Distributed Systems
ID2201

coordination and agreement |
Johan Montelius

Coordination

* Coordinating several threads in one node is
a problem, coordination in a network is of
course worse;:

- no fixed coordinator

- no shared memory

- failure of nodes and networks
 Coordination is often the problem of:

- deciding who is to decide

- knowing who is alive.

Fundamental models

 Interaction model:

- Is the system asynchronous or
synchronous?

- Can we assume a node has crashed if it
does not reply?

* Failure model:
- Will nodes crash?
- Will crash nodes return to life?
- Is crashing the only failure?

Distributed algorithms

 We will look at some distributed
algorithms and assume:

- that nodes are correct
- that messages are delivered

Three sides of the same coin

e Mutual exclusion

- Decide who is to enter a critical
section.

e Leader election
- Decide who is to be the new leader.
e Atomic multicast

Which messages, and in which
order, should be deliver a message.

Distributed mutual exclusion

 Requirements

- Safety: at most one process may be in
critical section at a time

- Liveness: starvation free, deadlock free

- Ordering: allowed to enter in request
happened-before order

Evaluation

* Number of messages needed.
* Client delay:
- worst,

- mean or, average time to enter critical
section

* Synchronization delay: how long time
between exit and enter.

Central service algorithm

 Requirements? 0
- safety 0
- liveness
- ordering A I

grant

release queue

-

Ordering - what is a request

Performance

* messages
- enter: request, grant
- exit: release

* client delay

- enter: message round trip plus waiting
In queue

- exit: constant (asynchronous message)
* synchronization delay
- round trip: release - grant

Ring-based algorithm

 Requirements

- safety
- liveness
- ordering /‘—70\
O
O
\ '
O O

Ring-based algorithm

 Performance
- messages
- client delay
- synchronization delay o~ @

X
¢
\. A

Distributed algorithm

* Send request to all
peers.

 When all peers have
acknowledged the ®
request, enter the critical @

section. ® ‘\\:
 What could go wrong? \ $

Distributed algorithm

e Break deadlock
- Introduce priority

* Fairness
- Ricart and Agrawala o @
O
..
o 7

Ricart and Agrawala

e Enter:

- enter state waiting and broadcast a request {T,i}
containing a Lamport time stamp T and process id
| to all peers

- walit for replies from all peers
- enter state held
 Receiving a request {R,j}:

- If held or (waiting and {T,i} < {R,j}) then queue
request, else reply ok

o EXit:
- reply to all queued requests

Ricart and Agrawala

 Requirements

- safety, liveness, ordering
» Efficiency

- messages

- client delay

- synchronization delay

Maekawa's voting

 Why have permission from all peers, it's
sufficient to have votes from a subset S if
no one can enter with the votes from the
complement of S.

* The subset S is called a quorum.

Maekawa's voting

 Requirements
- safety
- liveness
- ordering

Maekawa's voting

« Efficiency
- messages
- client delay
- synchronization delay

Election

 Many algorithms require a leader but if no
node Is assigned to be the leader one has

to be elected.
 Assumptions:

- any node can call an election, but it can
only call one at a time

- a hode Is either participant or
non-participant

- nodes have identifiers that are ordered

Election

 Requirements

- safety: a participant is either non-decided or
decided with P, a unique non crashed node

- liveness: all nodes eventually participate and
decide on a elected node

« Efficiency
- number of messages
- turnaround time: delay from call to close

Ring-based election

Ring-based election

 Requirements
- safety
- liveness
» Efficiency
- messages: best case, worst case?
- turnaround:

Multicast communication

e Multicast:

- Sending a message to a specified
group of n nodes.

e Atomic multicast:

- All nodes see the same messages in
the same order.

send receijve receive

e
| |

Requirements

* |Integrity

- a process delivers a message at most
once and only deliver messages that have
been sent

e Validity
- If a process multicast m then it will also
eventually deliver m
* Agreement

- If a process delivers m then all processes
In the group eventually delivers m

Basic multicast

 To b-multicast a message m:
- send m to each process p
* If mis received:

- b-deliver m
 What was the problem?

Ordered multicast

 The problem with the basic multicast is
that multicast messages might arrive in
different order at different nodes.

 Requirements:

- FIFO order: delivered in order as sent by the
sender

- Causal order: delivered in order as happened
before sent order

- Total order: delivered in_same order by all
processes

Sequencer
o @ %o

NI

‘\
V\

message
queue

Distributed - ISIS

 Multicast a message and request a sequence
number.

* When receiving a message, propose a sequence
number (including process id) and place in an
ordered hold-back queue.

e After collecting all proposals, select the highest
and multicast agreement.

* When receiving agreement tag message as
agreed and reorder hold-back queue.

* If first message in queue is decided then deliver.

Distributed - ISIS

(S

{request, m1,}

Distributed - ISIS

{proposal ml, 1
{ proposal, ml1, 2}

{proposal, ml, 3}

Distributed - ISIS

(S

{assign, m1, 3}

the hold-back queue

Ideﬁver
{m1, proposed <2,i>}
{m2, agreed <3,e>} What will the agreed
/ {m3, agreed <3,k>} sequence number be?

{m4, proposed <4,i>}

What happened here? {m5, proposed <5,i>}

Causal ordering

* How can we implement casual ordering?

- multicast vector clock holds number of
multicast operations

- tag each multicast message with multicast
clock

- hold b-delivered messages until clock of
message is less (modulo sender) than own
current message clock

- update own message clock
* Only multicasted messages are counted.

Summary

e Coordination in distributed systems is
problematic.

* Three sides of the same coin:
- mutual exclusion
- leader election
- atomic multicast
* |f nodes falil
- next lecture

	Title
	descr
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 35
	Slide 36
	Slide 37

