ROYAL INSTITUTE
OF TECHNOLOGY

EH2750 Computer Applications in
Power Systems, Advanced Course.

Lecture 5

Professor Lars Nordstrém, Ph.D.
Dept of Industrial Information & Control systems, KTH

larsn@ics.kth.se

Acknowledgement

* These slides are based largely on a set of slides
provided by:

Professor Rosenschein of the Hebrew University
Jerusalem, Israel

and
Dr. Georg Groh, TU-Miinchen, Germany.

* Available at the Student companion site of the
Introduction to Multi Agent Systems book

Outline of the Lecture

* Repeating where we are right now
- Intelligent Agents of various types
- How to make agents think and plan

» Constraint Satisfaction Problems
- A variant of planning problems (still in one agent)

» Multi-agent interactions
- Some concepts for cooperation

* Agent Communication
- Ontologies, XML, RDF and OWL

What is an Intelligent Agent?

* The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

* Thus: an intelligent agent is a computer system capable
of flexible autonomous action in some environment in
order to meet its design objectives

. output
input System

Environment

4/10/2013




The discussion so far

» Chapter 2 describes the idea of agents that perform
tasks in an environment and sets some definitions

» Chapters 3, 4, & 5 describe three different approaches
to describing and developing the apparent Intelligence
in the agents.
- Chapter 3 - Deductive Reasoning Agents
- Chapter 4 - Practical Reasoning Agents
- Chapter 5 - Reactive (and Hybrid Agents)

* In the Excerpt from the Al book used in Lecture #4
we took a look at planning and searching

» Today we start looking at the Multi in Multi-agent
systems

Practical Reasoning

» Human practical reasoning consists of two activities:
- deliberation
deciding what state of affairs we want to achieve

- means-ends reasoning
deciding how to achieve these states of affairs

» The outputs of deliberation are intentions

What are i_nten- What is Plans
possible lons the best N

things I
could do?

way to do
it?

Practical Reasoning Agent

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
inputs: percept, a percept
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «— UPDATE-STATE(statc, percept)

if seq is empty then do
goal «— FORMULATE-GOAL(state)
problem +— FORMULATE-PROBLEM(state, goal)
seq — SEARCH( problemn)

action —FIRST(seq)

seq — REST(seq)

return action

How this can look in JACK

PlanSelected 3

StartThinking

4/10/2013



Outline of the Lecture

» Constraint Satisfaction Problems
- A variant of planning problems (still in one agent)

Constraint Satisfaction problems

* Formally, a Constraint Satisfaction Problem (CSP) is

- A set of variables Xq Xy Xy,
- All within a domain d;,d,,..d,
- A set of constraints C1/CpyuCp

» A set of assigned values (to one or more of) the
variable(s) is a state.
- E.g.
© x, =23, x, =3 is the state {23,3}

Solution to a CSP

1. All variables have been assigned a value from their
respective Domain - complete assignment

2. All constraints hold - consistent assignment

CSP - Different Characteristics

» Discrete variables with Finite Domains
- Map colouring (typical example)
- Circuit switching

e Infinite domains
- E.g. Scheduling of flights

» Continuous variables
- Linear constraints — optimisation problem....

minimize  f(x)
z

4/10/2013



CSP in discrete finite domains

» Classic example - map coloring

» Color the map of Australia
» Using the colors Red, Green, Blue
¢ No neighbours can have the same
color
* CSP formulation
- X; = color of state i
-D = {Red, Green, Blue, Null}

- X EXy if xi=N(xj)

Or, if you wish

* CSP formulation for Switching problem

* Supply all load in the grid
* Switches can be on or off
* No loops
* CSP formulation
- X; = state of Switch i
- D = {breaking, conducting, Null}

- C; = not(X;AX,AX3AX,)

Back to Australia

» Constraint Graph for Australia coloring problem
@ « It turns out, that the structure

e of the problem can be useful for
. finding the solution.

@‘@ » This includes studying the types

and degrees of constraints.

And the Switching problem

O ®
oo

4/10/2013



Types of constraints

* Unary constraints involve a single variable e.g.,
- SA # green

» Binary constraints involve pairs of variables
- SA # WA

e Higher order involves 3 or more variables

* not (X;AX,AX3AX,)

* More advanced constraints
- Use cost metrics for a variable
- Powerflows for instance?
- Constrained optimization problem

So, why all this?

