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System Identification of Complex and Structured Systems

Håkan Hjalmarsson�
Linnaeus Center, School of Electrical Engineering, KTH – Royal Institute of Technology, 100 44 Stockholm, Sweden

A key issue in system identification is how to cope with
high system complexity. In this contribution we stress
the importance of taking the application into account in
order to cope with this issue. We define the concept
‘‘cost of complexity’’ which is a measure of the
minimum required experimental effort (e.g., used input
energy) as a function of the system complexity, the
noise properties, and the amount, and desired quality,
of the system information to be extracted from the
data. This measure gives the user a handle on the trade-
offs that must be considered when performing identi-
fication with a fixed experimental ‘‘budget’’. Our
analysis is based on the observation that the identifica-
tion objective is to guarantee that the estimated model
ends up within a pre-specified ‘‘level set’’ of the
application objective. This geometric notion leads to a
number of useful insights: Experiments should reveal
system properties important for the application but
may also conceal irrelevant properties. The latter, dual,
objective can be explored to simplify model structure
selection and model error assessment issues. We also
discuss practical issues related to computation and
implementation of optimal experiment designs. Finally,
we illustrate some fundamental limitations that arise in
identification of structured systems. This topic has
bearings on identification in networked and decentra-
lized systems.

Keywords: system identification, model accuracy,
experiment design.

1. Introduction

Identification of complex systems is a challenging
problem from many perspectives. High system order,
many inputs and outputs, non-linearities, practical
and economical constraints in experimentation, are all
issues that add to the complexity of this problem. It
was noted in [1] that obtaining the process model is the
single most time consuming task in the application of
model-based control and [2] reports that three quar-
ters of the total costs associated with advanced control
projects can be attributed to modeling. It is therefore
important to understand what makes an identification
problem difficult. In this contribution we will set aside
numerical issues and the problem of finding a suitable
model structure, and focus on the modeling accuracy.
In particular we will examine its dependence on the
application and the experimental cost for obtaining
the required accuracy. We will also discuss structural
limitations imposed by the model structure.

There exist several results in the literature that point
to that the number of estimated parameters is a very
limiting factor for the modeling accuracy. Consider the
discrete-time causal linear time-invariant (LTI) system1

yðtÞ ¼ GoðqÞuðtÞ þHoðqÞeoðtÞ;
where u is the input, eo is a white noise disturbance and
where y is the output. When a parametric model

yðtÞ ¼ Gðq; �ÞuðtÞ þHðq; �ÞeðtÞ; ð1Þ
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1 q is the shift operator.



is identified using prediction error identification (we
denote the parameter estimate by �̂N, where N is the
used sample size), it is shown in [3] that for high model
orders the variance of the frequency function estimate
at frequency ! is given by

VarGðej!; �̂NÞ � n
�vðej!Þ
N�uðej!Þ ð2Þ

for a parametric model of order n. Here �vðej!Þ=
ðN�uðej!ÞÞ is the noise power spectrum to signal
energy spectrum ratio. This gives a rather pessimistic
perspective on the realism of estimating systems of
high order. The expression above indicates that
estimating a system of order 1000 is 1000 times more
expensive (measured in terms of required input
energy) than a first order system, e.g., with a given
limit on the input power it will take 1000 times longer
to estimate the high order system than the first order
system to within the same accuracy of the frequency
function estimate. A recent result that points in the
same direction can be found in [4, 5]. Specializing to
the case where Ho ¼ 1, when G and H are indepen-
dently parametrized and the system is operating in
open loop, it holds that

1

2�

Z �

��

N�uðej!ÞVarGðej!; �̂NÞd! ¼ nG �e; ð3Þ

where nG is the number of parameters that are used
to parametrize G and where �e is the noise variance
E½e2oðtÞ�. Thus there is a water-bed effect for the
variance of Gðej!; �̂NÞ: if the variance is made small in
some frequency regions it must be large in another
region to satisfy the equality above (there exists a
similar water-bed effect in spectral estimation [6]). The
result above also points to that obtaining models with
high accuracy over the entire frequency region
becomes costly as the model order increases.

Example 1: Suppose that it is desired that

VarGðej!; �̂NÞ� 1

2�
; 8! ð4Þ

(� will be called the accuracy throughout the paper
since higher � means lower variance and hence higher
accuracy). Then (3) implies that the experiment must
be such that

NE½u2ðtÞ� ¼ 1

2�

Z �

��

N�uðej!Þd!� 2 � nG �e ð5Þ

is satisfied. Thus nG will have a big impact on the
required external energy. &

So how can one deal with these limitations? Well,
returning to Example 1, if the input energy budget
does not allow (5) to be satisfied, then the bandwidth
over which the accuracy constraint (4) is required has
to be relaxed sufficiently. We conclude that the
demands from the application in regards to both the
amount of system information (for example over
which bandwidth a model is required) and the accur-
acy with which this information has to be extracted
are very important. The importance of taking the
application into account has been stressed in many
places in the literature, see, e.g., [7, 8], but this issue
cannot be over emphasized.

However, there is one more lesson to be learnt from
Example 1. Notice that (3) implies

sup
!

VarGðej!; �̂NÞ� nG �e

NE½u2ðtÞ� :

This inequality implies that with a limited input energy
budget and many estimated parameters there must be
frequencies where the frequency function estimate is of
poor quality. If this is acceptable from the point of
view of the application, this is not necessarily a bad
thing as it means that the model can be lax in some
frequency region. We can interpret it as that certain
system properties are concealed in the experiment and
thus little modeling effort has to be undertaken in
regards to these properties. However, it all depends on
whether this is acceptable for the application or not.
Another important observation is that the factors n
and nG appearing in (2) and (3), respectively, relate to
the number of identifiable parameters. Thus these
factors can be controlled by performing experiments
such that certain parameters are not identifiable (the
reader may imagine this situation as that the excitation
is such that the system behaves as a simpler system.We
illustrate this by an example.

Example 2: Consider the FIR system

yðtÞ ¼
Xn�1

k¼0

�okuðt� kÞ þ eoðtÞ; ð6Þ

where feoðtÞg is white noise with variance �e. Suppose
that the objective is to estimate the static gain

Pn
k¼1 �ok

of the system. When a white input with variance �u is
used, the variance of the static gain estimate becomes

n
�e

N�u
;

whereas if a constant input uðtÞ ¼ u is used (with u ¼ffiffiffiffiffi
�u

p
so that the signal has the same power as in the

white noise case), the variance is given by
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�e

N�u
:

Notice that the latter input makes the system equivalent
to the static system

yðtÞ ¼
Xn�1

k¼0

�ok

 !
uþ eoðtÞ

and thus the static gain can also be estimated with a
simple static model. &

The example illustrates that we facilitate the iden-
tification problem by performing an experiment that
conceals system properties that are not important (in
this case the individual impulse response coefficients).

Understanding the fundamental limitations in
identification is closely related to optimal experiment
design. The concept of least-costly identification was
introduced in [9] and developed in a series of confer-
ence contributions, appearing later as [10]. The idea is
to formulate the experiment design problem such that
the objective is to minimize the experimental cost,
typically measured in terms of required input and
output energy, subject to constraints on the model’s
accuracy. This concept will be fundamental for our
considerations. When the minimum cost of such a
design problem is quantified in terms of noise, model
structure, model order and required accuracy and
amount of extracted system information and when
this is coupled to a particular application, we will call
this function, the ‘‘cost of complexity.’’ The cost of
complexity thus provides explicit information on how
various quantities, such as the system complexity,
affect the minimum experimental cost.

In system identification and related communities,
optimal experiment design has witnessed a revival
during the last decade, see, e.g., [11–30]. Much of the
effort has been devoted to reformulate optimal
experiment problems to computationally tractable
convex optimization problems and to connect optimal
experiment design for parametric identification
methods, such as prediction error identification, to
control applications [10, 31–42].

In this contributions, we use optimal experiment
design as a tool for obtaining insights regarding the
cost of complexity. In view of this, we have selected a
particular problem formulation, to be introduced in
Section 2, that facilitates the analysis. In Appendix I,
some alternative approaches are discussed briefly.

A research area where complexity issues have been
very much in focus is ‘‘identification for control.’’
Here the problem of how to identify models that are
suitable for control design is studied. The reader is
referred to [43–46] for comprehensive treatments of

the subject. One of the observations coming out from
this research has been that when dealing with models
of restricted complexity it is desirable to design the
identification set-up such that the identification cri-
terion is proportional to the application objective
since then the model best suited for the application is
obtained asymptotically (in the number of observa-
tions), see, e.g., [47–51] for examples. In this con-
tribution, we will show that this paradigm has a deeper
connotation than perhaps recognized before. We will
show that optimal experiment design aims at match-
ing the identification criterion to the application cri-
terion. However, an important difference compared to
previous work, is that there should be a scaling factor
which ensures that the design is optimal for finite
observations (as opposed to the bulk of the work in
control relevant identification where only the model
bias is considered).

