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Advantages of Probability Based Methods

Work with sparse training data. More powerful
than deterministic methods - decision trees - when
training data is sparse.

Results are interpretable. More transparent and
mathematically rigorous than methods such as ANN,
Evolutionary methods.

Tool for interpreting other methods. Framework
for formalizing other methods - concept learning, least
squares.



Outline

Probability Theory Basics
X Bayes’ rule

X MAP and ML estimation

X Minimum Description Length principle

Naïve Bayes Classifier

EM Algorithm



Probability Theory Basics



Random Variables

A random variable x denotes a quantity that is
uncertain
X the result of flipping a coin,

X the result of measuring the temperature

The probability distribution P (x) of a randam variable
(r.v.) captures the fact that
X the r.v. will have different values when observed and

X Some values occur more than others.



Random Variables

A discrete random variable takes values from a
predefined set.

For a Boolean discrete random variable this
predefined set has two members - {0, 1}, {yes, no} etc.

A continuous random variable takes values that
are real numbers.26 2 Introduction to probability

Figure 2.1 Two different representations for discrete probabilities a) A bar
graph representing the probability that a biased 6-sided die lands on each
face. The height of the bar represents the probability: the sum of all heights
is one. b) A Hinton diagram illustrating the probability of observing different
weather types in England. The area of the square represents the probability,
so the sum of all areas is one.

Figure 2.2 Continuous probability dis-
tribution (probability density function
or pdf for short) for time taken to com-
plete a test. Note that the probability
density can exceed one, but the area
under the curve must always have unit
area.

2.2 Joint probability

Consider two random variables, x and y. If we observe multiple paired instances
Problem 2.1

of x and y, then some combinations of the two outcomes occur more frequently
than others. This information is encompassed in the joint probability distribution
of x and y which is written as Pr(x, y). The comma in Pr(x, y) can be read as the
English word “and” so Pr(x, y) is the probability of x and y. A joint probability
distribution may relate variables that are all discrete, all continuous or it may
relate discrete variables to continuous ones (see figure 2.3). Regardless, the total
probability of all outcomes (summing over discrete variables and integrating over
continuous ones), is always one.

In general we will be interested in the joint probability distribution of more
than two variables. We will write Pr(x, y, z) to represent the joint probability
distribution of scalar variables x, y, and z. We may also write Pr(x) to represent
the joint probability of all of the elements of the multidimensional variable x =
[x1, x2, . . . , xK ]T . Finally, we will write Pr(x,y) to represent the joint distribution
of all of the elements from multidimensional variables x and y.
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Figures taken from Computer Vision: models, learning and inference by Simon Prince.



Joint Probabilities

Consider two random variables x and y.
Observe multiple paired instances of x and y. Some
paired outcomes will occur more frequently.
This information is encoded in the joint probability
distribution P (x, y).
P (x) denotes the joint probability of x = (x1, . . . , xK).

28 2 Introduction to probability

Figure 2.4 Joint and marginal probability distributions. The marginal prob-
ability Pr(x)is found by summing over all values of y (discrete case) or
integrating over y (continuous case) in the joint distribution Pr(x, y). Simi-
larly the marginal probability Pr(y) is found by summing or integrating over
x. Note that the plots for the marginal distributions have different scales
from those for the joint distribution (on the same scale, the marginals would
look larger as they sum all of the mass from one direction). a) Both x and
y are continuous. b) Both x and y are discrete. c) The random variable x
is continuous and the variable y is discrete.

we are finding the probability distribution of x regardless of (or in the absence of
information about) the value of y.

In general, we can recover the joint probability of any subset of variables, by
Problem 2.2

marginalizing over all of the others. For example, given variables, w, x, y, z, where
w is discrete and z is continuous, we can recover Pr(x, y) using

Pr(x, y) =
�

w

�
Pr(w, x, y, z) dz. (2.2)

2.4 Conditional probability

The conditional probability of x given that y takes value y∗ tells us the relative
propensity of the random variable x to take different outcomes given that the
random variable y is fixed to value y∗. This conditional probability is written as
Pr(x|y = y∗) . The vertical line “|” can be read as “given”.

