
1
Distributed Systems ID2201

Distributed Systems
ID2201

coordination and agreement I
Johan Montelius

2
Distributed Systems ID2201

Coordination

• Coordinating several threads in one node is
a problem, coordination in a network is of
course worse:
– no fixed coordinator
– no shared memory
– failure of nodes and networks

• Coordination is often the problem of:
– deciding who is to decide
– knowing who is alive.

3
Distributed Systems ID2201

Fundamental models

• Interaction model:
– Is the system asynchronous or

synchronous?
– Can we assume a node has crashed if it

does not reply?
• Failure model:

– Will nodes crash?
– Will crash nodes return to life?
– Is crashing the only failure?

4
Distributed Systems ID2201

Distributed algorithms

• We will look at some distributed
algorithms and assume:
– that nodes are correct
– that messages are delivered

5
Distributed Systems ID2201

Three sides of the same coin

• Mutual exclusion
– Decide who is to enter a critical

section.
• Leader election

– Decide who is to be the new leader.
• Atomic multicast

Which messages, and in which
order, should be deliver a message.

6
Distributed Systems ID2201

Distributed mutual exclusion

• Requirements
– Safety: at most one process may be in

critical section at a time
– Liveness: starvation free, deadlock free
– Ordering: allowed to enter in request

happened-before order

7
Distributed Systems ID2201

Evaluation

• Number of messages needed.
• Client delay:

– worst,
– mean or, average time to enter critical

section
• Synchronization delay: how long time

between exit and enter.

8
Distributed Systems ID2201

Central service algorithm

• Requirements?
– safety
– liveness
– ordering req

release

grant

queue

9
Distributed Systems ID2201

Ordering - what is a request

A

B

Server

10
Distributed Systems ID2201

Performance

• messages
– enter: request, grant
– exit: release

• client delay
– enter: message round trip plus waiting

in queue
– exit: constant (asynchronous message)

• synchronization delay
– round trip: release - grant

11
Distributed Systems ID2201

Ring-based algorithm

• Requirements
– safety
– liveness
– ordering

12
Distributed Systems ID2201

Ring-based algorithm

• Performance
– messages
– client delay
– synchronization delay

13
Distributed Systems ID2201

Distributed algorithm

• Send request to all
peers.

• When all peers have
acknowledged the
request, enter the critical
section.

• What could go wrong?

14
Distributed Systems ID2201

Distributed algorithm

• Break deadlock
– introduce priority

• Fairness
– Ricart and Agrawala

15
Distributed Systems ID2201

Ricart and Agrawala
• Enter:

– enter state waiting and broadcast a request {T,i}
containing a Lamport time stamp T and process id
I to all peers

– wait for replies from all peers
– enter state held

• Receiving a request {R,j}:
– if held or (waiting and {T,i} < {R,j}) then queue

request, else reply ok

• Exit:
– reply to all queued requests

16
Distributed Systems ID2201

Ricart and Agrawala
• Requirements

– safety, liveness, ordering
• Efficiency

– messages
– client delay
– synchronization delay

17
Distributed Systems ID2201

Maekawa's voting

• Why have permission from all peers, it's
sufficient to have votes from a subset S if
no one can enter with the votes from the
complement of S.

• The subset S is called a quorum.

18
Distributed Systems ID2201

Maekawa's voting

• Requirements
– safety
– liveness
– ordering

19
Distributed Systems ID2201

Maekawa's voting

• Efficiency
– messages
– client delay
– synchronization delay

20
Distributed Systems ID2201

Election

• Many algorithms require a leader but if no
node is assigned to be the leader one has
to be elected.

• Assumptions:
– any node can call an election, but it can

only call one at a time
– a node is either participant or

non-participant
– nodes have identifiers that are ordered

21
Distributed Systems ID2201

Election

• Requirements
– safety: a participant is either non-decided or

decided with P, a unique non crashed node

– liveness: all nodes eventually participate and
decide on a elected node

• Efficiency
– number of messages
– turnaround time: delay from call to close

22
Distributed Systems ID2201

Ring-based election
12

3

18

9

11

23

14

v-18

12

3

18

9

11

23

14
e-23

12

3

18

9

11

23

14

23
Distributed Systems ID2201

Ring-based election
12

3

18

9

11

23

14

v-18

v-23

12

3

18

9

11

23

14

v-18

v-23

12

3

18

9

11

23

14

v-18

v-23
12

3

18

9

11

23

14

v-23

24
Distributed Systems ID2201

Ring-based election

• Requirements
– safety
– liveness

• Efficiency
– messages: best case, worst case?
– turnaround:

25
Distributed Systems ID2201

Multicast communication

• Multicast:
– Sending a message to a specified

group of n nodes.
• Atomic multicast:

– All nodes see the same messages in
the same order.

26
Distributed Systems ID2201

Model

send

deliver

receive

deliver

receive

group

m-cast

27
Distributed Systems ID2201

Requirements

• Integrity
– a process delivers a message at most

once and only deliver messages that have
been sent

• Validity
– if a process multicast m then it will also

eventually deliver m
• Agreement

– if a process delivers m then all processes
in the group eventually delivers m

28
Distributed Systems ID2201

Basic multicast

• To b-multicast a message m:
– send m to each process p

• If m is received:
– b-deliver m

• What was the problem?

29
Distributed Systems ID2201

Ordered multicast

• The problem with the basic multicast is
that multicast messages might arrive in
different order at different nodes.

• Requirements:
– FIFO order: delivered in order as sent by the

sender
– Causal order: delivered in order as happened

before sent order
– Total order: delivered in same order by all

processes

30
Distributed Systems ID2201

Sequencer

m-cast m

 m

message
queue

31
Distributed Systems ID2201

Distributed - ISIS

• Multicast a message and request a sequence
number.

• When receiving a message, propose a sequence
number (including process id) and place in an
ordered hold-back queue.

• After collecting all proposals, select the highest
and multicast agreement.

• When receiving agreement tag message as
agreed and reorder hold-back queue.

• If first message in queue is decided then deliver.

32
Distributed Systems ID2201

Distributed - ISIS

{request, m1,}

33
Distributed Systems ID2201

Distributed - ISIS

{proposal, m1, 3}

{proposal, m1, 2}

{proposal, m1, 1}

34
Distributed Systems ID2201

Distributed - ISIS

{assign, m1, 3}

35
Distributed Systems ID2201

the hold-back queue

{m1, proposed <2,i>}

{m2, agreed <3,e>}

{m3, agreed <3,k>}

{m4, proposed <4,i>}

{m5, proposed <5,i>}

deliver

What happened here?

What will the agreed
sequence number be?

36
Distributed Systems ID2201

Causal ordering

• How can we implement casual ordering?
– multicast vector clock holds number of

multicast operations
– tag each multicast message with multicast

clock
– hold b-delivered messages until clock of

message is less (modulo sender) than own
current message clock

– update own message clock

• Only multicasted messages are counted.

37
Distributed Systems ID2201

Summary

• Coordination in distributed systems is
problematic.

• Three sides of the same coin:
– mutual exclusion
– leader election
– atomic multicast

• If nodes fail
– next lecture

	Title
	descr
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 35
	Slide 36
	Slide 37

