fining the Problem Learning Improvements

1 Defining the Problem

- Reward Maximization
- Simplifying Assumptions
- Bellman's Equation

2 Learning

- Monte-Carlo Method
- Temporal-Difference
- Learning to Act
- Q-Learning

3 Improvements

- Importance of Making Mistakes
- Eligibility Trace

Örjan Ekeberg Machine Learning

Defining the Problem Learning Improvements

Reward Maximization Simplifying Assumption Bellman's Equation

Reinforcement Learning

Learning of a behavior without explicit information about correct actions

• A reward gives information about success

Reinforcement Learning

Örjan Ekeberg Machine Learning

Defining the Problem Learning Improvements

arning Simplifying Assumptions Bellman's Equation

Defining the Problem

- Reward Maximization
- Simplifying Assumptions
- Bellman's Equation

2 Learning

- Monte-Carlo Method
- Temporal-Difference
- Learning to Act
- Q-Learning

3 Improvements

- Importance of Making Mistakes
- Eligibility Trace

Agent–Environment Abstraction:

- Policy Choice of action, depending on current state
- Learning Objective:

Develop a policy which maximizes the reward

Örjan Ekeberg

... total reward over the agents lifetime!

Credit Assignment Problems

- The reward does not necessarily arrive *when* you do something good
 - Temporal credit assignment

Defin

• The reward does not say *what* was good Structural credit assignment

Örjan Ekeberg Machine Learning

Defining the Problem Learning Simplifying Assumption Improvements Bellman's Equation

Machine Learning

Consider a *minimal* behavior selection situation: What is the best action to make?

- Reward Immediate consequence of our decision
- Planning Taking future reward into account
- Optimal Behavior Maximize total reward

ng the Problem	Reward Maximization
Learning	Simplifying Assumptions
Improvements	

Can the agent make the right decision without explicitly modeling the future?

Yes! If the Sum of Future Rewards for each situation is known.

Call this the State Value

- State Values are *subjective*
- Depend on the agents own behavior
- Must be re-adjusted as the agents behavior improves

Planning Horizon — How long is *the future*?

Infinite future allows for *infinite postponing*

Discounting — Make *early reward* more valuable
Discount factor (γ) — Time scale of planning

Örjan Ekeberg

Learning Improvements

Defining the Problem

Machine Learning

Reward Maximization

nplifying Assumption Ilman's Equation Finite Horizon

Infinite Horizon

 $\max\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}\right]$

Requires discount of future reward (0 < γ < 1)

Örjan Ekeberg Machine Learning

Defining the Problem Learning Improvements

Reward Maximization Simplifying Assumptions Bellman's Equation

Simplifying Assumptions

- Discrete time
- Finite number of actions *a_i*

 $a_i \in a_1, a_2, a_3, \ldots, a_n$

• Finite number of states *s_i*

 $s_i \in s_1, s_2, s_3, \ldots, s_m$

• Environment is a stationary *Markov Decision Process* Reward and next state depends only on *s*, *a* and chance

The Reward function controls which task should be solved

- Game (Chess, Backgammon) Reward only at the end: +1 when winning, -1 when loosing
- Avoiding mistakes (cycling, balancing, ...) Reward -1 at the end (when failing)
- Find a short/fast/cheap path to a goal Reward -1 at each step

Classical model problem: Grid World

- Each state is represented by a position in a grid
- The agent acts by moving to other positions

Defining the Problem

Improvements

Reward: -1 at each step until a goal state (G) is reached

Simplifying Assumptions

The values of a state depends on the current policy.

optimal policy

-20|-22|-18|-14-22|-20|-14|V with a

0

random policy

-14 | -18 | -22 |

|-14|-20|-22

-20

0

Örjan Ekeberg Machine Learning

Defining the Problem Improvements

Bellman's Equation

Representation of the Environment

• Where does an action take us?

 $\delta(s, a) \mapsto s'$

• How much reward do we receive?