The conditional probability Pr(x|y = y∗) can be recovered from the joint dis-
tribution Pr(x, y). In particular, we examine the appropriate slice Pr(x, y = y∗)
of the joint distribution (figure 2.5). The values in the slice tell us about the rel-
ative probability that x takes various values having observed y = y∗, but do not
themselves form a valid probability distribution; they cannot sum to one as they
constitute only a small part of the joint distribution which did itself sum to one.
To calculate the conditional probability distribution, we hence normalize by the
total probability in the slice
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Figure from Computer Vision: models, learning and inference by Simon Prince.



Joint Probabilities (cont.)

a) b) c)

d) e) f)

Figure from Computer Vision: models, learning and inference by Simon Prince.



Marginalization

The probability distribution of any single variable can be
recovered from a joint distribution by summing for the
discrete case

P (x) =
∑

y

P (x, y)

and integrating for the continuous case

P (x) =

∫

y

P (x, y) dy



Marginalization (cont.)

a) b) c)

Figure from Computer Vision: models, learning and inference by Simon Prince.



Conditional Probability
The conditional probability of x given that y takes
value y∗ indicates the different values of r.v. x which
we’ll observe given that y is fixed to value y∗.

The conditional probability can be recovered from the
joint distribution P (x, y):

P (x | y = y∗) =
P (x, y = y∗)
P (y = y∗)

=
P (x, y = y∗)∫

x
P (x, y = y∗) dx

Extract an appropriate slice, and then normalize it.2.4 Conditional probability 29

Figure 2.5 Conditional Probability. Joint pdf of x and y and two conditional
probability distributions Pr(x|y = y1) and Pr(x|y = y2). These are formed
by extracting the appropriate slice from the joint pdf and normalizing so
that the area is one. A similar operation can be performed for discrete
distributions.

Pr(x|y = y∗) =
Pr(x, y = y∗)�
Pr(x, y = y∗)dx

=
Pr(x, y = y∗)
Pr(y = y∗)

, (2.3)

where we have used the marginal probability relation (Equation 2.1) to simplify the
denominator. It is common to write the conditional probability relation without
explicitly defining the value y = y∗ to give the more compact notation

Pr(x|y) =
Pr(x, y)

Pr(y)
. (2.4)

This relationship can be re-arranged to give

Pr(x, y) = Pr(x|y)Pr(y), (2.5)

and by symmetry we also have

Pr(x, y) = Pr(y|x)Pr(x). (2.6)

When we have more than two variables, we may repeatedly take conditional
Problem 2.3

probabilities to divide up the joint probability distribution into a product of terms

Pr(w, x, y, z) = Pr(w, x, y|z)Pr(z)

= Pr(w, x|y, z)Pr(y|z)Pr(z)

= Pr(w|x, y, z)Pr(x|y, z)Pr(y|z)Pr(z). (2.7)
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Bayes’ Rule

Bayes’ Rule

P (y |x) = P (x | y)P (y)
P (x)

=
P (x | y)P (y)∑
y P (x | y)P (y)

Each term in Bayes’ rule has a name:

P (y |x)← Posterior (what we know about y given x.)

P (y)← Prior (what we know about y before we consider x.)

P (x | y)← Likelihood (propensity for observing a certain
value of x given a certain value of y)

P (x)← Evidence (a constant to ensure that the l.h.s. is a
valid distribution)



Bayes’ Rule

In many of our applications y is a discrete variable and x is
a multi-dimensional data vector extracted from the world.

P (y |x) = P (x | y)P (y)
P (x)

Then
P (x | y)← Likelihood represents the probability of
observing data x given the hypothesis y.

P (y)← Prior of y represents the background knowledge of
hypothesis y being correct.

P (y |x)← Posterior represents the probability that
hypothesis y is true after data x has been observed.



Learning and Inference

Bayesian Inference: The process of calculating the
posterior probability distribution P (y |x) for certain
data x.

