

EH2750 Computer Applications in Power Systems, Advanced Course.

Lecture 6

Professor Lars Nordström, Ph.D.
 Dept of Industrial Information & Control systems, KTH
larsn@ics.kth.se

Acknowledgement

- These slides are based largely on a set of slides provided by:

*Professor Michael Wooldridge, Oxford University,
 England*
 and
Dr. Georg Groh, TU-München, Germany.

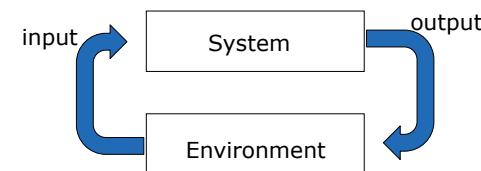
- Available at the Student companion site of the Introduction to Multi Agent Systems book

Outline of the Lecture

- Repeating where we are right now
 - Intelligent Agents of various types
 - How to make agents think and plan
 - Constraint Satisfaction Problems
 - Communicating & Cooperating
- Allocating Scarce Resources - Auctions

What is an Intelligent Agent?

- The main point about agents is they are *autonomous*: capable of acting independently, exhibiting control over their internal state
- Thus: *an intelligent agent is a computer system capable of flexible autonomous action in some environment in order to meet its design objectives*

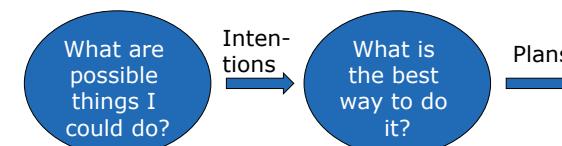


The discussion so far

- Chapter 2 describes the idea of agents that perform tasks in an environment and sets some definitions
- Chapters 3, 4, & 5 describe three different approaches to describing and developing the apparent Intelligence in the agents.
 - Chapter 3 – Deductive Reasoning Agents
 - Chapter 4 – Practical Reasoning Agents
 - Chapter 5 - Reactive (and Hybrid Agents)
- In the Excerpt from the AI book used in Lecture #4 we took a look at planning and searching
- At lecture #5 we looked at multi-agent encounters and rational ways of collaboration

Practical Reasoning

- Human practical reasoning consists of two activities:
 - *deliberation*
deciding *what* state of affairs we want to achieve
 - *means-ends reasoning*
deciding *how* to achieve these states of affairs
- The outputs of deliberation are *intentions*



Problem Formulation

- Before starting the search for a solution, we need to define the problem we are trying to solve
- A Problem formulation has the following parts:
 - An initial state
 - Actions possible in terms of **successor** function, that is a list of tuples:
 - (Action, Successor)
 - A goal state and a test if we are at the goal
 - A path cost related to the cost of a path/action*

*It is easy to think of the steps along the path as separate actions, this is OK, but formally not correct at this stage.

Practical Reasoning Agent

```

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns action
  inputs: percept, a percept
  static: seq, an action sequence, initially empty
          state, some description of the current world state
          goal, a goal, initially null
          problem, a problem formulation
  state  $\leftarrow$  UPDATE-STATE(state, percept)
  if seq is empty then do
    goal  $\leftarrow$  FORMULATE-GOAL(state)
    problem  $\leftarrow$  FORMULATE-PROBLEM(state, goal)
    seq  $\leftarrow$  SEARCH(problem)
    action  $\leftarrow$  FIRST(seq)
    seq  $\leftarrow$  REST(seq)
  return action

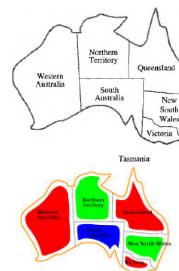
```


Constraint Satisfaction problems

- Formally, a Constraint Satisfaction Problem (CSP) is
 - A set of variables x_1, x_2, \dots, x_n
 - All within a domain d_1, d_2, \dots, d_n
 - A set of constraints C_1, C_2, \dots, C_m
- A set of assigned values (to one or more of) the variable(s) is a state.
 - E.g.
 - $x_1 = 23, x_2 = 3$ is the state $\{23, 3\}$