For an initial discussion on the concepts discussed
above, the reader is referred to Sections 4 and 5 in [45].
The cost of complexity was introduced in [52] where
identification of FIR models (6) is considered. The
system information to be extracted is the frequency
response over a pre-specified bandwidth �, i.e., (4) is to
be satisfied but only for ! 2 ��; �½ �. It is shown that
the minimum required input energy is approximately

NE½u2ðtÞ� � 2� �e � n: ð7Þ
Notice that the right hand side consists of three fac-
tors: 1) The accuracy �, 2) the noise variance �e, and 3)
�n which can be interpreted as the fraction of the total
system complexity that has to be extracted in order to
meet the quality requirements.

1.1. Outline

The paper is divided into three parts. In the first part
(Sections 2–5), a framework for obtaining approx-
imate explicit expressions for the cost of complexity is
developed. More specifically, in Section 2 we discuss
the problem of identification with a particular
objective in mind in broad terms. In Section 3, we
become more specific and translate the concepts from
Section 2 to a stochastic setting, e.g., maximum like-
lihood (ML) and prediction error (PE) identification.
We proceed by discussing issues related to models of
restricted complexity in Section 5. Here we argue that
good experimental conditions facilitate the use of such
models. We also pursue ideas on how to cope with the
limitations imposed by high system/model orders
discussed above. In Section 5, we apply the concepts
to prediction error identification of single input single
output linear time invariant systems. We use model
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reference control and identification of non-minimum
phase zeros as illustrations of concepts. In the second
part of the paper we turn to how to numerically solve
optimal experiment design problems and how to
practically implement the solutions. This is covered in
Section 6. Structured systems are discussed in the final
part of the paper (Section 7). Here we introduce a
geometric interpretation of the variance of an estimate
and use this concept to illustrate some limitations that
exists in regards to information provided by adding
actuators and sensors to a system. Finally, some
concluding remarks are given in Section 8.

2. Identification With an Objective

In this section, we will formulate the problem we will
study in quite general terms. Subsequently, we will
focus on more specific settings where more insight can
be obtained.

2.1. The True System, the Model Set, the Data

and the Estimate

We will denote the true system by So. It can be seen as
a map from input and disturbances/noise to the
output. We denote the system input by uðtÞ 2 R

nu and
the output by yðtÞ 2 R

ny . We denote one input–output
sample by zðtÞ ¼ yTðtÞ uTðtÞ� �T

.
A model set M� is defined as a set of input–output

models M.
We assume that N input–output samples ZN ¼

fzðtÞgNt¼1 are going to be collected from the system and
that they are to be used to estimate the true system.
We will assume that the estimation method produces a
point estimate MðZNÞ 2 M�.

2.2. The Quality of a Model

There are many ways to measure a model’s quality.
However, since, presumably, the estimated model will
be used in some application, involving the true system,
e.g., control design, deconvolution filtering in a com-
munication system or failure detection in a vehicle
system, it is natural to measure the quality in terms of
the performance of the application. We assume that if
an exact mathematical model of the true system was
available for the design of the application, the desired
performance would be obtained. However, when the
usedmodel does not correspond to the true system, the
performance of the application will degrade. We
measure this in terms of a performance degradation
‘‘cost’’VappðMÞwhich has global minimumVappðMÞ ¼

0 atM ¼ So, c.f. [8, 12]. The performance degradation
cost can simply be the achieved performance when M
is used for the design of the application compared with
the achieved performance when the true system So is
used, as in the following example.

Example 3: Suppose the objective is to design a con-
troller C such that the H1-norm of some transfer
function matrix FðSo;CÞ is minimized. Let the chosen
(model based) control design method be represented by
C ¼ CðMÞ. Then one possibility is to take

VappðMÞ ¼ kFðSo;CðMÞÞk1 � kFðSo;CðSoÞÞk1: ð8Þ

&

In Example 3, FðSo;CðMÞÞ represents the closed
loop system property of interest when the model M is
used in the design of the controller. One may also
measure the performance degradation by comparing
this achieved property with the desired one, i.e.,
FðSo;CðSoÞÞ, as in the next example.

Example 4: (Example 3 continued): Instead of (8) one
may choose

VappðMÞ ¼ kFðSo;CðMÞÞ � FðSo;CðSoÞÞk1:

&

More generally, with J ðMÞ denoting the property
of interest of the application when the modelM is used
in the design, the relative performance degradation
cost2

VrelðMÞ :¼ 1

2

J ðMÞ � J ðSoÞ
J ðSoÞ

���� ����2 ð9Þ

where k � k is a suitable norm, may be used as Vapp. In
Section 3.5 we will see that the relative performance
degradation cost has an interesting interpretation.

Example 5: Consider the problem of estimating the first
impulse response coefficient of a FIR system of order n
with parameters �o ¼ ½�o1; �o2; . . . ; �on �T. Then

VrelðMð�ÞÞ ¼ 1

2

�1 � �o1
�o1

� �2
:

&

Example 6: For a minimum phase linear time-invariant
system

yðtÞ ¼ GoðqÞuðtÞ þ vðtÞ ð10Þ

2Here we for simplicity assume that J ðMÞ is a scalar.
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it is desired to design a feedback controller such that the
sensitivity function is S. Now given a model G, a model
reference controller is given by

CðGÞ ¼ 1

G

1� S

S
; ð11Þ

This controller results in the achieved sensitivity function

SðGÞ ¼ 1

1þ GoCðGÞ : ð12Þ

The relative performance degradation cost can now be
measured by

VrelðGÞ :¼ 1

2

SðGÞ � S

S

���� ����2 ð13Þ

using, for example, the L2-norm. &

The objective is to design the identification set-up
such that3

Vapp � 1

2�

for some pre-specified accuracy �. Ideally we would
like to determine experimental conditions such that

the probability of the event

VappðMðZNÞÞ� 1

2�

is at least some high pre-specified value, e.g.
the probability that the performance
degradation cost is less than 1=ð2�Þ is at
least 99 % when using the identified model.

Unfortunately it is in general difficult to compute the
probability of the event above. However, it is often
possible (at least for large sample sizes), prior to the
identification experiment, to establish that the estim-
ate MðZNÞ will belong to a (condensed) model set
U�ðSoÞ 	 M� with a certain probability:

MðZNÞ 2 U�ðSoÞ 	 M�: ð14Þ
We could thus set up the identification such that

U�ðSoÞ 
 M�
app; ð15Þ

where M�
app is the ‘‘level set’’

M�
app :¼ M 2 M� : VappðMÞ� 1

2�

� 	

 M�; ð16Þ

and such that the probability of the event (14) is suf-
ficiently close to one, see Fig. 1.

Before we proceed, we make the reader aware that
there is a certain degree of decoupling between the
application and the identification in (15). The set
M�

app is a function of the application whereas the set
U�ðSoÞ depends on the identification setting. The
common property is the true system So. We will make
extensive use of this decoupling in order to reveal the
fundamental issues involved in ensuring (15).

We would also like to alert the reader that there are
other ways to formulate application-oriented identi-
fication; two methods closely related to the approach
outlined above are presented in Appendix I. Our path
is chosen as it leads to simple expressions in certain
cases, providing useful insights.

2.3. Design Variables

The user has several degrees of freedom at her dis-
posal:

� Experimental conditions. This includes feedback
mechanism, reference signal excitation, experiment
length and sampling time.

� Model structure and model order. These quantities
can be seen as prior information that alleviates the
identification.

� Identification method.

There may be various constraints imposed on these
choices. For example, the experiment length and the
input excitation power may be limited or the system
may have to be operated in closed loop with a certain
controller. Due to computational and/or technolo-
gical limitations, certain identification methods may
have to be used. We denote all design variables by D.

We can see the design of an identification experi-
ment as choosing the design variables D such that (15)
is satisfied. An important observation, which may

Fig. 1. The figure illustrates that U�ðSoÞ should be contained in the

set M�
app :¼ M : VappðMÞ � 1

2�

n o
in order for the performance

specifications to be met.

3 The factor 2 is for notational convenience later on.
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seem trivial, is that the verification of (15) only
involves verifying that all models in U�ðSoÞ satisfy the
accuracy specified by �. This set is specified by user
and thus implies that the user does not have to be
concerned with the (possibly enormous) set of models
outside M� that have satisfying accuracy.

2.4. Cost of Complexity

There are many ways to choose the design variables D
such that (15) is satisfied. When the true system is in
the model setM�, one can typically achieve the desired
accuracy by just using a persistently exciting input4

and by increasing the experiment time sufficiently.
However, the identification experiment is associated
with some cost, e.g., accounting for product waste and
man hours. Thus it is desirable to design the experi-
ment such that the identification cost is minimized,
subject to that the desired accuracy is reached and
experimental constraints are met. This way of viewing
the identification problem has been coined ‘‘least
costly identification’’ [10]. For simplicity of argument,
we will measure the experimental cost for a single input
single output system by the input energy NE½u2ðtÞ�.
We have alreadymade use of this quantity in Section 1.