* CSPs can be seen as search problems
- States are defined by values assigned this far
- Initial state: empty assignment {}
+ Successor function:
- Assign value to a variable that is OK with constraints
+ Goal test: complete assignment with all constraints satisfied

* Note that every solution appears at depth n
=>use depth-first search

But, wait - don’t be too fast

* What is the complexity of a completely naive solution?
O(n!d")

* Because for every variable you must test any
color and then test the constraints and goal
fulfilment.

e But that is stupid!

Commutativity

* The order in which assignments are made is not
important.
» Consider only one variable at each node.

- No point to worry about color of WA when you are
selecting the color at SA

» Use Backtracking if searching fails.
- Success function is:
- Assign value to variable x; from d;

- If not possible unless constraints are broken
- Go back to x;_; and assign alternate value from domain d;_,

4/10/2013



"Generic” Heuristics

» Based on our knowledge of the constraint graph we
can choose which is the next node to assign a variable
to.

* Minimum Remaining values (MRV)
- Pick the Node with the least number of available values.
- This avoids searching for solutions

‘_ Allows 1 value for SA

_.‘ 1 _.‘ _‘ <
o/ '. t Allows 0 values for SA

Degree Heuristic

* But where to start?

- Select the Node with the most constraints, highest
degree* in constraint graph.

L

* Number of connecting edges in the Graph.

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({ }.csp)

flllll‘flnll RECURSIVE-BAC KTRACKI\G(aa_szynmznt csp) returns a solution, or failure
if is complete then return
var < SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp]. assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is i ith assi; ding to CONSTRAINTS| csp] then
add {var = value) to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp)
if result  failure then return result
remove {var = value) from assignment
return failure

Figure 5.3 A simple back ki lgorithm for isfacti bl The
algorithm is modeled on the recursive depth-first search of Chapter 3. The functions
SELECT-UNASSIGNED- VARMBLE and ORDER DOMAIN-VALUES can be used to imple-

ment the g l-purp di din the text.

Things to take away

» Constraint Satsifaction Problems can be solved as
searches

» Analysis of the problem structure can provide us with
generic heuristics

* Planning with Backtracking is a key method for
cooperative planning

4/10/2013



Outline of the Lecture

» Multi-agent interactions
- Some concepts for cooperation

Multi-agent System

KEY Environment
------ organisational relationship
== interaction sphere of influence

(=]

agent

Multi-agent Systems

Contains a number of agents...

e ..which interact through communication...
e ..are able to act in an environment...

« ...have different “spheres of influence” (which may
coincide)...

o ...will be linked by other (organizational) relationships

Working Together

* Why and how do agents work together?

o Important to make a distinction between:
- benevolent agents
- self-interested agents

4/10/2013



Benevolent Agents

« If we “own” the whole system, we can design agents to
help each other whenever asked

¢ In this case, we can assume agents are benevolent: our
best interest is their best interest

» Problem-solving in benevolent systems is cooperative
distributed problem solving (CDPS)

* Benevolence simplifies the system design task enormously!

Self-Interested Agents

« If agents represent individuals or organizations, (the more
general case), then we cannot make the benevolence
assumption

* Agents will be assumed to act to further their own interests,

possibly at expense of others
» Potential for conflict
* May complicate the design task enormously

Benevolent Agents

Task Sharing and Result Sharing

* Two main modes of cooperative problem solving:

- task sharing:
components of a task are distributed to component agents

- result sharing:
information (partial results, etc.) is distributed

(1)

\Taskn] Task 12| Task13J

L0 5 .D. ~ ol
task sharing result sharing

Benevolent Agents
Cooperative Distributed Problem Solving

» CDPS is concerned with investigation of:
» Problem subdivision
» Sub-Problem distribution
« Result synthesis
« Optimization of problem solver coherence
* Optimization of problem solver coordination

s

decomposition solution synthesis

4/10/2013



Benevolent Agents

Coherence

Coherence: Refers to “how well the MAS behaves as a
unit along some dimension of evaluation”. Coherence
may be measured in terms of

e Solution quality

e resource usage

e conceptual clarity of operation

e performance degradation if unexpected failure

occurs

Benevolent Agents

Coordination

e Coordination: “"The degree...to which [the agents] can
avoid ‘extraneous’ activity [such as] ...synchronizing and
aligning their activities”
- Poor coordination if
e Agents clobber each other’s sub-goals
e Lots of communication (no mutual predictability (e.g.
by expressive models of each other))
o Destructive interference if conflict