Bayesian Learning: The process of learning the
likelihood distribution P (x | y) and prior probability
distribution P (y) from a set of training points

{(x1, y1), (x2, y2), . . . , (xn, yn)}



Example: Which Gender?

Task: Determine the gender of a person given their
measured hair length.

Notation:
Let g ∈ {’f’, ’m’} be a r.v. denoting the gender of a person.

Let x be the measured length of the hair.

Information given:
The hair length observation was made at a boy’s school thus

P (g = ’m’) = .95, P (g = ’f’) = .05

Knowledge of the likelihood distributions P (x | g = ’f’) and
P (x | g = ’m’)
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Example: Which Gender?

• Given: classes h = {A, B}, A = men, B = women,
distributions over hair length for each class

• Task: Determine the gender of a person given the hair
length

• …and it might be interesting to know that the observation
of hair length is made in a boys’ school:
P(A) = PA = 0.95, P(B) = PB = 0.05



Example: Which Gender?

Task: Determine the gender of a person given their
measured hair length =⇒ calculate P (g |x).

Solution:

Apply Bayes’ Rule to get

P (g = ’m’ |x) = P (x | g = ’m’)P (g = ’m’)
P (x)

=
P (x | g = ’m’)P (g = ’m’)

P (x | g = ’f’)P (g = ’f’) + P (x | g = ’m’)P (g = ’m’)

Can calculate P (g = ’f’ |x) = 1− P (g = ’m’ |x)



Selecting the most probably hypothesis

Maximum A Posteriori (MAP) Estimate:
Hypothesis with highest probability given observed data

yMAP = argmax
y∈Y

P (y |x)

= argmax
y∈Y

P (x | y)P (y)
P (x)

= argmax
y∈Y

P (x | y)P (y)

Maximum Likelihood Estimate (MLE):
Hypothesis with highest likelihood of generating observed data.

yMLE = argmax
y∈Y

P (x | y)

Useful if we do not know prior distribution or if it is uniform.
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Example: Cancer or Not?

Scenario:
A patient takes a lab test and the result comes back positive. The
test returns a correct positive result in only 98% of the cases in which
the disease is actually present, and a correct negative result in only
97% of the cases in which the disease is not present. Furthermore,
0.8% of the entire population have cancer.

Scenario in probabilities:
Priors:

P (disease) = .008 P (not disease) = .992

Likelihoods:

P (+ | disease) = .98 P (+ | not disease) = .03

P (− |disease) = .02 P (− |not disease) = .97



Example: Cancer or Not?
Find MAP estimate:
When test returned a positive result,

yMAP = arg max
y∈{disease, not disease}

P (y |+)

= arg max
y∈{disease, not disease}

P (+ | y)P (y)

Substituting in the correct values get

P (+ | disease)P (disease) = .98× .008 = .0078

P (+ | not disease)P (not disease) = .03× .992 = .0298

Therefore yMAP = "not disease".

The Posterior probabilities:

P (disease |+) =
.0078

(.0078 + .0298)
= .21

P (not disease |+) =
.0298

(.0078 + .0298)
= .79
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Relation to Occams’s Razor
Occam’s Razor:

Choose the simplest explanation for the observed data

Information theoretic perspective Occam’s razor corresponds to
choosing the explanation requiring the fewest bits to represent.

The optimal representation requires − log2 p(y |x) bits to store.
(Remember: the Shannon information content)

Minimum description length principle: Choose hypothesis

yMDL = argmin
y∈Y

− log2 P (y |x)

= argmin
y∈Y

− log2 P (x | y)− log2 P (y)

The MDL estimate is equal to the MAP estimate

yMAP = argmax
y∈Y

log2 P (x | y) + log2 P (y)
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Naïve Bayes Classifier



Feature Space

Sensors give measurements which can be converted to
features.

Ideally a feature value is identical for all samples in
one class.

25

Sources of Noise

−→

25

Sources of Noise

Samples Feature space



Feature Space

Sensors give measurements which can be converted to
features.
However in the real world

25

Sources of Noise

−→

25

Sources of Noise

Samples Feature space
because of
X Measurement noise
X Intra-class variation
X Poor choice of features



Feature Space

End result: a K−dimensional space

in which each dimension is a feature

containing n labelled samples (objects)

26

Feature Space



Problem: Large Feature Space

Size of feature space exponential in number of features.

