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Bayesian Networks

Synonyms:
directed graphical models
probability network
belief network
causal network
knowledge map



Bayesian Networks

A Bayesian Network is a graphical representation of
joint probability P (X) where it is easy to see the
dependencies which exist between the variables X1, . . . , XK .

In general for a K-dimensional random variable X

P (X) 6= P (X1)P (X2) · · ·P (XK)



Bayesian Networks

A Bayesian Network is a directed acyclic (no loops) graph.
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Directed graph is a set of nodes connected by directed edges.

For the Bayesian Network:
Nodes represent the random variables.
Directed edges indicate causal relationships between
random variables.



Bayesian Networks
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Knowing A provides causal support for values of B,C.

Example:
A = presence of clouds
B = will rain this afternoon
C = current temperature



Bayesian Networks
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Knowing B,C provides evidential support for values of A.

Example:
A = Type of disease
B = Presence of fever
C = Presence of nausea



Bayesian Networks
How does this graph represent the P (A,B,C)?
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For each node X

there is a conditional probability distribution,

this conditional distribution is conditioned only on the node’s
parents

The joint probability distribution is the product of all these
conditional distributions. Therefore for the above example

P (A,B,C) = P (A)P (B|A)P (C|A)



Bayesian Networks

Each node has a conditional probability distribution
P (Xk) = P (Xk| parents (Xk)) that quantifies the effect of
the parents on the node.

For a graph with K nodes corresponding to X1, . . . , XK the
joint distribution P (X1, . . . , XK) is given by

P (X) = P (X1, . . . , XK) =
K∏
k=1

P (Xk| parents (Xk))



Example: Is anyone at home?

The first family member home in the evening has to
bring in the firewood from the shed. To avoid wasting
time checking the house or the shed, can I use other
clues to decide if I am the first person home?

I know the following information:
1 When nobody is home, the outside light is sometimes on.

2 When nobody is home, the dog is often left outside.

3 If the dog has stomach-troubles, it is also often left outside.

4 If the dog is outside, I will probably hear it barking (though it
might not bark, or I might hear a different dog barking and
think it’s my dog).



Example: Is anyone at home?
The variables: (all binary)

1 O - No one is home

2 L - The light is on

3 D - The dog is outside

4 B - The dog has stomach problems

5 H - I can hear the dog barking

The network:

L

O

H

B

D

Structure

Probabilities: (learned or set by hand)

P (O = 1) = .6;

P (B = 1) = .3;

P (H = 1|D = 1) = .3, P (H = 1|D = 0) = .8;

P (L = 1|O = 1) = .3, P (L = 1|O = 0) = .6;

P (D = 1|O = 1, B = 1) = .05, P (D = 1|O = 1, B = 0) = .1,

P (D = 1|O = 0, B = 1) = .1, P (D = 1|O = 0, B = 0) = .2



Inference in Bayes Net

Given a network we can make predictions about
certain variables given others

Can compute joint probabilities

Can also compute conditional probabilities:
Causal/predictive/top-down inference

Evidential/diagnostic/bottom-up inference



Computing Joint Probabilities
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P (O = 1) = .6;

P (B = 1) = .3;

P (H = 1|D = 1) = .3, P (H = 1|D = 0) = .8;

P (L = 1|O = 1) = .3, P (L = 1|O = 0) = .6;

P (D = 1|O = 1, B = 1) = .05, P (D = 1|O = 1, B = 0) = .1,

P (D = 1|O = 0, B = 1) = .1, P (D = 1|O = 0, B = 0) = .2

The joint probability from the network is:
P (O,L,D,B,H) = P (O)P (B)P (L|O)P (D|O,B)P (H|D)

Thus, for instance
P(O=0, L=0, D=1, B=1, H=1) = P (O = 0)P (B = 1)P (L = 0|O = 0)×

P (D = 1|O = 0, B = 1)P (H = 1|D = 1)

= .4× .3× .4× .1× .3

= .0014



Causal Inference
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P (O = 1) = .6;

P (B = 1) = .3;

P (H = 1|D = 1) = .3, P (H = 1|D = 0) = .8;

P (L = 1|O = 1) = .3, P (L = 1|O = 0) = .6;

P (D = 1|O = 1, B = 1) = .05, P (D = 1|O = 1, B = 0) = .1,

P (D = 1|O = 0, B = 1) = .1, P (D = 1|O = 0, B = 0) = .2

Probability dog is outside if it has stomach problems.
Observe B want to infer D.