Self-Interested Agents

Utilities and Preferences

* Assume we have just two agents: 4g = {i, j}
* Agents are assumed to be self-interested: they have
preferences over how the environment is
e Assume Q = {w,, m,, ... }is the set of “outcomes” that
agents have preferences over
»We capture preferences by utility functions:
u;=Q—=R
u,=Q—=R
» Utility functions lead to preference orderings over
outcomes:
w =W means u(w) > u(W')
w=;w means u;(w) > u;(w')

4/10/2013



What is Utility?

 Utility is not money (but it is a useful analogy)
» Typical relationship between utility & money:

utility

money

Multiagent Encounters

* We need a model of the environment in which these
agents will act...

- agents simultaneously choose an action to perform, and as a
result of the actions they select, an outcome in Q will result

- the actual outcome depends on the combination of actions
- assume each agent has just two possible actions that it can
perform, C (“cooperate”) and D (“defect”)
e Environment behavior given by state transformer
function:

T : dc X dc —Q
agenti’'s action agent’s action

Multiagent Encounters
e Here is a state transformer function:
T(D,D)=w1 7(D,C)=wy 7(C,D)y=w3 7(C,C)=uwy

(This environment is sensitive to actions of both agents.)

e Here is another:
T(D,Dy=wy 7D, C)=w 7(C,D)=w 7(C,C)=uwn
(Neither agent has any influence in this environment.)

* And here is another:
(D, D)=w 7(D,C)=wy 7(C,D)=w 7(C,C)=ws

(This environment is controlled by j.)

Rational Action

* Suppose we have the case where both agents can
influence the outcome, and they have utility functions
as follows:  w{wi)) =1 wws) =1 wws)=4 wwy)=4

ufw) =1 ufws) =4 wws) =1 wlwy) =4

*With a bit of abuse of notation:

u(D,D)Y=1 u(D,C)=1 wu(C,D)=4 u(C,C)=4
w(D,D) =1 u(D,C)=4 u(C,D)=1 u(C,C)=4

*Then agent i’ s preferences are:
CC= CD > D, Cr;DD
« “C” is the rational choice for i.
(Because i prefers all outcomes that arise through C
over all outcomes that arise through D.)

4/10/2013

10



Payoff Matrices

* We can characterize the previous scenario in a payoff

matrix: i

defect coop
defect 1 4
j 1 1
coop 1 4
4 4

e Agent i is the column player
e Agent j is the row player

Dominant Strategies

* Given any particular strategy (either C or D) of agent
i, there will be a number of possible outcomes

*We say s, dominates s, if every outcome possible by i
playing s, is preferred over every outcome possible
by i playing s,

* A rational agent will never play a dominated strategy

*So in deciding what to do, we can delete dominated
strategies

» Unfortunately, there isn’t always a unique
undominated strategy

Nash Equilibrium

In general, we will say that two strategies s, and s,
are in Nash equilibrium if:
1. under the assumption that agent i plays s,, agent j can do no
better than play s,; and
2. under the assumption that agent; plays s,, agent i can do no
better than play s,.
Neither agent has any incentive to deviate from a
Nash equilibrium
Unfortunately:
1. Not every interaction scenario has a Nash equilibrium

2. Some interaction scenarios have more than one Nash
equilibrium

Competitive and Zero-Sum Interactions

* Where preferences of agents are diametrically opposed
we have strictly competitive scenarios

» Zero-sum encounters are those where utilities sum to
zero:

ufw)+ u(w)=0  forall win Q

e Zero sum implies strictly competitive

e Zero sum encounters in real life are very rare ... but
people tend to act in many scenarios as if they were zero
sum

4/10/2013

11



The Prisoner’ s Dilemma

* Two men are collectively charged with a crime and held in
separate cells, with no way of meeting or communicating.
They are told that:

- if one confesses and the other does not, the confessor will be
freed, and the other will be jailed for three years
- if both confess, then each will be jailed for two years

» Both prisoners know that if neither confesses, then they

will each be jailed for one year

The Prisoner’ s Dilemma

i

 Payoff matrix for defect coop
prisoner’ s dilemma: defect| 2 1
j 2 4
coop 4 3
1 3

