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Background: a Bayesian network

e A probabilistic method for modeling dependencies
between random variables through a graph structure:

— random variables by nodes R S
— conditional dependencies by edges R‘”'"\ /SP””H@V
(directed acyclic graph) w
Wetgrass
— Probabilistic inference system P(R,S,W) = P(WIR,S)P(S)P(R)

e Synonyms:
= probabilistic network / causal network / knowledge map ...

Probabilistic inference

e Intuitively, what we can observe degendg on E

the true state of random query variables. ...'.."'%Sprinkler
/4
Wetgrass
e The purpose of probabilistic inference in general:
— to compute posterior probability distribution: P(X | €)
— for a set of query variables: X

X
— given a set of observed evidence variables: E

(assignment of values to them: ¢) l
E

Notations

X = arandom variable
(uppercase / begins with an uppercase, e.g. R or "Rain”)
X = aset of variables / vector random variables
P(X) = a probability distribution for X
P(X) = a probability distribution for X
(probabilities of all the possible set of values of X)

with a subscript
Xt = a set of variables at time ¢

Xa:b = Xa, Xa+1,..., Xb-1, Xb




A dynamic Bayesian network

¢ A Bayesian network that represents sequences of variables, e.g.

— time-series generated by a dynamic system
— sequences of symbols, e.g. a protein sequence
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A series of models for the length of the sequence

¢ Again, two types of random variables in the graph:
— A set of query variables Xt that are unknown (or hidden)
— The other random variable Ef represents the observations

Making inference from sequential data

¢ The series of models are linked by a markov assumption:
the state, Xt, depends only on the recent state, e.g. Xt-1.
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¢ As we deal with time-series variables, the question is:

What is the posterior probability for a set of query variables, X7,
given past and present evidence variables, E1:7?

PX:|El:)="?

Example

A professor wants to know if students are getting enough sleep.
= P(S)
e Each day, the professor observes:
— whether they have red eyes, and

— whether the students sleep in class.

e The professor has the domain theory on:
1. The initial state of “enough sleep”
2. The transition model
3. The observation model
... as detailed in the following:

1. Initial state / 2. State transition

e The prior probability of getting enough sleep, P(S),
with no observation is 0.7.
P(S) = P(S0)=0.7

P(S0)
o Slept  ——>{_Slept | S = “Slept ” = Enough sleep
St-1 | P(St)
t 0.8

f | 03 Conditional Probability Table (CPT)

e The probability of getting enough sleep at night ¢ is 0.8 given that
the student got enough sleep the previous night, and 0.3 if not.
P(St| St-1)=0.8
- S = Not enough sleep P(St | =5t-1)=0.3




3. The observation model
¢ The probability of having red eyes is 0.2 if the student got
enough sleep, and 0.7 if not.
P(Rt|St)=0.2, P(Rt|—~St)=0.7

¢ The probability of sleeping in class is 0.1 if the student got
enough sleep, and 0.3 if not.

P(SCt| S))=0.1, P(SCt|—Si)=0.3
Slept |

St | P(Ri) / \ St | P(SC)

0.2 Rl SCI t 0.1
S| 07 £l 03
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Conditional Probability Table (CPT)

2.Transitions + 3.0bservations = Slice
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Compute P(S:| eir)

We wanted to know if students are getting enough sleep.
Using the evidence values: e1, ez, €3

e = not red eyes, not sleeping in class
e2 = red eyes, not sleeping in class
es = red eyes, sleeping in class

we would like to infer P(S ] ei)

Q. To start with, how does P(S1 | e1) compare to P(50)?

Compute P(S'1| e1)

el = not red eyes, not sleeping in class

Conditional probability tables
St-1 | P(Si) St P(Ri) | P(SCr) | P(ern)
t 0.8 t 0.2 0.1 0.72
7| 03 f 0.7 0.3 0.21

Compute P(S1 | e1)
— P(So)= 0.7
— P(S1)= P(S1| So) P(So) + P(S1 |~ So) P(—So) = 0.65
— P(S1| e =aP(er|S)PS1) =a<0.72,0.21><0.65,0.35>
= <0.864,0.136>
Answer P(Si | e1) > P(So)




e We would also like to infer
— P(S2]e12)
— P(S3|ei3)

Slept o )=——>( Slept| = Slept, )= Slepts )wu»

} ! }

€] € €3

For this we can exploit Markov processes

Markov processes

¢ Basic idea:

Xt = set of unobservable state variables at time ¢ X
(enough sleep: Sr)

E: = set of observable evidence variables at time ¢
(red eye Ry, sleep in class: SCr) !