Let us denote the minimum cost by Q. Formally

Q ¼ argmin
D

NE½u2ðtÞ�
subject toU�ðSoÞ 
 M�

app:

Now Q will depend on a number of parameters. First,
it will typically depend on the properties of the true
system and it may thus be impossible to achieve the
cost Q in a practical identification experiment. How-
ever, Q provides a lower bound for the practically
achievable cost and thus it is an interesting quantity to
consider. Second, also the application itself will
influence Q. This is related to the desired accuracy �
but also the shape of the level setM�

app defined in (16).
To understand the role of M�

app, suppose that all
models in M�

app possess a certain property, whereas
models outside this set do not possess this property.
Then it will be important to choose the design vari-
ables D such that all models in U�ðSoÞ possess this
property. This has implications on how the excitation
should be chosen. It is easy to imagine that the
excitation should be such that this characteristic
property is easily detected from the observed data:

The experimental data should reveal system proper-
ties that are important for the application.

Now from the least costly paradigm it follows that this
is the only experimental excitation that should be used
(if the minimum costQ is to be achieved). This has the
implication that, in an optimal experiment with cost
Q, system properties that are not particular to M�

app

will not be easily detected from the experimental data,
unless this is a side effect of enhancing the ‘‘visibility’’
some important system property in the data. We
conclude:

The experimental data may hide system properties
that are not important for the application.

This will have the implication that the modeling
effort of such properties can be lax, and to a large
extent neglected. This is an observation that can be
used to the model builder’s advantage. We discussed
this in connection with the inequality (3) already in
Section 1. We will return with more solid mathemat-
ical support for the statements above.

The set M�
app also depends on the performance

demands in the application. Imagine a user ‘‘knob’’
� 2 ½0; 1� with which the user is able to tweak the
performance of the application, where a larger �
indicates a higher performance demand in the
application. Notice that this is different from the
accuracy � which is related to how close the per-
formance of the application based on an identified
model is to the performance when knowledge about
the true system is used in the design of the application.
We clarify this with an example.

Example 7: (Example 6 continued): Consider again
Example 6. Now let the desired sensitivity function S be
given by

S�ðqÞ ¼ 1� q�1

1� 1��
1þ� q

�1
; � 2 ½0; 1�; ð17Þ

which is parametrized such that the bandwidth over which
S� is small increases when � increases, see Fig. 2. &

Intuitively, one may imagine that as � increases
towards 1, it will become necessary to model more and
more properties of the system accurately in order to
obtain a given accuracy �. A simple example is the
following.

Example 8: For a linear time-invariant system (10) it
is desired to estimate the frequency function Goðej!Þ
over a certain frequency region:

VappðGÞ :¼ sup
j!j � ��

jGoðej!Þ � Gðej!Þj2:

4We use the definition of persistence of excitation employed in [7]:
A stationary signal is persistently exciting if its spectrum is strictly
positive for all frequencies. We refer to [53–55] for details on how
persistence of excitation relates to the rank of the information
matrix and the identification criterion.
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&

Interpreting these increasing demands on the know-
ledge of the properties of the true system in terms of
the set M�

app, we have that this set typically changes
when � is increased. In particular its ‘‘shape’’ changes
so that properties that for small � are not character-
istic to M�

app become characteristic as � increases. For
example, in Example 8 the frequency response at
higher frequencies become important forM�

app when �
increases. Thus the performance demand � in some
sense influences the shape of M�

app whereas the
accuracy � controls the ‘‘size’’. These geometric
interpretations will become clearer in the next section.

On the identification side, we can see the model set
as a prior. This set in turn has influence onU�ðSoÞ and
thus the ‘‘size’’ and ‘‘shape’’ of the model set should
also influence the cost Q. Likewise the model order
and the used identification method will influence
U�ðSoÞ and thus Q.

We will call Q the cost of complexity since, as we
have discussed above, Q reflects how system com-
plexity, performance demands, accuracy, disturbances
etc influence the experimental cost. The main objective
of the next few sections is to shed insight into how the
quantities discussed above influence Q qualitatively.
With such knowledge we will be able to discuss which
applications are difficult or easy from an identification
perspective. It will supply the user with insights into
the trade-offs between application demands/system
complexity/prior information/accuracy/experimental
cost.We emphasize that our discussion is limited to the
case where Q is the minimum required input energy.

3. Stochastic Identification

In order to proceed we will have to become more
specific and we will here focus on the case where

parametric models are identified under stochastic
assumptions.

3.1. Introduction

Suppose that the model set is given by

M� ¼ fMð�Þ; � 2 DM 	 R
ng; ð18Þ

and let us, for the moment, assume that the true
system belongs to M�, i.e. 9� ¼ �o such that Mð�oÞ
describes the true system So. We will comment on the
case of low complexity modeling in Section 4.1. The
parameter estimate �̂N for a wide class of parameter
estimation methods developed for such problems
possesses asymptotic (in the sample size N) statistical
properties of the formffiffiffiffi

N
p

ð�̂N � �oÞ � AsNð0;RyÞ; ð19Þ

Nð�̂N � �oÞTRð�̂N � �oÞ � As�2ð~nÞ; ð20Þ
where the ‘‘information matrix’’ R depends on the
experimental conditions, identification method, etc.
In (20), ~n is the rank of R. As we already have seen in
Example 2, it may be beneficial to perform experi-
ments where the input signal is not sufficiently rich
and thus results in a singular R. In order to cover such
situations, we are using the Moore-Penrose pseudo-
inverse Ry in (19) instead of the inverse R�1. The
notation in (19) is to be interpreted as that the estimate
of any identifiable quantity J ð�Þ has asymptotic dis-
tributionffiffiffiffi

N
p

ðJ ð�̂NÞ � J ð�oÞÞ
� AsN 0; J 0ð�oÞ½ �TRyJ 0ð�oÞ


 �
:

We refer to Appendix II for details, see also [56]. For a
characterization of the relationship between the
information matrix and identifiability we refer to the
interesting work [53, 54].

Now we will discuss how to form the set U�ðSoÞ
used in (15). Recall that U�ðSoÞ is a set for which we a
priori know that �̂N will end up in with a certain
probability. In fact, it would be desirable to take
U�ðSoÞ ¼ M�

app and then design the experiment such
that the probability for �̂N 2 M�

app is a desired value
(e.g. 99 %). However, it is in general very difficult to
compute this probability and we shall have to contend
with other sets that we discuss next.

Let �2
�ðmÞ be the �-percentile of a �2 distribution

with m degrees of freedoms. In view of (20) we have
that for sufficiently large sample sizes, the ellipsoid

M
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tu

de
 (

dB
)

10−2 10−1 100
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−40

−30

−20

−10

0

10

Bode Diagram

Frequency  (rad/sec)

Fig. 2. Magnitude plots of S� in Example 7. Solid line: � ¼ 0:1.
Dotted line: � ¼ 0:5. Dashed line: � ¼ 1.
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Eid ¼ � : ð� � �oÞTRð� � �oÞ� �2
�ð~nÞ
N

� 	
ð21Þ

will contain �̂N with probability �. This means that the
set of models corresponding to the ellipsoid above can
be used as the set U�ðSoÞ in (15), i.e.

U�ðSoÞ ¼ fMð�Þ : � 2 Eidg:

We alert the reader of the existence of results con-
cerning non-ellipsoidal confidence regions, see [57]
and [58, 59].

Alternatively, condition (15) can be expressed in the
parameter space as

Eid 
 �app; ð22Þ

where

�app :¼ � : VappðMð�ÞÞ� 1

2�
; � 2 DM

� 	
:

With regards to the cost of complexity, a concern with
(21) is the factor �2

�ð~nÞ which controls the volume of
the ellipsoid. This factor can be approximated by

�2
�ð~nÞ � ð	 þ

ffiffiffi
~n

p
Þ2 ¼ Oð~nÞ ð23Þ

for some constant 	 [60], and thus grows linearly with
~n. We illustrate the effect this has with an example.