More features =⇒ potential for better description of
the objects but...

More features =⇒ more difficult to model P (x | y).

Extreme Solution: Naïve Bayes classifier
X All features (dimensions) regarded as independent.

X Model k one-dimensional distributions instead of one
k-dimensional distribution.
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Naïve Bayes Classifier

One of the most common learning methods.

When to use:
X Moderate or large training set available.

X Features xi of a data instance x are conditionally
independent given classification (or at least reasonably
independent, still works with a little dependence).

Successful applications:
X Medical diagnoses (symptoms independent)

X Classification of text documents (words independent)



Naïve Bayes Classifier

x is a vector (x1, . . . , xK) of attribute or feature values.

Let Y = {1, 2, . . . , Y } be the set of possible classes.

The MAP estimate of y is
yMAP = argmax

y∈Y
P (y |x1, . . . , xK)

= argmax
y∈Y

P (x1, . . . , xK | y)P (y)
P (x1, . . . , xK)

= argmax
y∈Y

P (x1, . . . , xK | y)P (y)

Naïve Bayes assumption: P (x1, . . . , xK | y) =
∏K

k=1 P (xk | y)
This give the Naïve Bayes classifier:

yMAP = argmax
y∈Y

P (y)

K∏

k=1

P (xk | y)
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Example: Play Tennis?

Question: Will I go and play tennis given the forecast?

My measurements:
1 forecast ∈ {sunny, overcast, rainy},
2 temperature ∈ {hot, mild, cool},
3 humidity ∈ {high, normal},
4 windy ∈ {false, true}.

Possible decisions:
y ∈ {yes, no}



Example: Play Tennis?

What I did in the past:

31

Example: Play Tennis?

• Learning:
Learn
likelihoods and
prior from data

• P(x1| yes)

• P(x4| yes)

• P(x2| no)



Example: Play Tennis?

Counts of when I played tennis (did not play)
Outlook Temperature Humidity Windy

sunny overcast rain hot mild cool high normal false true

2 (3) 4 (0) 3 (2) 2 (2) 4 (2) 3 (1) 3 (4) 6 (1) 6 (2) 3 (3)

Prior of whether I played tennis or not

Counts:
Play

yes no

9 5

Prior Probabilities:
Play

yes no

9
14

5
14

Likelihood of attribute when tennis played P (xi | y=yes)(P (xi | y=no))

Outlook Temperature Humidity Windy
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2
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( 3
5
) 4

9
( 0
5
) 3

9
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5
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9
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5
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9
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5
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9
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5
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9
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5
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9
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5
) 3

9
( 3
5
)
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Example: Play Tennis?

Inference: Use the learnt model to classify a new instance.

New instance:

x = (sunny, cool, high, true)

Apply Naïve Bayes Classifier:

yMAP = arg max
y ∈ {yes, no}

P (y)

4∏

i=1

P (xi | y)

P (yes)P (sunny | yes)P (cool | yes)P (high | yes)P (true | yes) =
9

14
×

2

9
×

3

9
×

3

9
×

3

9
= .005

P (no)P (sunny | no)P (cool | no)P (high | no)P (true | no) =
5

14
×

3

5
×

1

5
×

4

5
×

3

5
= .021

=⇒ yMAP = no



Naïve Bayes: Independence Violation

Conditional independence assumption:

P (x1, x2, . . . , xK | y) =
K∏

k=1

P (xk | y)

often violated - but it works surprisingly well anyway!

Note: Do not need the posterior probabilities P (y |x)
to be correct. Only need yMAP to be correct.