Copy state and evidence variables for each time step

assuming discrete time; step size depends on problem.

N.B.
Xt and Et are both vectors in general,

and can contain many variables

Markov processes (contd.)

e Markov assumption:
Xt depends on bounded subset of Xo:-1

— First-order Markov process: P(X:| Xo:-1) = P(X¢ | X¢-1)

—( X2 = Xt — Xt = Xen — X2 —

— Second-order Markov process: P(Xt | Xo:t-1) = P(Xt | Xt-2, t-1)

—( X2 = X1 = Xt — Xen = X2 —
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Markov processes (contd.)

* Sensor Markov assumption:
P(Et| Xo:t, Eo:t-1) = P(Et | X¥) | ( P

e Stationary process: \"l"':"‘l"
Transition model P(X¢| X#1) and Eri | E:
sensor model P(E¢ | X¢) fixed for all ¢ oo

Knock-on effect:

The great attraction of Markov models is that they leverage a
knock-on effect — that explicit short-range linkages give rise to
implied long-range correlations.




Replicating slices: “unrolling”

until the observation sequence is accommodated

State estimation: filtering
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Dynamic Bayesian network for our example

To compute the “belief state” : P(X:| e1:)

¢ A useful filtering algorithm maintains a current state estimate,
P(X:|e1:1), and update it using present evidence, e, rather
than going back over the entire history.

» We would like to have a function f e = Xt —> Xi —> e
to find the posterior probability distribution. l l

P(Xt | elzt) Zf(P(Xz | e1:1_1), Er) er-1 et
¢ We use the process of recursive Bayesian inference:

1. Prediction step
2. Update step

State estimation (contd. )
1. Prediction step

P(X¢ | er1) = ;P(xt | Xe-1) P(Xe1 | €1:e-1)
71 o .
Transition Prior

2. Update step

PXi|ei)= P(Xt|er, err)
= oP(e:| Xy, err1) P(Xt| e1:1)

; ’é(XP( e:| Xr) P(Xt|enw) .. recursive form
Bayes theorem
Likelihood

a= Normalization constant Sensor Markov assumption

X — X0 — oo — X1 = X = e

| l

€1 €2 €1

—

State estimation (contd. )

R Xl‘-l — Xt — eee

e Likelihood: P(er| Xt)
— Measures how likely a set of observations l l
are, given a state estimation.
er-1 er
e Transition: P(Xt|Xt1)
— Governs the evolution of state estimate
between two time steps.
— Predicts the current state Xt from the previous state Xt-1

e Prior term: P(Xr1 | e1:1)
= The posterior probability for the previous time step

— Provides knowledge of the past to give the recursive
Bayesian inference a frame of reference.




Compute P(S (| ei)

¢ The evidence values, e

e1 = not red eyes, not sleeping in class
e2 = red eyes, not sleeping in class
es = red eyes, sleeping in class

e Wehad: P©Sije) = o Peei|S)PS) = <0.86,0.136>

e By applying the first-order Markov process
— Prediction: P(S2 | €1) =Zs: P (S2| S1) P(S1]er)
Update: P(S2]e12)= o P(e2|S2) P(S2]e)
— Prediction: P(S3 | €12) = Xs: P (S3]82) P(S2 | €1:2)
Update: P(S3|e1:3)= o P(e3]S3) P(S3]e12)

Special cases / applications
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e Hidden Markov models (HMM) *
— Assingle discrete state variable
— Used for speech recognition s
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(picture Taken from Pattern Recognition and Machine Learning, C. Bishop)

Summary

e Dynamic Bayesian networks:

— An extension of Bayesian networks to handle
temporal models

— Specify prior distribution over the state variables,
the transition model, and the sensor model

— A concise graphical formalism for probabilistic
inference using Markov process

— Can contain arbitrary many query and evidence
variables