Example 9: Consider the problem of estimating the first
impulse response coefficient of a FIR system of order n.
Assuming for simplicity that the desired accuracy is
� ¼ 1, and that the true impulse response coefficient in
question is 1, gives that the desired accuracy is given by

ð�1 � �o1Þ2 � 1 ð24Þ

when using the relative error as in Example 5.
Assuming the noise variance to be �e ¼ 1 and a white

input (it can be shown that this input is optimal) with
variance �u so that R ¼ �u I. Then

Eid ¼ � : ð� � �oÞTð� � �oÞ� �2
�ðnÞ
N�u

� 	
: ð25Þ

Now for all � in Eid to satisfy (24) we must choose
N � �u ��2

�ðnÞ. In view of (23) this means that the
input energy grows linearly with the model/system
order. &

From Example 9, we see that it may be desirable to
tune the ellipsoidal uncertainty set better to the level
setM�

app for the performance degradation cost. Notice
that (24) imposes a constraint in only one direction in
the parameter space, in fact it is a degenerate ellipsoid,

whereas the ellipsoid (25) is a unit ball. For the pur-
pose of obtaining better approximations of the level
set of the performance degradation cost, which is
expressed in the parameter space as�app, let � 2 R

nm

where m� n and suppose that � is full rank. Now,
from (19) we have thatffiffiffiffi

N
p

�Tð�̂N � �oÞ � AsNð0;�TRy�Þ;
and hence

Nð�̂N � �oÞT� �TRy�
� �1

�Tð�̂N � �oÞ � As�2ðmÞ:
Thus

Eidð�Þ :¼

� : ð� � �oÞT� �TRy�
� y

�Tð� � �oÞ� �2
�ðmÞ
N

� 	 ð26Þ

will contain �̂N with probability �. Notice that Eid

defined in (21) can be written as EidðIÞ.
Example 10: (Example 9 continued): Take � ¼
½1; 0; . . . ; 0�T:

Then

� �TRy�
� y

�T ¼ 1 01ðn�1Þ
0ðn�1Þ1 0ðn�1Þðn�1Þ;

� �
and thus

Eidð�Þ ¼ � : ð�1 � �o1Þ2 �
�2

�ð1Þ
N�u

� 	
;

and we see that it is sufficient that N�u ��2
�ð1Þ in order

for the constraint (24) to be satisfied. This constraint
does not depend on the model order n. &

We conclude that

Eidð�Þ 
 �app ð27Þ

with a suitably chosen � rather than (22) should be
considered. This is one of the key observations in the
paper. We will postpone the discussion on how to
choose � to Section 3.4.

3.2. Maximum Likelihood Estimation

In maximum likelihood estimation, R in (19) is typ-
ically given by the average Fisher information matrix

Iidð�oÞ :¼ lim
N!1

� 1

N
E

d2

d�2
log fð�;ZNÞ

����
�¼ �o

� �
¼ lim

N!1
d

d�
log fð�;ZNÞ

����
�¼ �o

;
d

d�
log fð�;ZNÞ

����
�¼ �o

� �
;

ð28Þ
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where f is the probability density function for the
observations ZN, and where

gðZNÞ; hðZNÞ� � ¼ 1

N
E gðZNÞhTðZNÞ� �

:

According to the asymptotic Cramér-Rao bound,
Iidð�oÞ majorizes all possible inverse covariance mat-
rices R in (19), and thus corresponds to the smallest
possible confidence ellipsoid Eidð�Þ (that was defined
in (26)). When our interest is to study the cost of
complexity it is thus relevant to use R ¼ Iidð�oÞ.

It is also possible to express the condition (22) in
terms of the log-likelihood function. To see this notice
that it holds [61]

1

N
E � log fð�;ZNÞ� � �

1

N
E � log fð�o;ZNÞ� �þ 1

2
ð� � �oÞT Iidð�oÞ ð� � �oÞ

since d
d E � log fð�;ZNÞ½ � ¼ 0. Thus,

Eid : ¼ � : ð� � �oÞTIidð�oÞð� � �oÞ� �2
�ð~nÞ
N

� 	
�
(

� :
2

N
E � log fð�;ZNÞ� �� :

2

N
E � log fð�o;ZNÞ� �� �2

�ð~nÞ
N

)

for large N. In other words, Eid corresponds to the
level set

� : Vidð�Þ� �2
�ð~nÞ
2N

� 	
ð29Þ

for the averageKullback–Leibler information distance

Vidð�Þ :¼ lim
N!1

1

N
E � log fð�;ZNÞ� �� 1

N
E � log fð�o;ZNÞ� �

:
ð30Þ

The link between confidence sets and the cost function
has been pointed out in [62]. Thus, in view of (29), we
see that in order to ensure (22) the identification
experiment should be designed such that the level set
of the Kullback–Leibler information distance Vid,
corresponding to level �2

�ð~nÞ=ð2NÞ, is contained in the
level set of the performance degradation cost Vapp,
corresponding to level 1=ð2�Þ:

Vidð�Þ� �2
�ð~nÞ
2N

) VappðMð�ÞÞ� 1

2�
: ð31Þ

This observation is remarkable in its simplicity and
has some far reaching implications as we will see later.

3.3. Prediction Error Identification

We will in this section briefly derive the condition
corresponding to (31) that ensures (22) when PE
identification is used rather than ML identification.
We consider a quadratic prediction error criterion and
single-input/single-output systems. Let the one-step
ahead predictor of the system output corresponding to
the model Mð�Þ be given by the linear time-invariant
predictor

ŷðtjt� 1; �Þ ¼ Wðq; �Þ zðtÞ
Assuming the true system to be in the model set and
the predictor to be differentiable with respect to �,
then R is given by

R ¼ Iidð�oÞ;
where Iid is the average information matrix

Iidð�oÞ :¼ 1

�e
E W0ðq; �oÞ zðtÞðW0ðq; �oÞ zðtÞÞT
h i

;

ð32Þ
where �e is the variance of the innovations of the true
system and where W0ðq; �Þ ¼ @Wðq; �Þ=@�. Now, a
second order Taylor approximation gives (" is the
prediction error)

E½"2ðt; �Þ� � E½"2ðt; �oÞ� þ ð� � �oÞT�eIidð�oÞð� � �oÞ
¼ �e þ ð� � �oÞT�e Iidð�oÞð� � �oÞ:

Using the same arguments as in the ML-case, this
expansion suggests that if we instead of the Kullback–
Leibler information distance (30), that we used in the
ML-case, take

Vidð�Þ :¼
E "2ðt; �Þ� �� �e

2�e
ð33Þ

then the condition (31) implies that the performance
degradation constraint (22) will be met for PE iden-
tification when the demanded accuracy is high.

3.4. An Information Matrix Condition

With some abuse of notation, Vappð�Þ will denote
VappðMð�ÞÞ. Suppose now that

Vappð�Þ � 1

2
ð� � �oÞTV 00

appð�oÞð� � �oÞ ð34Þ
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holds in the set of admissible model parameters �app.
This is true if Vapp is three times continuously differ-
entiable, the true system belongs to the model set, and
� is sufficiently large (recall that Vapp is constructed to
have global minimum 0 at M ¼ So so its derivative at
M ¼ So will be zero). We have the following example.

Example 11: Consider again Example 6. Let the model
G be parametrized by �. Using the L2 norm in (13) and
S ¼ S� from Example 7 give that close to �o it holds that

Vrelð�Þ � 1

2
ð� � �oÞTV 00

relð�oÞð� � �oÞ;

where

V 00
relð�oÞ ¼

1

2�Z �

��

���� 1� S�ðej!Þ
Goðej!Þ

����2 G0ð�o; ej!Þ G0ð�o; ej!Þ� �
d!:

ð35Þ

&

Now, (34) implies that the level set �app for Vapp in the
parameter space (see (22)) can be approximated by

�app � Eapp

:¼ � : ð� � �oÞTV 00
appð�oÞð� � �oÞ� 1

�

� 	
:

ð36Þ

Similar to Eidð�Þ, this is an ellipsoid centered at �o.
Thus the condition (15), with the ellipsoid (26) cor-
responding to U�ðSoÞ, can be approximated with that
the ellipsoid (26) is contained in the ellipsoid (36):

U�ðSoÞ 
 M�
app , Eidð�Þ 
 Eapp:

Thus the performance degradation cost is acceptable
if the ellipsoid Eidð�Þ, related to the identification, is
contained in the ellipsoidEapp, related to the application.

We are now in position to discuss how to select � in
(26).

Theorem 3.1: Consider the ellipsoids Eidð�Þ and Eapp

defined in (26) and (36), respectively. Suppose that
V 00

appð�oÞ has rank m and take � 2 R
nm such that

V 00
appð�oÞ ¼ �M�T

for some M > 0. Then Eidð�Þ 
 Eapp if and only if

N � R� ��2
�ðmÞV 00

appð�oÞ: ð37Þ

Proof: See Appendix III &

Theorem 3.1 has several implications. Let �iðXÞ
denote the eigenvalues of the matrix X ordered in
descending order. Then (37) implies

N � �iðRÞ� ��2
�ðmÞ�iðV 00

appð�oÞÞ; i ¼ 1; . . . ; n;

see, e.g., [63], and in particular

TrN � R� ��2
�ðmÞTrV 00

appð�oÞ:

Notice also that the degrees of freedom in the factor
�2

�ðmÞ in (37) is given by the rank of V00
appð�oÞ. This

indicates that the shape of the performance degrada-
tion cost is very important for the cost of complexity.

3.5. The Application Demand Matrix

As in Section 2.2, take J ðMÞ to denote the system
property of interest that is obtained in the application
when the model M is used in the design and consider
the relative performance degradation cost (9). Sup-
pose that5 J ð�Þ is two times differentiable. Then the
Hessian of the relative performance degradation cost
can be expressed as

V 00
relð�Þ ¼ Irelð�Þ :¼ J 0ð�Þ

J ð�Þ ;
J 0ð�Þ
J ð�Þ

� �
¼ d

d�
logJ ð�Þ; d

d�
logJ ð�Þ

� �
:

ð38Þ

We see that (38) has the same structure as the average
information matrix (28). In view of (37) this matrix
enforces a demand on the average information matrix,
and we will therefore call this matrix the application
demand matrix.