* Top left: If both defect, then both get punishment for
mutual defection

» Top right: If i cooperates and j defects, i gets sucker’s
payoff of 1, while j gets 4

» Bottom left: If j cooperates and i defects, j gets sucker’s
payoff of 1, while i gets 4

* Bottom right: Reward for mutual cooperation

The Prisoner’ s Dilemmma

» The individual rational action is defect
This guarantees a payoff of no worse than 2, whereas
cooperating guarantees a payoff of at most 1

» So defection is the best response to all possible strategies:
both agents defect, and get payoff = 2

* But intuition says this is not the best outcome:
Surely they should both cooperate and each get payoff of
3!

The Prisoner’ s Dilemma

» This apparent paradox is the fundamental problem of multi-
agent interactions.
It appears to imply that cooperation will not occur in
societies of self-interested agents.

* Real world examples:
- nuclear arms reduction (“why don’t I keep mine. .. ")
- free rider systems — public transport;

» The prisoner’s dilemma is present everywhere.
* Can we recover cooperation?

- Well, yes we can introduce auctions, negotiations and
argumentation. More on this next lecture!

4/10/2013

12



Outline of the Lecture

* Agent Communication
- Ontologies, XML, RDF and OWL

Agent Communication

* The traditional computer sciences view on
communication in concurrent systems is
focused on solving synchronization of multiple
processes.

+ Example:

* Processes pl and p2; shared variable v;

pl reads v;

p2 reads v;

p2 updates v;

pl updates v;

- updates by p2 are lost;

Agent Communication II

Object oriented view on communication: Object o2
invokes method m on object ol1: Java: ol.m(arg)
e 02 has control over invocation. ol must invoke m.

Agent view on communication: Agent a2 asks (sends
event in JACK) agent al to perform action «. (a2 makes
a request).
e al has control over whether it performs action «.
Agents are autonomous.

Agent Communication III

+ What agents can do:
Perform communication acts

» Goal: Influence other agents:
« To make them perform actions or
» to make them believe something (change their
belief)

« The receiving agent decides whether to perform
action or believe proposition

4/10/2013

13



Speech Acts

» Most treatments of communication in (multi-)
agent systems borrow their inspiration from speech
act theory

» Speech act theories are pragmatic theories of
language, i.e., theories of language use: they
attempt to account for how language is used by
people every day to achieve their goals and
intentions

* The origin of speech act theories are usually traced
to Austin’s 1962 book, How to Do Things with
Words

Speech Acts in the agent community

* Based on the Speech Act theory, Agent Communication
Languages have been developed.

* The two most known are
- KQML - Knowledge Quesry Markup Language.
- FIPA - ACL Agent Communication Language.

» These are not programming languages as such, but
formalisations of communication acts that are useful to
understand and specify agent interaction.

Speech Acts - some thoughts.

» Consider:

- performative = request
content = “the door is closed”
speech act = “please close the door”

- performative = inform
content = “the door is closed”
speech act = “the door is closed!”

- performative = inquire
content = “the door is closed”
speech act = “is the door closed?”

Agent Communication Languages

* We now consider agent communication languages
(ACLs) — standard formats for the exchange of
messages

* An early example of an ACL is KQML, developed by the
ARPA knowledge sharing initiative
KQML is comprised of two parts:

- the knowledge query and manipulation language (KQML)
- the knowledge interchange format (KIF)
¢ A later developed framework is the FIPA

4/10/2013

14



4/10/2013

KQML and KIF

FIPA
<KQML is an ‘outer’ language, that defines various ’ » More recently, the Foundation for Intelligent Physical
acceptable ‘communicative verbs’, or performatives Agents (FIPA) started wo_rk on a program of agent
Example performatives: standards — the centerpiece is an ACL
- ask-if (‘is it true that. . . ") » Basic structure is quite similar to KQML:
_ ol f he followi ion. ..’ - performative
_ i:io(r,r;}t i(s 2rizs§hgfr on"n)t @ following action ) 20 performative in FIPA
- reply (‘the answeris...’) ) Zoguszléen%lz:getc
» KIF is a language for expressing message content : !

- content
the actual content of the message

FIPA, example of an performative To communicate...