CSP in discrete finite domains

- Classic example – map coloring



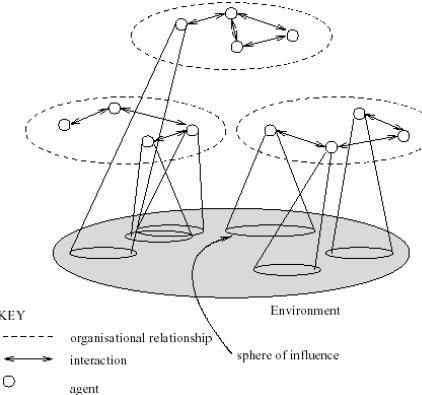
Solutions are assignments satisfying all constraints, e.g.
 $\{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green\}$

- Color the map of Australia
- Using the colors Red, Green, Blue
- No neighbours can have the same color
- CSP formulation
 - x_i = color of state i
 - $D = \{Red, Green, Blue, Null\}$
 - $x_i \neq x_j$ if $x_i = N(x_j)$

So, why all this?

- CSPs can be seen as search problems
 - States are defined by values assigned this far
 - Initial state: empty assignment {}
 - Successor function:
 - Assign value to a variable that is OK with constraints
 - Goal test: complete assignment with all constraints satisfied
- Note that every solution appears at depth n
 - use depth-first search

Multi-agent Systems



Working Together

- Why and how do agents work together?
- Important to make a distinction between:
 - *benevolent agents*
 - *self-interested agents*

Multiagent Encounters

- We need a model of the environment in which these agents will act...
 - agents simultaneously choose an action to perform, and as a result of the actions they select, an outcome in Ω will result
 - the *actual* outcome depends on the *combination* of actions
 - assume each agent has just two possible actions that it can perform, C ("cooperate") and D ("defect")
- Environment behavior given by *state transformer function*:

$$\tau : \underset{\text{agent } i \text{ 's action}}{\mathcal{A}^c} \times \underset{\text{agent } j \text{ 's action}}{\mathcal{A}^c} \rightarrow \Omega$$

Payoff Matrices

- We can characterize the previous scenario in a *payoff matrix*:

		<i>i</i>	
		defect	coop
<i>j</i>	defect	1	4
	coop	1	4

- Agent *i* is the *column player*
- Agent *j* is the *row player*

The Prisoner's Dilemma

- This apparent paradox is the *fundamental problem of multi-agent interactions*.
It appears to imply that *cooperation will not occur in societies of self-interested agents*.
- Real world examples:
 - nuclear arms reduction ("why don't I keep mine. . . ")
 - free rider systems — public transport;
- The prisoner's dilemma is *present everywhere*.
- Can we recover cooperation?
 - Well, yes we can introduce auctions, negotiations and argumentation. More on this next lecture!

Outline of the Lecture

- Repeating where we are right now
 - Intelligent Agents of various types
 - How to make agents think and plan
 - Constraint Satisfaction Problems
 - Communicating & Cooperating
- Allocating Scarce Resources - Auctions

Outline of the Lecture

- Repeating where we are right now
 - Intelligent Agents of various types
 - How to make agents think and plan
 - Constraint Satisfaction Problems
 - Communicating & Cooperating
- Allocating Scarce Resources - Auctions

Allocating Scarce Resources

- Allocation of scarce resources amongst a number of agents is central to multiagent systems.
- Resource might be:
 - a physical object
 - the right to use land
 - computational resources (processor, memory, . . .)
 - Network capacity
 - Amount of energy
 -

Reaching Agreements

- The extreme case of a Multiagent encounter is the zero-sum. (*Profit only at expense of others*)
- Normal case is the "Win-win-situation" where mutually beneficial agreement is possible
- Reaching Agreements is fundamental for social intelligence and society building in general
- Reaching Agreements is a result of Negotiation, Auctions and/or Argumentation
- How do you construct algorithms these types of interactions