Since dependencies ignored, naïve Bayes posteriors
often unrealistically close to 0 or 1.
Different attributes say the same thing to a higher degree than
we expect as they are correlated in reality.
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Naïve Bayes: Estimating Probabilities
Problem: What if none of the training instances with
target value y have attribute xi? Then

P (xi | y) = 0 =⇒ P (y)

K∏

i=1

P (xi | y) = 0

Solution: Add as prior knowledge that P (xi | y) must
be larger than 0:

P (xi | y) =
ny +mp

n+m

where

n = number of training samples with label y
ny = number of training samples with label y and value xi
p = prior estimate of P (xi | y)
m = weight given to prior estimate (in relation to data)



Naïve Bayes: Estimating Probabilities
Problem: What if none of the training instances with
target value y have attribute xi? Then

P (xi | y) = 0 =⇒ P (y)

K∏

i=1

P (xi | y) = 0

Solution: Add as prior knowledge that P (xi | y) must
be larger than 0:

P (xi | y) =
ny +mp

n+m

where

n = number of training samples with label y
ny = number of training samples with label y and value xi
p = prior estimate of P (xi | y)
m = weight given to prior estimate (in relation to data)



Example: Spam detection

Aim: Build a classifier to identify spam e-mails.

How:
Training
X Create dictionary of words and tokens W = {w1, . . . , wL}.

These words should be those which are specific to spam or non-spam e-mails.

X E-mail is a concatenation, in order, of its words and
tokens: e = (e1, e2, . . . , eK) with ei ∈ W.

X Must model and learn
P (e1, e2, . . . , eK | spam) and P (e1, e2, . . . , eK | not spam)
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Example: Spam detection

Aim: Build a classifier to identify spam e-mails.

How:
Training
X Create dictionary of words and tokens W = {w1, . . . , wL}.

These words should be those which are specific to spam or non-spam e-mails.

X E-mail is a concatenation, in order, of its words and
tokens: e = (e1, e2, . . . , eK) with ei ∈ W.

X Must model and learn
P (e1, e2, . . . , eK | spam) and P (e1, e2, . . . , eK | not spam)

Dear customer,
A fully licensed Online Pharmacy is offering pharmaceuticals:
- brought to you directly from abroad
-produced by the same multinational corporations selling through the major US 
pharmacies
-priced up to 5 times cheaper as compared to major US pharmacies.
Enjoy the US dollar purchasing power on http://pharmacy-buyonline.com.ua/

Email: E

Concatenate words from e-mail into a vector

('dear', 'customer', ',', 'a', 'fully', 'licensed',    .....   ,'/')  

Vector: e



Example: Spam detection

Aim: Build a classifier to identify spam e-mails.

How:
Training
X Create dictionary of words and tokens W = {w1, . . . , wL}.

These words should be those which are specific to spam or non-spam e-mails.

X E-mail is a concatenation, in order, of its words and
tokens: e = (e1, e2, . . . , eK) with ei ∈ W.

X Must model and learn
P (e1, e2, . . . , eK | spam) and P (e1, e2, . . . , eK | not spam)

Inference
X Given an e-mail, E, compute e = (e1, . . . , eK).
X Use Bayes’ rule to compute

P (spam | e1, . . . , eK) ∝ P (e1, . . . , eK | spam) P (spam)



Example: Spam detection

How is the joint probability distribution modelled?

P (e1, . . . , eK | spam)

Remember K will be very large and vary from e-mail to e-mail..

Make conditional independence assumption:

P (e1, . . . , eK | spam) =
K∏

k=1

P (ek | spam)

Similarly

P (e1, . . . , eK | not spam) =
K∏

k=1

P (ek | not spam)

Have assumed the position of word is not important.
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Example: Spam detection

Learning:
Assume one has n training e-mails and their labels - spam /non-spam

S = {(e1, y1), . . . , (en, yn)}

Note: ei = (ei1, . . . , eiKi).



Example: Spam detection

Learning:
Assume one has n training e-mails and their labels - spam /non-spam

S = {(e1, y1), . . . , (en, yn)}

Note: ei = (ei1, . . . , eiKi
).

Create dictionary
1 Make a union of all the distinctive words and tokens in

e1, . . . , en to create W = {w1, . . . , wL}. (Note: words such as

and, the, ... omitted)



Example: Spam detection

Learning:
Assume one has n training e-mails and their labels - spam /non-spam

S = {(e1, y1), . . . , (en, yn)}

Note: ei = (ei1, . . . , eiKi
).