* Example:
(inform e ..the agents must understand each other
:sender agentl
:receiver agen » To understand each other the agents must use
icontent common terms, an Ontology is a formal specification
:language sl of such terms.
:ontology hpl-auction

But this part
then?

15



Specifications of Terms - XML

» A basic format for specifying information exchange is
the XML (eXtended Markup Language)

crwiml versiona'1.0" standslonetyest 75 » The structure of the information is
: . irmi"ghﬂmu;ZE=‘-L;,QE-> decided by the author of the text file
* No rule checking is implemented in

<Name>Apple</Name:z

<typesfruit</type> the format
eost>15</cost> « Data can be named with tags.
</food>
- «food> , » The strucuture of the XML file is
<Name=Carrot</Name> e .
<typesvegetable</type> specified in an XML Schema (XMLS)
</<f§§;‘:1°</°°5f> » By exchanging XMLS files, two agents
</shop> can be made aware of possible terms.

XML Schema

tp:/ /. w3 .0rg/ 2001/ XMLSChema”
ttp://xmins.oracle.con/xdb version=1.0">
EmployeeDetails">

string"/>
s

XMLS

Specifications of Terms - RDF

» Resource Description Framework uses XML syntax but
adds more rules to the terms.
- XML is more flexible = Less interoperable
- RDF is more strucutred )= More interoperable

* A framework (not a language) for describing resources
- Providing a model for data

- Syntax to allow exchange and use of information stored
in various locations

- The point is to facilitate reading and correct use of
information by computers, not necessarily by people

(ROFS)
owL

I~

RDF Structure

* Described in RDF Schema (or now more popular OWL)
* Nodes are identified by URIs

- E.g. http://iec.ch/TC57/2001/CIM-schema-cim10#Wires
» Elements in RDF files can be given more attributes

- rdfs:Class

- rdfs:Property R s

- rdfs:subClassOf T ioeeyroesTiconduct ingEquipnent=/>
- rdf:type e e shroakers safa labels

<rdfs:subClassOf rdf:resource="§Switch"/>
</rdfs:Class>

as ty rdf:ID="Switch.NormalOpen">
<rdfs:label>Normalopenc</rdfs:label>
<rdfs:domain resource="#Switch"/>
<rdfs:range rdf:resource="#Boolean"/>
</xdf:Property>

<rdf :Property rdf:ID="Breaker.AmpRating">

<rdfs:range rdf:resource="#Real"/>
</rdf:Property>

4/10/2013

16



Simplified Schema, Healthcare example

<rdfs:Class rdf:ID="Provider >

<rdfs:subClassOf rdf:resource="“#Person” />

@ </rdfs:Class>
@

RDF example

The xmlns:rdf namespace, specifies that
elements with the rdf prefix are from the
namespace "http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#".

The xmlIns:cd namespace, specifies that
elements with the cd prefix are from the
namespace "http://www.recshop.fake/cd#".

The <rdf:Description> element contains the
description of the resource identified by the
rdf:about attribute.

The elements: <cd:artist>, <cd:country>,
<cd:company>, etc. are properties of the
resource.

<?xml version="1.0"?>

<rdf:RDF
xmins:
xmins:

ttp://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
http://www.recshop.fake/cd#">

<rdf:Description

rdf:about="http://www.recshop.fake/cd/Empire Burlesque">
<cd:artist>Bob Dylan</cd:artist>
<cd:country>USA</cd:country>
<cd:company>Columbia</cd:company>
<cd:price>10.90</cd:price>
<cd:year>1985</cd:year>

</rdf:Description>

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Hide your heart">
<cd:artist>Bonnie Tyler</cd:artist>
<cdicountry>UK</cd:country>
<cd:company>CBS Records</cd:company>
<cd:price>9.90</cd:price>
<cd:year>1988</cd:year>
</rdf:Description>

</rdf:RDF>

Specification of Terms - OWL

* OWL Ontology Web Language
» Adds even more strucutre to the meta-data definitions

» Adds relation to Objects, so that Logic can be used to
Infer facts about the data.

A

Outline of the Lecture

* Repeating where we are right now
- Intelligent Agents of various types
- How to make agents think and plan

» Constraint Satsifaction Problems
- A variant of planning problems (still in one agent)

» Multi-agent interactions

- Some concepts for cooperation

* Agent Communication

- Ontologies, XML, RDF and OWL

4/10/2013

17