3.6. Optimal Input Design

When we increase the experimental effort (experiment
time, input power, etc.), Eidð�Þ will shrink. In view of
the experimental cost, we would like to use precisely
the amount of experimentation effort to fit Eidð�Þ
inside �app. One may imagine that it would be ideal to
have Eidð�Þ ¼ �app, i.e., the two level sets in question
of Vid and Vapp should coincide. In any case, con-
sidering this situation gives an upper bound on the
cost of complexity.
Notice now first that in this situation, Eidð�Þ ¼ Eid

since

�ð�TRy�Þ�1�T ¼ R

when equality holds in (37). Thus Eidð�Þ corresponds
to a level set for Vid, according to the discussion in
Sections 3.2 and 3.3. Furthermore, in the region where

5Here we again abuse notation; what we really mean is J ðMð�ÞÞ.

284 H. Hjalmarsson



the quadratic approximation (34) is valid, all level
curves of Vid and Vapp coincide (when appropriately
scaled), i.e.,

Vidð�Þ ¼ ��2
�ðnÞ
N

Vappð�Þ: ð39Þ

We can phrase this as:

the identification experiment should be set up
such that the identification cost Vid resembles
the performance degradation cost Vapp, scaled to
take into account the used number of data, the
number of parameters and the desired accuracy.

In maximum likelihood estimation and using a
relative performance degradation cost, this corre-
sponds to that

the experimental conditions should be set so
that the average Kullback–Leibler information
distance is a scaled version of relative per-
formance degradation cost.

In view of the above, it should come as no surprise
that sometimes the optimal experimental conditions
coincide with the desired operating conditions for the
application. This happens for example for minimum
variance control [8, 64, 12, 37]. We have further
comments on this in Section 4.1 and in Section 5.3 we
show that this happens in model reference control.

Before we conclude this section, we remark that it
may not be possible to find experimental conditions
such that (39) holds. The problem in Example 9 is one
such example.

3.7. The Impact of the Model Structure

The problem of ensuring (15) is very much tied to the
used model set. In (37), this manifests itself in that
both R and V 00

app depend on the model parametriza-
tion. In the interest of making the impact of the model
parametrization visible, one may introduce a generic
model set which includes a range of other model sets.
The generic model set is in turn parametrized, with
possibly infinitely many parameters. For simplicity,
we will assume that the generic ‘‘parameter vector’’
belongs to ‘2. For a specific model set parametrized by
� 2 R

n, there is a map to the generic parameters:

 : Rn ! ‘2. This map represents the model structure.

Example 12: Consider the class of ‘2 stable linear time
invariant models. Then the impulse response coefficients
can be used as generic parameters. For the model
(1) the map 
 is given by


ð�Þ ¼ fg0ð�Þ; h0ð�Þ; g1ð�Þ; h1ð�Þ; . . .g;

where

gkð�Þ ¼ 1

2�

Z �

��

Gðej!; �Þej!kd!;

hkð�Þ ¼ 1

2�

Z �

��

Hðej!; �Þej!kd!:

&

For non-linear systems the reader may think of
the generic model set as a flexible basis function
expansion.

We assume that for the generic model para-
metrization, the performance degradation cost is
measured by a functionVgen. Now, for each parametric
model set which is embedded in the generic model
parametrization (as described above) the performance
degradation cost can be expressed as Vappð�Þ ¼ Vgen

ð
ð�ÞÞ. Assuming the involved functions to be differ-
entiable of the required orders, this function has
Hessian

V 00
appð�oÞ ¼ 
 0ð�oÞ½ �T V 00

genð~
oÞ 
 0ð�oÞ:

where ~
o ¼ 
ð�oÞ. Similarly, it follows from (28) that
the information matrix corresponding to a model set
parametrized by � is related to the information matrix
corresponding to the generic parameterization
according to (we use Iid to denote both information
matrices, the argument reveals to which para-
metrization it corresponds to)

Iidð�oÞ ¼ 
 0ð�oÞ½ �T Iidð~
oÞ 
 0ð�oÞ;
Thus, in the case of maximum likelihood estimation,
we may write the condition (37) as


 0ð�oÞ½ �T N � Iidð~
oÞ � ��2
�ðmÞV 00

genð~
oÞ

 �


 0ð�oÞ� 0;

ð40Þ
where m ¼ RankV 00

genð~
oÞ
 0ð�oÞ ¼ RankV 00
appð�oÞ.

Thus we see that the model structure is helpful in
ensuring (40) if the kernel of 
 0ð�oÞ½ �T includes the
eigenvectors of

N � Iidð~
oÞ � ��2
�ðmÞV 00

genð~
oÞ ð41Þ

which correspond to negative eigenvalues. We also
notice that if (41) is positive semi-definite then the
identification objective (40) is met regardless of the
model set (as long as it is a subset of the generic model
set and includes the true system). This in turn implies
that the model structure selection problem is simpli-
fied considerably as the accuracy will not degrade with
over parametrization.
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4. Dealing With System and Model

Complexity

Up until now we have studied how to set up an
identification experiment such that a given perform-
ance objective is met. In the estimation step, we have
assumed that the model order is known. To further
our understanding of optimal experiments, we will
now examine the case where the true system may not
be in the model set or when the system order is un-
known, i.e., the model order selection problem. In the
last subsection we will consider how to handle high
system complexity when the application information
is not singular but has a large spread of the eigen-
values.

4.1. Restricted Complexity Models

Assume now that the true system So belongs to a
model set (18), parametrized by � 2 R

n. Following the
reasoning in Section 3.6, we assume that the identi-
fication experiment is set up such that the identifica-
tion criterion matches the performance degradation
cost so that (39) holds.

Now we are interested in what happens when we use
a model set which is a subset of M� but which does
not contain So. In the parameter space, our model set
is parametrized by � 2 R

~n where ~n < n. A given model
parameter � for the model set of restricted complexity
corresponds to a model parameter � ¼ �ð�Þ of M�.
Thus the performance degradation cost of a model
with parameter � is given by Vappð�ð�ÞÞ.

One very reassuring observation can be made when
(39) holds, or even when the identification set-up is
such that it only holds that

Vidð�Þ ¼ �Vappð�Þ ð42Þ

for some fixed constant � > 0. The implication is that

the identified model, within the model set of restricted
complexity, will approach the best possible model as
the sample size grows, in the sense that of all models in
the model set (of restricted complexity), this model
minimizes the performance degradation cost Vapp.

This is simply due to that Vidð�ð�ÞÞ becomes the
identification criterion for the model set of restricted
complexity as the sample size grows, and thus with
Vapp proportional to Vid;Vappð�ð�ÞÞ will also be
minimized6

One direct implication of the above is that when (39)
holds, then as long as the model has sufficient degrees of
freedoms to make Vid zero, the property of interest will
be consistently estimated. The problem in Example 2 of
estimating the static gain is one such example. In fact
this holds sometimes even if it is not possible to match
the identification and the performance degradation
costs exactly. Exact conditions are established in [20, 65].
We will see an example of this in Section 5.4.

As pointed out in Section 1, the benefits of match-
ing the identification criterion with the application
objective have been noted in the context of identi-
fication for control, see, e.g., [47–51]. Notice however
that we here make an important additional observa-
tion. The scaling in (39) is very important in order to
ensure that the performance degradation cost con-
straint is not violated for finite sample size N. The
correct scaling can in general only be obtained with
proper design of the excitation, the feedback and the
experiment length and not with other methods such as
prefiltering. We will illustrate this in Section 5.3.

4.2. Model Order Selection

In prediction error identification Vid is itself the per-
formance degradation cost when the application is
one-step ahead prediction. Now, there is a significant
body of literature on how to determine a model that is
good for prediction. For example AIC [7] provides an
estimate of the prediction error variance when the
estimated model is applied to one-step ahead predic-
tion. The prediction error variance is indeed a measure
of the performance degradation cost when a model is
used for prediction.

Now we make the simple observation that Vapp ¼
Vid (this is what we have assumed at the outset of this
section). But this implies that

all available theory on identification when the
intended model use is prediction is applicable
for the application in question.

For example, suppose that we are considering a se-
quence of increasing model sets with increasing
number of parameters, and that one of the model sets
is known to contain the true system. Denote the least-
squares estimate of the model structure with ~n para-
meters by �̂ and a corresponding parameter vector in
the model structure of the full order model by �ð�̂Þ.