Learn probabilities
For y ∈ {spam,not spam}

1 Set P (y) =
∑n

i=1 Ind(yi=y)

n ←proportion of e-mails from class y.

2 ny =
∑n

i=1Ki× Ind (yi = y) ← total # of words in the class y e-mails.

3 For each word wl compute
nyl =

∑n
i=1 Ind (yi = y)×

(∑Ki

k=1 Ind (eik = wl)
)
← # of

occurrences of word wl in the class y e-mails.

4 P (wl | y) = nyl+1
ny+|W| ← assume prior value of P (wl | y) is 1/|W|.



Example: Spam detection

Inference: Classify a new e-mail e∗ = (e∗1, . . . , e
∗
K∗)

y∗ = arg max
y∈{−1,1}

P (y)
K∗∏

k=1

P (e∗k|y)



Summary so far

Bayesian theory: Combines prior knowledge and
observed data to find the most probable hypothesis.

Naïve Bayes Classifier: All variables considered
independent.



Expectation-Maximization
(EM) Algorithm



Mixture of Gaussians
This distribution is a weight sum of K Gaussian
distributions

P (x) =

K∑

k=1

πkN (x;µk, σ
2
k)

where π1 + · · ·+ πK = 1
and πk > 0 (k = 1, . . . , K).

110 7 Modeling complex data densities

Figure 7.6 Mixture of Gaussians
model in 1D. A complex multimodal
probability density function (black
solid curve) is created by taking a
weighted sum or mixture of several
constituent normal distributions with
different means and variances (red,
green and blue dashed curves). To
ensure that the final distribution is
a valid density, the weights must be
positive and sum to one.

the cost function for the M-Step (equation 7.12) improves the bound. For now we
will assume that these things are true and proceed with the main thrust of the
chapter. We will return to these issues in section 7.8.

7.4 Mixture of Gaussians

The mixture of Gaussians (MoG) is a prototypical example of a model where learn-
ing is suited to the EM algorithm. The data is described as a weighted sum of K
normal distributions

Pr(x|θ) =

K�

k=1

λkNormx[µk,Σk], (7.13)

where µ1...K and Σ1...K are the means and covariances of the normal distributions
and λ1...K are positive valued weights that sum to one. The mixtures of Gaussians
model describes complex multi-modal probability densities by combining simpler
constituent distributions (figure 7.6).

To learn the parameters θ = {µk,Σk, λk}K
k=1 from training data {xi}I

i=1 we
could apply the straightforward maximum likelihood approach

θ̂ = argmax
θ

�
I�

i=1

log [Pr(xi|θ)]

�

= argmax
θ

�
I�

i=1

log

�
K�

k=1

λkNormxi
[µk,Σk]

��
. (7.14)

Unfortunately, if we take the derivative with respect to the parameters θ and equate
the resulting expression to zero, it is not possible to solve the resulting equations
in closed form. The sticking point is the summation inside the logarithm which
precludes a simple solution. Of course, we could use a non-linear optimization
approach, but this would be complex as we would have to maintain the constraints
on the parameters; the weights λ must sum to one and the covariances {Σk}K

k=1

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
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This model can describe complex multi-modal probability
distributions by combining simpler distributions.



Mixture of Gaussians

P (x) =

K∑

k=1

πkN (x;µk, σ
2
k)

Learning the parameters of this model from training
data x1, . . . , xn is not trivial - using the usual
straightforward maximum likelihood approach.

Instead learn parameters using the
Expectation-Maximization (EM) algorithm.



