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Coordination

* Coordinating several threads in one node is
a problem, coordination in a network is of
course worse;:

- no fixed coordinator

- no shared memory

- failure of nodes and networks
 Coordination is often the problem of:

- deciding who is to decide

- knowing who is alive.




Fundamental models

 Interaction model:

- Is the system asynchronous or
synchronous?

- Can we assume a node has crashed if it
does not reply?

* Failure model:
- Will nodes crash?
- Will crash nodes return to life?
- Is crashing the only failure?




Distributed algorithms

 We will look at some distributed
algorithms and assume:

- that nodes are correct
- that messages are delivered




Three sides of the same coin

e Mutual exclusion

- Decide who is to enter a critical
section.

e Leader election
- Decide who is to be the new leader.
e Atomic multicast

Which messages, and in which
order, should be deliver a message.




Distributed mutual exclusion

 Requirements

- Safety: at most one process may be in
critical section at a time

- Liveness: starvation free, deadlock free

- Ordering: allowed to enter in request
happened-before order




Evaluation

* Number of messages needed.
* Client delay:
- worst,

- mean or, average time to enter critical
section

* Synchronization delay: how long time
between exit and enter.




Central service algorithm

 Requirements? 0
- safety 0
- liveness
- ordering A I

grant

release queue

-




Ordering - what is a request




Performance

* messages
- enter: request, grant
- exit: release

* client delay

- enter: message round trip plus waiting
In queue

- exit: constant (asynchronous message)
* synchronization delay
- round trip: release - grant




Ring-based algorithm

 Requirements

- safety
- liveness
- ordering /‘—70\
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Ring-based algorithm

 Performance
- messages
- client delay
- synchronization delay o~ @

X
¢
\. A




Distributed algorithm

* Send request to all
peers.

 When all peers have
acknowledged the ®
request, enter the critical @

section. ® ‘\\:
 What could go wrong? \ $




Distributed algorithm

e Break deadlock
- Introduce priority

* Fairness
- Ricart and Agrawala o @
O
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o 7




Ricart and Agrawala

e Enter:

- enter state waiting and broadcast a request {T,i}
containing a Lamport time stamp T and process id
| to all peers

- walit for replies from all peers
- enter state held
 Receiving a request {R,j}:

- If held or (waiting and {T,i} < {R,j}) then queue
request, else reply ok

o EXit:
- reply to all queued requests




Ricart and Agrawala

 Requirements

- safety, liveness, ordering
» Efficiency

- messages

- client delay

- synchronization delay




Maekawa's voting

 Why have permission from all peers, it's
sufficient to have votes from a subset S if
no one can enter with the votes from the
complement of S.

* The subset S is called a quorum.




Maekawa's voting

 Requirements
- safety
- liveness
- ordering




Maekawa's voting

« Efficiency
- messages
- client delay
- synchronization delay




Election

 Many algorithms require a leader but if no
node Is assigned to be the leader one has

to be elected.
 Assumptions:

- any node can call an election, but it can
only call one at a time

- a hode Is either participant or
non-participant

- nodes have identifiers that are ordered




Election

 Requirements

- safety: a participant is either non-decided or
decided with P, a unique non crashed node

- liveness: all nodes eventually participate and
decide on a elected node

« Efficiency
- number of messages
- turnaround time: delay from call to close




Ring-based election







Ring-based election

 Requirements
- safety
- liveness
» Efficiency
- messages: best case, worst case?
- turnaround:




Multicast communication

e Multicast:

- Sending a message to a specified
group of n nodes.

e Atomic multicast:

- All nodes see the same messages in
the same order.




send receijve receive
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Requirements

* |Integrity

- a process delivers a message at most
once and only deliver messages that have
been sent

e Validity
- If a process multicast m then it will also
eventually deliver m
* Agreement

- If a process delivers m then all processes
In the group eventually delivers m




Basic multicast

 To b-multicast a message m:
- send m to each process p
* If mis received:

- b-deliver m
 What was the problem?




Ordered multicast

 The problem with the basic multicast is
that multicast messages might arrive in
different order at different nodes.

 Requirements:

- FIFO order: delivered in order as sent by the
sender

- Causal order: delivered in order as happened
before sent order

- Total order: delivered in_same order by all
processes




Sequencer
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Distributed - ISIS

 Multicast a message and request a sequence
number.

* When receiving a message, propose a sequence
number (including process id) and place in an
ordered hold-back queue.

e After collecting all proposals, select the highest
and multicast agreement.

* When receiving agreement tag message as
agreed and reorder hold-back queue.

* If first message in queue is decided then deliver.




Distributed - ISIS

(S

{request, m1, ....}




Distributed - ISIS

{proposal ml, 1
{ proposal, ml1, 2}

{proposal, ml, 3}




Distributed - ISIS

(S

{assign, m1, 3}




the hold-back queue

Ideﬁver
{m1, proposed <2,i>}
{m2, agreed <3,e>} What will the agreed
/ {m3, agreed <3,k>} sequence number be?

{m4, proposed <4,i>}

What happened here? {m5, proposed <5,i>}




Causal ordering

* How can we implement casual ordering?

- multicast vector clock holds number of
multicast operations

- tag each multicast message with multicast
clock

- hold b-delivered messages until clock of
message is less (modulo sender) than own
current message clock

- update own message clock
* Only multicasted messages are counted.




Summary

e Coordination in distributed systems is
problematic.

* Three sides of the same coin:
- mutual exclusion
- leader election
- atomic multicast
* |f nodes falil
- next lecture
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