6 The attentive reader may be concerned with our argument above
since there may be several values of � that correspond to a given �
due to non-identifiability, either due to the model parameteriza-
tion (e.g. pole-zero cancellations), or due to lack of persistence of
excitation, so that the map �ð�Þ is not well defined. Notice,
however, that models corresponding to such �’s are indistinguish-
able from the data (see the discussion in Appendix II) and hence
Vid is exactly the same for these different models and thus, in view
of (42), also Vapp is identical for these models. Thus it suffices for
our arguments above to hold that we define a unique map �ð�Þ.
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Then AIC can be used to provide an estimate of
Vappð�ð�̂ÞÞ. In our context this estimate is given by

V̂appð�ð�̂ÞÞ ¼
1
N

PN
t¼1 "ðt; �ð�̂ÞÞ2 þ 2 �e~n

N � �e

��2
�ðnÞ�e=N

when the noise variance �e is known. In Appendix IV
it is shown that this is an unbiased estimate for
deterministic linear regression problems subject to
white Gaussian noise. In this appendix the statistical
properties of the estimate are also derived.

4.3. Further Measures to Manage System

Complexity

One of the more important observations in Section 3
was that the experimental effort can be reduced when
the Hessian of the performance degradation cost is
singular. This manifests itself in (37) by the factor
�2

�ðmÞ ¼ OðmÞwherem is the rank of V 00
appð�oÞ. Now it

may be that V 00
appð�oÞ is full rank but that there is a

large spread of the eigenvalues. In this situation it is
tempting to replace V 00

appð�oÞ by a low rank approx-
imation since this will reduce the scaling factor
�2

�ðmÞ ¼ oðmÞ which in turn will reduce the experi-
mental cost since (37) becomes a milder constraint.
Now there are several issues to consider:

(1) How much should the rank be reduced with, and
which directions should be removed?

(2) How should the estimation be performed?

Suppose that the accuracy � is given and that it is
desired to minimize some measure of the experimental
cost. Then it turns out that, ideally, the following
procedure should be followed:

First make an eigenvalue decomposition

V 00
appð�oÞ ¼ EDET;

where D is a diagonal matrix consisting of the eigen-
values f�kg of V 00

app, ordered in descending order of
�2
k �k where � ¼ ½�1 . . . �n� T ¼ ET�. Now for

each ma such that
Pn

k ¼ ma þ 1 �2
k �k � 1=� holds, per-

form the following steps:

(i) Partition E ¼ ½Ea E� � with Ea 2 R
nma and

take Da to be the upper ma ma block of D.
(ii) Take

�a ¼ 1
1
� �

Pn
k¼maþ1 �2

k �k

:

(iii) Take

~V
00
appð�oÞ :¼ EaDaE

T
a

as approximation of V 00
appð�oÞ and design an

experiment such that (37) holds with V 00
appð�oÞ

replaced by ~V
00
appð�oÞ, � replaced by �a and m

replaced by ma.

Pick the rank ma for which the experimental cost
computed above is minimized. Use the experimental
design which corresponds to this rank of ~V

00
appð�oÞ.

Estimate �̂N and form the projection

�̂
proj
N ¼ EaE

T
a �̂N:

It then holds that

ð�̂projN � �oÞTV 00
appð�̂ proj

N � �oÞ� 1

�
ð43Þ

with probability �, and this is achieved at the lowest
possible cost. The above procedure gives the following
observation:

Thenumber of eigenvalues that dominate the eigenvalue
distribution of V 00

appð�oÞ represents the amount of system
information that has to be extracted from the system.

We will denote the number of dominating eigenvalues
by �n, where n is the dimension of �. It may seem
tempting to also reduce the model complexity, i.e. the
number of parameters, so that it corresponds to the
reduction of rank in V 00

appð�oÞ. However, this could
cause an increase in the variability of the estimate so
that (43) does not hold. This is due to the invariance
principle [66] which is a separation principle that says
that one should first model as well as possible and
then use the resulting model for all further computa-
tions. This is extensively discussed in Section 4 in [45].
See also Appendix VI for further ramifications of this
principle. An exception is when the experiment design
is such that the inverse covariance matrix R is singu-
lar. Then it is sufficient to use a model with the
number of parameters equal to the rank of R, see
Appendix II, and Example 2 for an example.

5. Application to Prediction Error

Identification

In this section we will illustrate how our insights from
the previous sections can be used. In the interest of
simplicity, we will consider prediction error identi-
fication of causal linear time invariant systems.

5.1. Preliminaries

Consider the output-error model

yðtÞ ¼ GðqÞuðtÞ þ eðtÞ;
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where G is parametrized such that the true system is in
the model set. Let n denote the number of parameters
that parametrize G and let �e denote the true noise
variance. The experimental set-up is shown in Fig. 3
which we assume to be stable. In the figure w is white
noise with unit variance and thus R can be seen as the
minimum phase stable spectral factor of the reference
signal r.

Consider now that it is of interest to achieve a cer-
tain transfer function Lo, that involves the true system
Go. Based on the model, L ¼ LðGÞ is designed, where
L is such that LðGoÞ ¼ Lo. Model reference control,
discussed in Examples 6, 7 and 11, is one application
which fits into this framework. Other such applica-
tions include filter design and simulation. We measure
the performance degradation cost by the relative cost
(9) using the L2 norm with the quantity of interest
taken as J ð�Þ ¼ LðGð�ÞÞ.

We will use (39) as a way to assess the cost of
complexity. Thus we need to establish expressions for
Vid and Vapp. Starting with Vid, the prediction error is
given by

"ðt;GÞ ¼ y� GuðtÞð Þ ¼ ðGo � GÞuðtÞ þ eðtÞ:

Using this, straightforward calculations give that Vid

defined in (33) can be expressed as

Vidð�Þ ¼ 1

2�

Z �

��

jGðej!Þ � Goðej!Þj2 �uðej!Þ
�e

d!: ð44Þ

By a first order Taylor approximation, we have

ðLðGÞ � LðGoÞÞ=LðGoÞ � L0ðGoÞ
LðGoÞ ðG� GoÞ ¼ ðG� GoÞ

d
dG logLðGÞjG¼Go

and thus the relative performance

degradation cost Vrel can be expressed approximately
as

VrelðGÞ � 1

2�

Z �

��

jGðej!Þ � Goðej!Þj2
���� d

dG
logLðGÞjG¼Goðej!Þ

����2d!:

ð45Þ

5.2. Cost of Complexity

Considering experimental conditions such that (39)
holds will provide us with an upper bound on the cost
of complexity. Clearly, (39) holds for (44) and (45) if

N�uðej!Þ ¼ ��2
�ðnÞ�e

���� d

dG
logLðGÞ

����
G¼Goðej!Þ

����2 ð46Þ

holds for all frequencies. The reader should observe
that (46) is an overbound of the cost of complexity for
two reasons: (1) The equality (39) may not be the
optimal choice of experimental conditions. (2) There
may exist experimentally cheaper ways to match (44)
and (45) than matching the integrands frequency by
frequency. In regards to (2), it can be shown, using the
asymptotic theory in [67], that matching the inte-
grands implies no loss in the cost when the model
complexity increases. Taking into account the ease
with which the result (46) was obtained, we will stick
to this condition. Thus we have the upper bound

Q :¼ minN � E½u2ðtÞ�

� ��2
�ðnÞ�e

1

2�

Z �

��

���� d

dG
logLðGÞ

����
G¼Goðej!Þ

����2d!

¼: ��2
�ðnÞ�e

���� d

dG
logLðGÞ

����
G¼Go

����2
2

:

ð47Þ
It is instructive to compare this bound with the min-
imum energy required when the input is white noise,
which is a commonly used type of input. In order to
ensure

N � �uðej!Þ� ��2
�ðnÞ�e

d

dG
logLðGÞ

���� ����
G¼Goðej!Þ

����2

over all frequencies with a white input (which has
spectrum �uðej!Þ ¼ �u, where �u denotes the input
power), the minimum input energy is given by

N�min;white
u :¼ ��2

�ðnÞ�e max
!

���� d

dG
logLðGÞ

����
G¼Go

����2
¼: ��2

�ðnÞ�e

���� d

dG
logLðGÞ

����
G¼Go

����2
1

:

ð48Þ
Comparing (48) with (47) , we see that a white input
requires significantly more input energy than neces-
sary when d

dG logLðGÞ
��
G¼Go

has narrow spikes in the
frequency domain.
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−K(q)
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Fig. 3. Block diagram of a single input single output LTI system
with output feedback.
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5.3. Application 1: Model Reference Control

We will now return to the model reference control
problem discussed in Examples 6, 7 and 11. The
objective is thus to obtain the closed loop sensitivity
S ¼ S� (defined in (17)) and thus LðGÞ ¼ SðGÞ (see
(12)). Using (11)–(12),

d

dG
logLðGÞ

����
G¼Go

¼ L0ðGoÞ=Lo ¼ ð1� S�Þ=Go:

ð49Þ
We will begin with a specific example.

Example 13: Consider the FIR system

yðtÞ ¼ �o1uðtÞ þ �o2uðt� 1Þ þ eoðtÞ;

where �o1 ¼ 2; �o2 ¼ 1 and where eo is zero mean white
noise with variance 1.

