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Reinforcement Learning

Learning of a behavior without
explicit information about correct actions

A reward gives information about success
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Agent–Environment Abstraction:

Agent

Environment

ActionState

Reward

Policy — Choice of action, depending on current state

Learning Objective:
Develop a policy which maximizes the reward
... total reward over the agents lifetime!
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Credit Assignment Problems

The reward does not necessarily arrive when you do something
good
Temporal credit assignment

The reward does not say what was good
Structural credit assignment
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Consider a minimal behavior selection situation:
What is the best action to make?
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Reward — Immediate consequence of our decision

Planning — Taking future reward into account

Optimal Behavior — Maximize total reward
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Can the agent make the right decision without explicitly modeling
the future?

Yes! If the Sum of Future Rewards for each situation is known.
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Call this the State Value

State Values are subjective

Depend on the agents own behavior

Must be re-adjusted as the agents behavior improves
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Planning Horizon — How long is the future?
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Infinite future allows for infinite postponing

Discounting — Make early reward more valuable

Discount factor (γ) — Time scale of planning
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Finite Horizon

max

[
h∑

t=0

rt

]

Infinite Horizon

max

[ ∞∑

t=0

γtrt

]

Requires discount of future reward (0 < γ < 1)
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The Reward function controls which task should be solved

Game (Chess, Backgammon)
Reward only at the end: +1 when winning, −1 when loosing

Avoiding mistakes (cycling, balancing, ...)
Reward −1 at the end (when failing)

Find a short/fast/cheap path to a goal
Reward −1 at each step
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Simplifying Assumptions

Discrete time

Finite number of actions ai

ai ∈ a1, a2, a3, . . . , an

Finite number of states si

si ∈ s1, s2, s3, . . . , sm

Environment is a stationary Markov Decision Process
Reward and next state depends only on s, a and chance

Örjan Ekeberg Machine Learning



Defining the Problem
Learning

Improvements

Reward Maximization
Simplifying Assumptions
Bellman’s Equation

Classical model problem: Grid World

Each state is represented by a position in a grid

The agent acts by moving to other positions

G

G

Trivial labyrinth

Reward: −1 at each step until
a goal state (G ) is reached
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The values of a state depends on the current policy.
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Örjan Ekeberg Machine Learning

Defining the Problem
Learning

Improvements

Reward Maximization
Simplifying Assumptions
Bellman’s Equation

The Agents Internal Representation

Policy
The action chosen by the agent for each state

π(s) 7→ a

Value Function
Expected total future reward from s when following policy π

V π(s) 7→ <
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Representation of the Environment

Where does an action take us?

δ(s, a) 7→ s ′

How much reward do we receive?

r(s, a) 7→ <

The values of different states are interrelated
Bellman’s Equation:

V π(s) = r(s, π(s)) + γ · V π(δ(s, π(s)))
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Normal scenario: r(s, a) and δ(s, a) are not known

V π must be estimated by experience

Monte-Carlo Method

Start at a random s

Follow π, store the rewards and st

When the goal is reached, update V π(s)-estimation for all
visited stated with the future reward we actually received

Painfully slow!
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Temporal Difference Learning
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Temporal Difference — the difference between:

Experienced value
(immediate reward + value of next state)

Expected value

Measure of unexpected success

Two sources:
Higher immediate reward than expected
Reached better situation than expected
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Expected Value

V π(st)

One-step Experienced Value

rt+1 + γ · V π(st+1)

TD-signal — measure of surprise / disappointment

TD = rt+1 + γ · V π(st+1)− V π(st)

TD Learning

V π(st)← V π(st) + ηTD
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Learning to Act

How do we get a policy from the TD signal?

Many possibilities...

Actor–Critic Model
(Barto, Sutton, Anderson IEEE Trans. Syst. Man & Cybern. 1983)

Q-Learning
(Watkins, 1989; Watkins & Dayan Machine Learning 1992)
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Actor–Critic Model

TDState
Reward

Action

Actor

Critic

Actor — Associates states with actions π(·)
Critic — Associates states with their value V (·)
TD-signal is used as a reinforcement signal to update both!

High TD (unexpected success)
Increase value of preceeding state
Increase tendency to make same action again

Low TD (unexpected failure)
Decrease value of preceeding state
Decrease tendency to make same action again
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Q-Learning
Estimate Q(s, a) instead of V (s)

Q(s, a): Expected total reward when doing a from s.

π(s) = argmax
a

Q(s, a)

V ?(s) = max
a

Q?(s, a)

The Q-function can also be learned using Temporal-Difference

Q(s, a)← Q(s, a) + η

[
r + γmax

a′
Q(s ′, a′)− Q(s, a)

]

s ′ is the next state.
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What do we do when...

The environment is not deterministic

The environment is not fully observable

There are way too many states

The states are not discrete

The agent is acting in continuous time
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The Exploration–Exploitation dilemma

If an agent strictly follows a greedy policy based on the current
estimate of Q, learning is not guaranteed to converge to Q?

Simple solution:
Use a policy which has a certain probability of ”making mistakes”

ε-greedy
Sometimes (with probability ε) make a random action instead
of the one that seems best (greedy)

Softmax
Assign a probability to choose each action depending on how
good they seem
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Accelerated learning

Idéa: TD updates can be used to improve not only the last state’s
value, but also states we have visited earlier.

∀s, a : Q(s, a)← Q(s, a) + η [rt+1 + γQ(st+1, at+1)− Q(st , at)] · e

e is a remaining trace (eligibility trace) encoding how long ago we
were in s doing a.

Often denoted TD(λ) where λ is the time constant of the trace e
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