear customer,

Atully licensed Online Pharmacy is offering pharmaceuticals:
- brought to you directly from abroad
-produced by the same multinational corporations selling through the major US ('dear, '‘customer’, ',', 'a', 'fully’, llicensed', ..... /)

pharmacies
~priced up to 5 times cheaper as compared to major US pharmacies.

Concatenate words from e-mail into a vector



Example: Spam detection

e Aim: Build a classifier to identify spam e-mails.

o How:
Training
v" Create dictionary of words and tokens W = {uw,,..., wp}.

These words should be those which are specific to spam or non-spam e-mails.

v" E-mail is a concatenation, in order, of its words and
tokens: e = (e1,ea,...,ex) with e; € W.

v" Must model and learn

P(el, €2,...,EK | spam) and P(el, €2,..., €K | not spam)
Inference
v Given an e-mail, E, compute e = (e1,...,ex).

v" Use Bayes’ rule to compute

P(spam|€1,...,€K) O(P(el,...76K|spam) P(spam)



Example: Spam detection

e How is the joint probability distribution modelled?

P(el,...,eK spam)

Remember K will be very large and vary from e-mail to e-mail..



Example: Spam detection

e How is the joint probability distribution modelled?

P(el,...,eK spam)

Remember K will be very large and vary from e-mail to e-mail..

@ Make conditional independence assumption:

o

P(el, oo, eK | spam) = P(ek |spam)

el
I
—

Similarly

o= b

P(el, ..., €K | not spam) = P(ek | not spam)

El
Il
—



Example: Spam detection

e How is the joint probability distribution modelled?

P(el,...,eK spam)

Remember K will be very large and vary from e-mail to e-mail..

@ Make conditional independence assumption:

P(el, oo, eK | spam) = P(ek |spam)

o

el
I
—

Similarly

P(el, oo, EK | not spam) = P(ek | not spam)

o= b

El
Il
—

@ Have assumed the position of word is not important.



Example: Spam detection

Learning:
Assume one has n training e-mails and their labels - spam /non-spam

§= {(6‘1,y1), R (emyn)}

Note: e; = (€1, -- -, €ik;)-



Example: Spam detection

Learning:
Assume one has n training e-mails and their labels - spam /non-spam

S= {(e17y1)7 ) (envyn)}
Note: e; = (61'1, .o 761'Ki)'

Create dictionary

@ Make a union of all the distinctive words and tokens in
e1,...,e, to create W = {w1,...,wr}. (Note: words such as

and, the, ... omitted)



Example: Spam detection

Learning:
Assume one has n training e-mails and their labels - spam /non-spam

§= {(91,y1), R (emyn)}

Note: e; = (eil, N ,eiKi).
Learn probabilities
For y € {spam, not spam}
" Ind(y;=
o Set P(y) - M <—proportion of e-mails from class y.

n
e ny = Zi:l Kz X Ind (yl = y) < total # of words in the class y e-mails.

© For each word w; compute
ny = Sy Ind (35 = y) % (4L Ind (e = wn)) « + o0

occurrences of word w; in the class y e-mails.

ny+1
e P w, == ut < assume prior value of P(w; |y) is 1/|W|.
! ny+W]|



Example: Spam detection

Inference: Classify a new e-mail e* = (e},...,ek.)

K*
*=arg max P Ple;
y g Jmax (y)kl;[l (exly)



Summary so far

e Bayesian theory: Combines prior knowledge and
observed data to find the most probable hypothesis.

e Naive Bayes Classifier: All variables considered
independent.



FExpectation-Maximization
(EM) Algorithm



Mixture of Gaussians
This distribution is a weight sum of K Gaussian

distributions
K
P(z) =Y mN(w; pr, o}
k=1
where m + -+ 7 =1
and m, >0 (k=1,..., K).

Pr(z)

T

This model can describe complex multi-modal probability

distributions by combining simpler distributions.



Mixture of Gaussians

K
P(z) = Z?Tk/\/(l‘; ik O%)

k=1

@ Learning the parameters of this model from training
data x1,...,x, is not trivial - using the usual

straightforward maximum likelihood approach.

o Instead learn parameters using the
Expectation-Maximization (EM) algorithm.



Mixture of Gaussians as a marginalization

We can interpret the Mixture of Gaussians model with the
introduction of a discrete hidden/latent variable h and P(z, h):

P(z)=) Ple,h=k) =Y Px|h=k)P(h=k)

k=1

1= T

e N (@5 i, 07)

x>
I
—

Pr(z,h)

+ mixture density

Mapo:
Lo
8111@520 o

ver

Figures taken from Computer Vision: models, learning and inference by Simon Prince.



EM for two Gaussians

Assume: We know the pdf of x has this form:
P(z) = m N (2; 1, 07) + mo N (3 pia, 03)
where m + m = 1 and 7, > 0 for components k = 1, 2.

Unknown: Values of the parameters (Many!)
@ = (71'1, H1,01, U2, 0'2).

Have: Observed n samples z1, ..., z, drawn from p(x).

Want to: Estimate © from zq,...,z,.

How would it be possible to get them all???



EM for two Gaussians

For each sample z; introduce a hidden variable h;

. {1 if sample x; was drawn from N (x; py,0%)

2 if sample x; was drawn from N (x; pg, 03)

and come up with initial values

0 0 0 0 0
00 = (xi”, u”, 01" 1", 01"

for each of the parameters.

EM is an iterative algorithm which updates ©® using the
following two steps...



EM for two Gaussians: E-step

The responsibility of k-th Gaussian for each sample z
(indicated by the size of the projected data point)

1)

Pr(h|z

Look at each sample x along hidden variable / in
the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.



EM for two Gaussians: E-step (cont.)

E-step: Compute the “posterior probability” that x; was
generated by component k given the current estimate of the
parameters O®). (responsibilities)

fori=1,...n
for k =1,2

A = P(h; = k|2, 00)

_ )N(zu:uk ) (t))
N (i ui”, o)+ 7 N (wi; s, 08

(@

Note: v,; —|—7(2)—1and771+71'2:1



EM for two Gaussians: M-step

Fitting the Gaussian model for each of k-th constinuetnt.
Sample x; contributes according to the responsibility .

Pr(z,h)

Look along samples = for each h in the M-step

Figure from Computer Vision: models, learning and inference by Simon Prince.



EM for two Gaussians: M-step (cont.)

M-step: Compute the Maximum Likelihood of the
parameters of the mixture model given out data’s
membership distribution, the %(t)’s:

for k=1,2
L) _ PO
k - n )
> i1 %'(1?

)

n 1
D _ Dic %‘(l? (i — Nl(:+ ))2
k - n

Die1 72(1?

7T(t+1) _ Z?:l ’yl(;::)
k - n .



EM in practice

a) b) c) d)
E-Step M-Step E-Step

e) f) 9) h)
M-Step | E-Step M-Step| E-Step |

i) i) k) )}

M-Step E-Step M-Step E-Step

m) n) 0) p)
M-Step E-Step M-Step E-Step

) s) t)
E-Step M-Step E-Step




Summary

e Bayesian theory: Combines prior knowledge and
observed data to find the most probable hypothesis.

o Naive Bayes Classifier: All variables considered
independent.

e EM algorithm: Learn probability destribiution
(model parameters) in presence of hidden variables.

If you are interested in learning more take a look at:
C. M. Bishop, Pattern Recognition and Machine Learning, Springer
Verlag 2006.