Mixture of Gaussians as a marginalization
We can interpret the Mixture of Gaussians model with the
introduction of a discrete hidden/latent variable h and P (x, h):

P (x) =

K∑

k=1

P (x, h = k) =

K∑

k=1

P (x |h = k)P (h = k)

=

K∑

k=1

πkN (x;µk, σ
2
k)

7.4 Mixture of Gaussians 111

Figure 7.7 Mixture of Gaussians as
a marginalization. The mixture of
Gaussians can also be thought of in
terms of a joint distribution Pr(x, h)
between the observed variable x and
a discrete hidden variable h. To cre-
ate the mixture density we marginal-
ize over h. The hidden variable has
a straightforward interpretation: it is
the index of the constituent normal
distribution.

must be positive definite. For a simpler approach, we express the observed density
as a marginalization and use the EM algorithm to learn the parameters.

7.4.1 Mixtures of Gaussians as a marginalization

The mixtures of Gaussians model can be expressed as the marginalization of a joint
probability distribution between the observed data x and a discrete hidden variable
h that takes values h ∈ {1 . . . K} (figure 7.7). If we define

Pr(x|h,θ) = Normx[µh,Σh]

Pr(h|θ) = Cath[λ], (7.15)

where λ = [λ1 . . . λK ] are the parameters of the categorical distribution. We can
recover the original density using

Pr(x|θ) =

K�

k=1

Pr(x, h = k|θ)

=

K�

k=1

Pr(x|h = k,θ)Pr(h = k|θ)

=

K�

k=1

λkNormx[µk,Σk]. (7.16)

Interpreting the model in this way also provides a method to draw samples
from a mixture of Gaussians: we sample from the joint distribution Pr(x, h), and
then discard the hidden variable h to leave just a data sample x. To sample from
the joint distribution Pr(x, h) we first sample h from the categorical prior Pr(h),
then sample x from the normal distribution Pr(x|h) associated with the value of
h. Notice that the hidden variable h has a clear interpretation in this procedure:
it determines which of the constituent normal distributions is responsible for the
observed data point x.

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
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← mixture density

Figures taken from Computer Vision: models, learning and inference by Simon Prince.



EM for two Gaussians

Assume: We know the pdf of x has this form:

P (x) = π1N (x;µ1, σ
2
1) + π2N (x;µ2, σ

2
2)

where π1 + π2 = 1 and πk > 0 for components k = 1, 2.

Unknown: Values of the parameters (Many!)

Θ = (π1, µ1, σ1, µ2, σ2).

Have: Observed n samples x1, . . . , xn drawn from p(x).

Want to: Estimate Θ from x1, . . . , xn.

How would it be possible to get them all???



EM for two Gaussians

For each sample xi introduce a hidden variable hi

hi =

{
1 if sample xi was drawn from N (x;µ1, σ

2
1)

2 if sample xi was drawn from N (x;µ2, σ
2
2)

and come up with initial values

Θ(0) = (π
(0)
1 , µ

(0)
1 , σ

(0)
1 , µ

(0)
2 , σ

(0)
2 )

for each of the parameters.

EM is an iterative algorithm which updates Θ(t) using the
following two steps...



EM for two Gaussians: E-step
The responsibility of k-th Gaussian for each sample x
(indicated by the size of the projected data point)

112 7 Modeling complex data densities

Figure 7.8 E-Step for fitting the mixture of Gaussians model. For each of
the I data points x1...I , we calculate the posterior distribution Pr(hi|xi)
over the hidden variable hi. The posterior probability Pr(hi = k|xi) that hi

takes value k can be understood as the responsibility of normal distribution
k for data point xi. For example, for data point x1 (magenta circle) the
component 1 (red curve) is more than twice as likely to be responsible than
component 2 (green curve). Note that in the joint distribution (left), the
size of the projected data point indicates the responsibility.

7.4.2 Expectation maximization for fitting mixture models

To learn the MoG parameters θ = {λk, µk,Σk}K
k=1 from training data {xi}I

i=1Algorithm 7.1
we apply the EM algorithm. Following the recipe of section 7.3, we initialize the
parameters randomly and alternate between performing the E- and M-Steps.