 $r(s, a) \mapsto \Re$

The values of different states are interrelated Bellman's Equation:

 $V^{\pi}(s) = r(s, \pi(s)) + \gamma \cdot V^{\pi}(\delta(s, \pi(s)))$

The Agents Internal Representation

• Policy

The action chosen by the agent for each state

Örjan Ekeberg

Learning Improvements

Defining the Problem

 $\pi(s) \mapsto a$

Machine Learning

Bellman's Equation

• Value Function

Expected total future reward from s when following policy π

$$V^{\pi}(s) \mapsto \Re$$

Temporal-Differen Learning to Act Q-Learning

Machine Learning

Temporal-Difference

8

-4

Learning to Act Q-Learning

1 Defining the Problem

- Reward Maximization
- Simplifying Assumptions
- Bellman's Equation

2 Learning

- Monte-Carlo Method
- Temporal-Difference
- Learning to Act
- Q-Learning

3 Improvements

- Importance of Making Mistakes
- Eligibility Trace

Defining the Problem Learning Improvements Q-Learning

Normal scenario: r(s, a) and $\delta(s, a)$ are not known

 V^{π} must be estimated by experience

Monte-Carlo Method

- Start at a random s
- Follow π , store the rewards and s_t
- When the goal is reached, update V^π(s)-estimation for all visited stated with the future reward we actually received

Painfully slow!

Örjan Ekeberg Machine Learning

Defining

g the Problem Learning Improvements Monte-Carlo Method Temporal-Difference Learning to Act Q-Learning

• Expected Value

 $V^{\pi}(s_t)$

• One-step Experienced Value

$$r_{t+1} + \gamma \cdot V^{\pi}(s_{t+1})$$

• TD-signal — measure of surprise / disappointment

$$TD = r_{t+1} + \gamma \cdot V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

• TD Learning

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \eta TD$$

-4

Örjan Ekeberg

Learning

Improvements

Temporal Difference — the difference between:

• Experienced value

(immediate reward + value of next state)

• Expected value

Measure of unexpected success

Temporal Difference Learning

- Two sources:
 - Higher immediate reward than expected
 - Reached better situation than expected

Defining the Problem Learning Improvements Q-1 earning

Learning to Act

Many possibilities...

• Q-Learning

Actor–Critic Model

How do we get a *policy* from the *TD signal*?

(Barto, Sutton, Anderson IEEE Trans. Syst. Man & Cybern. 1983)

Örjan Ekeberg

Machine Learning

(Watkins, 1989; Watkins & Dayan Machine Learning 1992)

Defining the Problem Learning Improvements Q-Learning

Actor–Critic Model

Actor — Associates states with actions $\pi(\cdot)$

Critic — Associates states with their value $V(\cdot)$

TD-signal is used as a *reinforcement signal* to update both!

- High TD (unexpected success)
 - Increase value of preceeding state
 - Increase tendency to make same action again
- Low TD (unexpected failure)
 - Decrease value of preceeding state
 - Decrease tendency to make same action again

Örjan Ekeberg Machine Learning

Defining the Problem Learning Improvements Improvements Q-Learning Q-Learning Defining the Problem Estimate Q(s, a) instead of V(s)Reward Maximization • Simplifying Assumptions Q(s, a): Expected total reward when doing a from s. • Bellman's Equation $\pi(s) = \operatorname*{argmax}_{a} Q(s, a)$ 2 Learning Monte-Carlo Method $V^{\star}(s) = \max_{a} Q^{\star}(s, a)$ • Temporal-Difference • Learning to Act • Q-Learning

e q Leannig

Improvements

- Importance of Making Mistakes
- Eligibility Trace

The Q-function can also be learned using Temporal-Difference

$$Q(s, a) \leftarrow Q(s, a) + \eta \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a)
ight]$$

s' is the next state.

Defining the Problem Learning Improvements Improvements

What do we do when...

- The environment is not deterministic
- The environment is not fully observable
- There are way too many states
- The states are not discrete
- The agent is acting in continuous time

The Exploration–Exploitation dilemma

If an agent strictly follows a greedy policy based on the current estimate of Q, learning is not guaranteed to converge to Q^*

Simple solution:

Use a policy which has a certain probability of "making mistakes"

• ϵ -greedy

Sometimes (with probability ϵ) make a random action instead of the one that seems best (greedy)

• Softmax

Assign a probability to choose each action depending on how good they seem

Machine Learning

Örjan Ekeberg

Örjan Ekeberg Machine Learning

Defining the Problem Learning Improvements Importance of Making Mistakes Eligibility Trace

Accelerated learning

Idéa: TD updates can be used to improve not only the last state's value, but also states we have visited earlier.

$$\forall s, a: Q(s, a) \leftarrow Q(s, a) + \eta \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right] \cdot e$$

e is a remaining trace (eligibility trace) encoding how long ago we were in s doing a.

Often denoted $TD(\lambda)$ where λ is the time constant of the trace e