Algorithm Design Criteria

- We want to have a design of the algorithm that has certain properties:
 1. Guaranteed success - Agreement is certain
 2. Maximizing social welfare - Agreement maximizes sum of utilities of all participating agents
 3. Computationally efficient

Algorithm Design Criteria, continued

4. Pareto efficiency: iff there exists no other agreement which increases utility of at least one agent while not decreasing the utility of the other agents
5. Individual Rationality: Following protocol is in best interest of all agents (no incentive to cheat, deviate from protocol etc.)
6. Stability: Protocol gives agents incentive to behave in a certain way. (→ e.g. by establishing Nash-Eq.)
7. Simplicity: Protocol makes for the agent appropriate strategy „obvious“. (Agent can tractably determine optimal strategy)
8. Distribution: no single point of failure; minimize communication

What are auctions?

- Concerned with traders and their allocations of:
 - Units of an indivisible good; and
 - Money, which is divisible.
- Assuming some initial allocation
- Exchange is the free alteration of allocations of goods and money between traders

Auctions

- Auctions are simple → easy to implement
- Auction =consists of (Auctioneer, Bidders, Good); Goal of the Auctioneer is to maximize price for good; Goal of the Bidders is to minimize price for good; Each bidder has personal price maximum
- Auctioneer: Tries to reach goal by choosing appropriate auction mechanism
- Bidders: Try to reach goal by choosing appropriate strategy
- Auction algorithms differ by:
 - Winner determination,
 - Secrecy of bids,
 - Auction procedure

Single vs. Multi-dimensional auctions

- Single dimensional auctions
 - The only content of an offer are the price and quantity of some specific type of good.
 - "I'll bid \$200 for those 2 chairs"
- Multi dimensional auctions
 - Offers can relate to many different aspects of many different goods.
 - "I'm prepared to pay \$200 for those two red chairs, but \$300 if you can deliver them tomorrow."

Value of the goods

Good has a public (common) value: Good has the same value for all bidders. (E.g.: One-Dollar-Bill)

Good has private value: Good has different value for each agent. (E.g.:)

Good has correlated value: Value of good depends on own private value and private value for other agents. (E.g.: Buy sth. with intention to sell it later)

Winner Determination

- First price: Highest bid wins, Winner pays his bid
- Second price: Highest bid wins. Winner pays second-highest bid
- General case, highest bid wins, pays $n-k$ bid.

Secrecy of the Bids

- Open cry: All agent's know all agent's bids.
- Sealed bid: No agent knows other agent's bids

Auction Procedure

- One shot: Only one bidding round
- Ascending
 - Auctioneer begins at minimum price, bidders increase bids
 - Also known as English Auction
- Descending
 - Auctioneer begins at price over value of good and lowers the price at each round
 - Also known as Dutch auction

English Auctions

- Most common form (human world)
- **Open cry, first price, ascending.**
- Dominant strategy: Bid slightly more than current bid, withdraw if bid reaches personal valuation of good
- If uncertainty of (private or public) value of good exists:
 - "Should you be happy that you won the good?"
 - "Why did the other bidders not bid more?"
- Possibly: Although winning bid is below personal valuation of winner, the "true value" may be less than bid → "Winner's curse". (E.g. bidding for gold-mine)

Dutch Auctions

- **Open cry, first-price, descending.**
- No dominant strategy. Winner's curse also possible.

Sealed-bid First-price One-shot

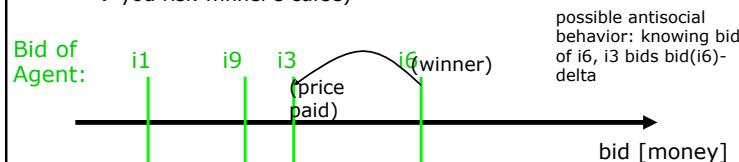
- "Pseudo"-dominant strategy: (Assuming that others bid their true valuation): Bid less than true valuation.