In the E-Step, we maximize the bound with respect to the distributions qi(hi)
by finding the posterior probability distribution Pr(hi|xi) of each hidden variable
hi given the observation xi and the current parameter settings,

qi(hi) = Pr(hi = k|xi,θ
[t]) =

Pr(xi|hi = k,θ[t])Pr(hi = k,θ[t])
�K

j=1 Pr(xi|hi = j,θ[t])Pr(hi = j,θ[t])

=
λkNormxi

[µk,Σk]
�K

j=1 λjNormxi
[µj ,Σj ]

= rik. (7.17)
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Look at each sample x along hidden variable h in
the E-step

Figure from Computer Vision: models, learning and inference by Simon Prince.



EM for two Gaussians: E-step (cont.)

E-step: Compute the “posterior probability” that xi was
generated by component k given the current estimate of the
parameters Θ(t). (responsibilities)

for i = 1, . . . n

for k = 1, 2

γ
(t)
ik = P (hi = k |xi,Θ(t))

=
π
(t)
k N (xi;µ

(t)
k , σ

(t)
k )

π
(t)
1 N (xi;µ

(t)
1 , σ

(t)
1 ) + π

(t)
2 N (xi;µ

(t)
2 , σ

(t)
2 )

Note: γ(t)i1 + γ
(t)
i2 = 1 and π1 + π2 = 1



EM for two Gaussians: M-step
Fitting the Gaussian model for each of k-th constinuetnt.
Sample xi contributes according to the responsibility γik.7.4 Mixture of Gaussians 113

Figure 7.9 M-Step for fitting the mixture of Gaussians model. For the kth

constituent Gaussian, we update the parameters {λk, µk,Σk}. The ith data
point xi contributes to these updates according to the responsibility rik

(indicated by size of point) assigned in the E-Step; data points that are
more associated with the kth component have more effect on the parameters.
Dashed and solid lines represent fit before and after update respectively.

In other words we compute the probability Pr(hi = k|xi,θ
[t]) that the kth normal

distribution was responsible for the ith data point (figure 7.8). We denote this
responsibility by rik for short.

In the M-Step, we maximize the bound with respect to the parameters θ =
{λk, µk,Σk}K

k=1 so that

θ̂
[t+1]

= argmax
θ

�
I�

i=1

K�

k=1

q̂i(hi = k) log [Pr(xi,hi = k|θ)]

�

= argmax
θ

�
I�

i=1

K�

k=1

rik log [λkNormxi
[µk,Σk]]

�
. (7.18)

This maximization can be performed by taking the derivative of the expression with
Problem 7.3

respect to the parameters, equating the result to zero and rearranging, taking care
to enforce the constraint

�
k λk = 1 using Lagrange multipliers. The procedure

results in the update rules,

Copyright c�2011 by Simon Prince; to be published by Cambridge University Press 2012.
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(dashed and solid lines for fit before and after update)

Look along samples x for each h in the M-step

Figure from Computer Vision: models, learning and inference by Simon Prince.



EM for two Gaussians: M-step (cont.)

M-step: Compute the Maximum Likelihood of the
parameters of the mixture model given out data’s
membership distribution, the γ(t)i ’s:

for k = 1, 2

µ
(t+1)
k =

∑n
i=1 γ

(t)
ik xi∑n

i=1 γ
(t)
ik

,

σ
(t+1)
k =

√√√√
∑n

i=1 γ
(t)
ik (xi − µ(t+1)

k )2
∑n

i=1 γ
(t)
ik

,

π
(t+1)
k =

∑n
i=1 γ

(t)
ik

n
.
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Figure 7.10 a) Initial model. b) E-Step. For each data point the posterior
probability that is was generated from each Gaussian is calculated (indicated
by color of point). c) M-Step. The mean, variance and weight of each
Gaussian is updated based on these posterior probabilities. Ellipse shows
Mahalanobis distance of two. Weight (thickness) of ellipse indicates weight
of Gaussian. d-t) Further E-Step and M-Step iterations.
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Summary

Bayesian theory: Combines prior knowledge and
observed data to find the most probable hypothesis.

Naïve Bayes Classifier: All variables considered
independent.

EM algorithm: Learn probability destribiution
(model parameters) in presence of hidden variables.

If you are interested in learning more take a look at:
C. M. Bishop, Pattern Recognition and Machine Learning, Springer
Verlag 2006.