P (D = 1|B = 1) =
1∑

o=0

P (D = 1, O = o|B = 1), ← marginalization

=
1∑

o=0

P (D = 1|O = o,B = 1)P (O = o|B = 1), ← chain rule

=
1∑

o=0

P (D = 1|O = o,B = 1)P (O = o) ← conditional independence

= .1× .4 + .05× .6 = .07



Evidential Inference
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P (O = 1) = .6;

P (B = 1) = .3;

P (H = 1|D = 1) = .3, P (H = 1|D = 0) = .8;

P (L = 1|O = 1) = .3, P (L = 1|O = 0) = .6;

P (D = 1|O = 1, B = 1) = .05, P (D = 1|O = 1, B = 0) = .1,

P (D = 1|O = 0, B = 1) = .1, P (D = 1|O = 0, B = 0) = .2

Probability dog does not have stomachache given it is inside.
Observe D want to infer B.

P (B = 0|D = 0) =
P (D = 0|B = 0)P (B = 0)

P (D = 0)
← Bayes’ rule



Evidential Inference
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P (O = 1) = .6;

P (B = 1) = .3;

P (H = 1|D = 1) = .3, P (H = 1|D = 0) = .8;

P (L = 1|O = 1) = .3, P (L = 1|O = 0) = .6;

P (D = 1|O = 1, B = 1) = .05, P (D = 1|O = 1, B = 0) = .1,

P (D = 1|O = 0, B = 1) = .1, P (D = 1|O = 0, B = 0) = .2

Probability dog does not have stomachache given it is inside.

Observe D want to infer B.

P (B = 0|D = 0) =
P (D = 0|B = 0) P (B = 0)

P (D = 0)
← Bayes’ rule

Likelihood:

P (D = 0|B = 0) =
1∑

o=0

P (D = 0|O = o,B = 0)P (O = o) ← as in previous slide

= .9× .6 + .8× .4 = .86



Evidential Inference
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P (O = 1) = .6;

P (B = 1) = .3;

P (H = 1|D = 1) = .3, P (H = 1|D = 0) = .8;

P (L = 1|O = 1) = .3, P (L = 1|O = 0) = .6;

P (D = 1|O = 1, B = 1) = .05, P (D = 1|O = 1, B = 0) = .1,

P (D = 1|O = 0, B = 1) = .1, P (D = 1|O = 0, B = 0) = .2

Probability dog does not have stomachache given it is inside.

Observe D want to infer B.

P (B = 0|D = 0) =
P (D = 0|B = 0)P (B = 0)

P (D = 0)
← Bayes’ rule

Evidence:

P (D = 0) =

1∑
o=0

1∑
b=0

P (D = 0|O = o,B = b)P (B = b, O = o)

=
1∑

o=0

1∑
b=0

P (D = 0|O = o,B = b)P (B = b)P (O = o) = .881



Evidential Inference
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P (O = 1) = .6;

P (B = 1) = .3;

P (H = 1|D = 1) = .3, P (H = 1|D = 0) = .8;

P (L = 1|O = 1) = .3, P (L = 1|O = 0) = .6;

P (D = 1|O = 1, B = 1) = .05, P (D = 1|O = 1, B = 0) = .1,

P (D = 1|O = 0, B = 1) = .1, P (D = 1|O = 0, B = 0) = .2

Probability dog does not have stomachache given it is inside.

Observe D want to infer B.

P (B = 0|D = 0) =
P (D = 0|B = 0)P (B = 0)

P (D = 0)
← Bayes’ rule

Putting everything together:

P (B = 0|D = 0) =
.86× .7

.881
= .683



Learning of Bayes Net

Trivial Case:
Network structure known and
all variables observable (present in data vector).

Can learn all conditional probabilities directly from data.

More difficult:
Network structure known and
only some variables observable.

Use the Expectation Maximization (EM) algorithm.

Most difficult:
Network structure not known - subject of ongoing
research (structural learning)

Use some heuristic method to search through possible data
structures.
Learn dependencies from data.
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