Vickrey Auctions

Sealed-bid, second-price, one shot

- Dominant strategy: (Assuming that others bid their true valuation): Bid true valuation.

Why? If you bid less than your true valuation \rightarrow you only decrease your chances, but you will not influence the price you have to pay.
 (As in all auctions: If you bid more than your true valuation \rightarrow you risk winner's curse)



Combinatorial Auctions

- Until now, we have considered auctions for one indivisible good.
- Now consider auctions for goods that are divisible
- Like for instance
 - Amount of available energy next hour, or
 - Power that can flow along a line

Formulation

$$\mathcal{Z} = \{z_1, \dots, z_m\}$$

is a set of items to be auctioned, we have the usual set of agents

$$Ag = \{1, \dots, n\},$$

and we capture preferences of agent i with the valuation function:

$$v_i : 2^{\mathcal{Z}} \mapsto \mathbb{R}$$

meaning that for every possible bundle of goods

$$Z \subseteq \mathcal{Z}, v_i(Z)$$

says how much Z is worth to Agent i .

Some additional facts & assumptions

If

$$v_i(\emptyset) = 0$$

then we say that the valuation function for i is normalised. Meaning that if an agent is allocated nothing it is worth nothing.

Similarly, we have that

$$Z_1 \subseteq Z_2 \text{ implies } v_i(Z_1) \leq v_i(Z_2)$$

Winner (or allocation) determination

- An allocation is a list of sets (allocations) Z_1, \dots, Z_n for each agent Ag_i so that

$$Z_i \subseteq \mathcal{Z}$$

- And for all i, j in Ag such that $i \neq j$ we have $Z_i \wedge Z_j = \emptyset$
- Valid for discrete sets of goods
- A general continuous case is similarly constrained by the sum of $Z_1, \dots, Z_n \leq Z$

How to do the allocation then?

- A reasonable assumption is to allocate in a way that maximizes the social welfare, i.e. Maximizing the total value achieved, the sum of all utilities.

$$sw(Z_1, \dots, Z_n, v_1, \dots, v_n) = \sum_{i=1}^n v_i(Z_i)$$

Combinatorial Auction setup

- Given this, we can define a *combinatorial auction*.
- Given a set of goods \mathcal{Z} and a collection of valuation functions v_1, \dots, v_n , one for each agent $i \in Ag$, the goal is to find an allocation

$$Z_1^*, \dots, Z_n^*$$

that maximizes sw , in other words

$$Z_1^*, \dots, Z_n^* = \arg \max_{(Z_1, \dots, Z_n) \in \text{alloc}(\mathcal{Z}, Ag)} sw(Z_1, \dots, Z_n, v_1, \dots, v_n)$$

- Figuring this out is *winner determination*.

Determining the allocation

- How do we do this?
- Well, we could get every agent i to declare their valuation \hat{v}_i
 - The hat denotes that this is what the agent *says*, not what it necessarily is.
 - The agent may lie!
- Then we just look at all the possible allocations and figure out what the best one is.

Computational efficiency?

- One problem here is *representation*, valuations are exponential:

$$v_i : 2^{\mathcal{Z}} \mapsto \mathbb{R}$$
 - A naive representation is impractical.
 - In a bandwidth auction with 1122 licenses we would have to specify 2^{1122} values for each bidder.
- Searching through them is computationally intractable.

So, how do we do it then?

- Searching through all combinations is a basic problem but intractable due to computation resources needed.
- However, this is the worst case result, so it may be possible to
- We can try to develop approaches that are optimal and run well in many cases.
- Can also forget optimality and either:
 - use heuristics; or
 - look for approximation algorithms.
- Common approach: code the problem as an integer linear program and use a standard solver – often works in practice.
- In practice a constraint satisfaction problem, that can be solved with different search mechanisms

Let's try an example

Outline of the Lecture

- Repeating where we are right now
 - Intelligent Agents of various types
 - How to make agents think and plan
 - Constraint Satisfaction Problems
 - Communicating & Cooperating
- Allocating Scarce Resources - Auctions