Starting with a low required bandwidth by choosing
� ¼ 0:025 gives a cost function Vrelð�Þ with contour lines
as in Fig. 4. From the figure we see that the performance
degradation is not very sensitive in one direction in the
parameter space. Optimal input design (see Section 6)
gives contour lines of the identification criterion
according to Fig. 5.We see that the identification cost is
oriented in the same direction as the relative perform-
ance degradation cost.

Nowwe increase the bandwidth significantly by taking
� ¼ 1, seeFig. 2.Then the performance degradation cost
changes to the one inFig. 6.We see that the contour lines
around the optimum are now much more concentric.
Thus both system parameters are important for the
performance, meaning that more system information has
to be extracted in order for the performance specifica-
tions to be met. Optimal input design gives an identi-
fication cost with contour lines according to Fig. 7. We

see that again the optimal input ensures that the cost
functions are matched to each other. &

Let �desired
u ¼ �e

1�S�ðej!Þ
Goðej!Þ

��� ���2. This is the input

spectrum when the closed loop operates according to
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Fig. 4. Contour plot of Vrel when � ¼ 0:025.
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Fig. 5. Contour plots of Vid when � ¼ 0:025.
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Fig. 6. Contour plot of Vrel when � ¼ 1.
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Fig. 7. Contour plots of Vid when � ¼ 1.
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the desired specifications, i.e. when the sensitivity
function is given by S� and only noise excites the
system. From Section 5.2 we have that the desired
performance degradation objective will be met in an
experiment of length N if the input energy spectrum
during the identification experiment is

Ne�uðej!Þ :¼ ��2
�ðnÞ�desired

u ðej!Þ; ð50Þ

Thus one way of achieving the identification objective
is to perform an experiment under the desired closed
operating conditions with an experiment length
N ¼ ��2

�ðnÞ. This is an illustration of when the
experimental conditions coincide with the desired
operating conditions, cf. the discussion at the end of
Section 3.6.

The reader should also observe that the same cost
and result can be obtained in open loop, e.g. simply
choose the input spectrum as �desired

u and N ¼ ��2
�ðnÞ.

This results in a different output spectrum compared
to the closed loop solution.

When the data has been collected using a different
input spectrum, let us call it �id

u , it may be tempting to
use prefiltering to shape the identification objective
into the desired Vrel. Replacing the prediction error
"ðt;GÞ by the filtered prediction error "Fðt;GÞ ¼
FðqÞ"ðt;GÞ gives

Vidð�Þ ¼ 1

2�

Z �

��

jGðej!Þ � Goðej!Þj2 jFðe
j!Þj2 �id

u ðej!Þ
�e

d!;

which shows that by taking F such that jFj2 ¼
�desired

u =�id
u will give the desired identification object-

ive. However, this will not work since our derivations
in Section 3 were based on that the true system is in the
model set and prefiltering can be seen as changing the
noise model from 1 (our output-error model) to F�1

which is not consistent with our assumption that the
true system is of output-error type. This illustrates the
comment made at the end of Section 4.1 that matching
identification and application criteria can in general
only be achieved through the experiment design.

Now we turn our attention to how the performance
specifications of the application influence the cost of
complexity. For our model reference control problem
we see from (50) that the required energy increases
when the bandwidth of 1� S� is increased (this hap-
pens when � increases, see Fig. 2). We illustrate this
with an example.

Example 14: Suppose that the noise is white with
variance �e and that Go has constant magnitude. Sup-
pose also that S ¼ S�, with S� defined in (17). In this
scenario, (49) is given by

L0ðGoÞ=Lo ¼ ð1� S�Þ=Go ¼ 2�

ð1þ �ÞGo

z�1

1� az�1
;

where a ¼ ð1� �Þ=ð1þ �Þ. The input spectrum in (50)
can be written as

N�uðzÞ ¼ �e��2
�ðnÞ�

jGoj2
X1
i¼�1

a�jijz�i:

It can be shown that this is the input with minimum
energy that achieves the identification objective, also for
finite model order. We see that the required input energy
is given by

N�u ¼ N
1

2�

Z �

��

�uðej!Þd!

¼ �e��2
�ðnÞ �

jGoj2
� �e� �n

jGoj2
:

ð51Þ

This expression clearly indicates the trade-offs the user
has to make if the energy budget is limited. For given
system complexity n and noise variance �e, either the
accuracy � or the performance specification � has to be
sacrificed. The factor � can be seen as a measure of the
fraction of the total system complexity (measured as
the total number of parameters) that has to be extracted
from the system. In Fig. 8 the distribution of the
eigenvalues of the application information matrix is
shown when � ¼ 0:2 and the system order is n ¼ 20.
Notice that the fraction of dominating eigenvalues is
around 4=20 ¼ 0:2 ¼ �. This is consistent with the dis-
cussion below (43) in Section 4.3. The attentive reader
will notice that in this example we have not used the
procedure suggested in Section 4.3. The reason is that
for the considered problem it is possible to match the
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Fig. 8. Example 14: Solid line: The eigenvalues for the application
demand matrix plotted in descending order when � ¼ 0:2 and the
system order n ¼ 20. Dashed line: Marks the fraction �n of
dominating eigenvalues.
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information matrix in the identification to the applica-
tion demand matrix. When this is not possible it is
beneficial to follow the procedure in Section 4.3.

In Fig. 9.a the obtained relative performance
degradation cost (13) is plotted for a sample size
increasing from N ¼ 100 to N ¼ 200, when the optimal
input design is used. The figure shows 100 Monte Carlo
runs when the input design is for
�e ¼ 0:1;N ¼ 200; � ¼ 0:1; � ¼ 1000, and � ¼ 95%.
The used model order is 2 and the true system is
GoðqÞ ¼ q�1. For comparison the cost when white noise,
with the same variance as the optimal input, is shown in
Fig. 9b. From Fig. 9a we see that about 3% of the
realizations do not satisfy the specifications when
N ¼ 200. This is consistent with the choice � ¼ 95%.
For the white noise input 7% of the realizations do not
satisfy the specifications.

In Section 5.2 it was noted that (47) and (48)
implied that if L0=Lo is spiky, then the required input

energy can be significantly lower for the optimal input
than for white noise, when the model order is high. In
this example, the minimum required energy for white
noise is

N�min
u � �e�n

jGoj2
:

Comparing with (51), we see that when � is small (low
bandwidth) and the model order is high (which is the
situation where our expressions are accurate), a white
noise input will require many times the minimum
necessary energy. Exact calculations show that with a
model order of 10 and � ¼ 0:1, 5 times as much energy
as necessary is required for a white noise input. &

5.4. Application 2: Identification of Non-minimum

Phase zeros

As another application, we will now turn to estimation
of non-minimum phase (NMP) zeros. Assume that the
stable system Go ¼

P1
k¼1 gkq

�k has a real-valued
NMP zero at zo of multiplicity 1 and that this zero is
our quantity of interest. We thus take J ð�oÞ ¼ zo.
Now we will not consider a specific model para-
metrization but instead we will follow Example 12 and
use the impulse response coefficients of the system
model and noise model dynamics as generic para-
meters. It can be shown [68] that

dzo
dgk

¼ � zoeGoðzoÞ
z�k
o ; ð52Þ

whereeGoðzÞ ¼ GoðzÞ=ð1� zoz�1Þ: ð53Þ
Now as the sensitivity of J with respect to the impulse
response of the noise model is zero, we can ignore
these coefficients in the following. Using (52), the part
of the application demand matrix that depends on the
system impulse response coefficients is thus given by
the rank-1 Hankel matrix

Irelð~
oÞ ¼ 1

jzo eGoðzoÞj2
1 z�1

o z�2
o . . .

z�1
o z�2

o z�3
o . . .

..

. ..
. ..

. . .
.

264
375: ð54Þ

where ~
o ¼ 
ð�oÞ. The corresponding part of the
information matrix is given by the Toeplitz matrix

Iidð~
oÞ ¼ 1

2�

Z �

��

�uðej!Þ
�vðej!Þ

1 ej! e�2! . . .
e��! 1 ej! . . .
..
. ..

. ..
. . .

.

264
375d!:
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Fig. 9. Example 14: Relative performance degradation cost over
100 Monte Carlo runs. (a) Optimal input. (b) White input. Dashed
line: Desired accuracy after N ¼ 200 observations.
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Now if we take

N�uðzÞ ¼ �vðzÞ ��2
�ð1Þ

jzo eGoðzoÞj2
X1
i¼�1

ðzoÞ�jijz�i

¼ �vðzÞ 	

j eGoðzoÞj2
1� ðzoÞ�2

ðzo � z�1Þðzo � zÞ ;

ð55Þ
we obtain

NIidð~
oÞ ¼

��2
�ð1Þ

jzo eGoðzoÞj2

1 z�1
o z�2

o . . .

z�1
o 1 z�1

o . . .

..

. ..
. ..

. . .
.

2664
3775:

ð56Þ
For these experimental conditions, it is now easy to
show [33] that

NIidð~
oÞ� ��2
�ð1ÞIrelð~
oÞ;

which means that the condition (37) (with R ¼ Iidð�oÞ)
holds for the generic parametrization. But then
according to the discussion in Section 3.7, (37) is sat-
isfied regardless of the model structure. We have
thus shown that choosing the input spectrum
according to (55) will ensure that the accuracy of the
zero estimate is the desired value � regardless of the
model structure.

The input spectrum (55) (or any scaled version of it)
has another interesting property. It allows the zero at
zo to be consistently estimated for restricted com-
plexity models. Recall from Section 4.1 that if the
identification criterion is matched to the performance
degradation cost and the model structure is flexible
enough to make this criterion zero (which effectively
means that it is flexible enough to model the system
property of interest), then the property of interest will
be estimated consistently as the sample size grows. In
the zero estimation problem above, the input spec-
trum (55) gives the average information matrix (56)
which in turn does not match the application demand
matrix (54) perfectly. Thus in this case the two cost
functions in question do not match perfectly. How-
ever, the fit is sufficiently good and it can be shown
[20, 65] that when (55) is used as input spectrum and
the system is operated in open loop, the zero zo will be
consistently estimated regardless of the system order
and noise dynamics for ARX, ARMAX, Box-Jenkins,
FIR and output-error systems when Gðq; �Þ has more
zeros than poles. For example an FIR model with two
parameters can be used.

6. Computation and Implementation of

Optimal Input Designs

So far we have mainly been concerned with obtaining
explicit expressions for approximations of the min-
imum experimental cost (measured in terms of the
required input energy), i.e., the cost of complexity.
Now, we will turn to the practical side of designing
optimal experiments.

In order to compute the optimal experimental
conditions for a given Vapp there are two crucial issues
that must be addressed:

(1) The level set M�
app of the performance degrada-

tion cost, defined in (15), must be characterized.
(2) Experimental conditions must be determined such

that U�ðSoÞ satisfies (15).

In order to obtain a computationally tractable
problem, these two issues must be closely linked. In
the literature most attention has been given to the case
whenU�ðSoÞ is an ellipsoid. This is the case, e.g., when
the asymptotic theory for maximum likelihood and
prediction error estimation is used, cf. Section 3. In
this case (14) corresponds to (27).

6.1. Characterization of the Level Set for M�
app

By far the simplest way to define the level set (16) is to
use the quadratic approximation (34). As we have seen
in Section 3.4 this leads to the simple matrix inequality
(37) when U�ðSoÞ is an ellipsoid. When the design can
be explicitly expressed as a function of the model (or
its parameters) it is often easy to compute the Hessian
of Vapp. However, there are applications where it is
non-trivial to compute the required sensitivities, e.g.,
model predictive control (MPC).

To verify that a given ellipsoid belongs to a convex
set is a convex problem. However, despite this,
depending on the function in question this may not be
a computationally tractable problem. There is a
growing body of results in the literature where, for
various classes of functions, computationally tract-
able conditions are formulated that guarantee that a
given ellipsoid belongs to the level set of a function in
the considered function class. The derived conditions
are typically in the form of a feasibility test of a semi-
definite program. In [32] this is done for the squared
chordal distance [70]

jGðej!; �Þ � Goðej!Þj2
ð1þ jGðej!; �Þj2Þð1þ jGoðej!Þj2Þ

: ð57Þ
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This is extended in [34] to a family of functions in the
frequency domain which includes, e.g., (57) as well as
the weighted relative model error

T
Go � Gð�Þ

Gð�Þ :

In [40], the feasibility of a linear matrix inequality
(LMI) is shown to guarantee the existence of a state-
feedback controller such that a certain H1 bound is
satisfied for all possible models in an ellipsoidal
parameter set. Feasibility conditions in terms of LMIs
are provided in [10, 71] which are equivalent to that a
given controller satisfies a weighted 4-block H1 per-
formance bound under ellipsoidal parametric system
uncertainty.

The S-procedure, see, e.g., [72], is the key tool for
obtaining the results above. For multi-input multi-
output (MIMO) systems, relaxations based on a linear
fractional transformations/multiplier/separation of
graphs framework has lead to advances so that
bounds on worst case performance of H1-norms can
be computed under ellipsoidal uncertainty [27]. The
same techniques have been applied to robust H2

deconvolution filter design [28].
It is natural to also use a design method in the

application that is robust to ellipsoidal uncertainty.
Two such results are theH1 state feedback in [40] and
the deconvolution filter design method in [28].

6.2. Solving Optimal Experiment Design Problems

There exists an extensive literature on optimal input
design, see, e.g., [73–77] and the surveys [26, 78]. Let
us for simplicity focus on open loop prediction error
identification of linear time-invariant systems. For the
model structure (1) where the true system corresponds
to GoðqÞ :¼ Gðq; �oÞ and HoðqÞ :¼ Hðq; �oÞ, the aver-
age information matrix (32) is given by [7]

Iidð�oÞ ¼ 1

2�

Z �

��

�ðej!Þ��ðej!Þd!; ð58Þ

where

�ðzÞ ¼ 1ffiffiffiffiffi
�e

p
HoðzÞ G0ðz; �oÞRðzÞ ffiffiffiffiffi

�e

p
H0ðz; �oÞ

� �
;

where �e is the variance of the innovations and where
R is the stable minimum phase spectral factor of the
input.

From (58) we see that the only design variable with
which the user may influence the average information
matrix is the input spectrum. For closed-loop systems

it can be shown that also the cross-spectrum between
the input and the noise will influence Iid [7]. This
means that the experiment design can be divided into
two steps: (1) First the input spectrum and the
aforementioned cross-spectrum are determined by
solving an optimization problem. (2) A feedback
controller and an input signal are determined that are
consistent with these spectra. The signal generation in
the second step can be achieved by spectral factor-
ization of the desired input spectrum and then filtering
white noise through the stable minimum-phase spec-
tral factor. A key issue in the first step is to obtain a
tractable optimization problem. In recent years the
focus has been on transforming the problems to semi-
definite programs.

Notice from (58) that Iid is affine in the input
spectrum. Thus, if the input spectrum is linearly
parametrized, the matrix inequality (37) becomes an
LMI in the decision variables. The use of LMIs in
optimal input design problems was first proposed in
[13] and has subsequently become standard. We refer
to [34] for a comprehensive treatment of the subject.

Although alternatives exists, a common approach
to optimal open-loop input design consists of the
following steps:

(1) Parametrization of the input spectrum
(2) Choice of objective function, signal constraints,

quality constraints and computation of their
parametrizations

(3) Conversion of objective function and constraints
to convex counterparts.

Notice that with the design variable being a spec-
trum, it is in general not possible to include time-
domain constraints.

(1) Parametrization of the input spectrum: There are
several possibilities when it comes to the para-
metrization of the input spectrum. The starting point
is to expand the spectrum in some basis functions
fBkg:

�uðej!Þ ¼
X1

k¼�1
~ck Bkðej!Þ; ð59Þ

where now the coefficients ~ck are seen as decision
variables. One possibility is to use sinusoidal basis
functions. In fact a finite number of sinusoids para-
metrize all possible information matrices [74]. How-
ever the frequencies of these sinusoids may depend on
the system. There are also other basis functions which
allow all possible information matrices to be para-
metrized using a finite number of terms. But as for
sinusoids, these basis functions generally depend on
the true system. An exception is FIR models: For an
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nth order FIR model the first n autocorrelation coef-
ficients of the input parametrize all information mat-
rices. Relaxing the objective of being able to
parametrize all information matrices one may use
known basis functions and truncate (59) to get a finite
number of decision variables. A common para-
metrization is

�uðej!Þ ¼
Xm
k¼�m

~cjkj ��!k: ð60Þ

Below we will, for simplicity, use this parametrization
and f~ckgmk¼0 will be our decision variables. The para-
metrization must be accompanied by a positivity
constraint on (60). This infinite dimensional con-
straint can be transformed to an LMI by way of the
Kalman–Yakubovich–Popov (KYP) lemma [79].

(2) Objective function and constraints: From a least-
costly perspective, the objective function should relate
to the identification cost. A standard cost is the input
energy. However, also the output power, or a weigh-
ted version thereof, may be included in the objective
function. Constraints may include quality qualifiers
such as (37) but also signal constraints. There may
also be frequency domain constraints. Constraints
and objectives that can be written as weighted L2

functions of the input spectrum become LMIs in the
decision variables. For example, for (60) the con-
straint

1

2�

Z �

��

�uXðej!Þd! þ ~X� 0

becomesXm
k¼�m

~cjkj Xk þ ~X� 0; ð61Þ

where

Xk ¼ 1

2�

Z �

��

Xðej!Þe��!kd!:

Also a variety of frequency domain constraints can
be converted to LMIs through the use of the KYP-
lemma or the generalized KYP-lemma [80].

Alternatively one may use a quality measure as
objective function and use energy related functions as
constraints only. Recently, it has been shown that the
solutions to such problems are equivalent [23].

(3) Quality constraints: Notice that the average
information matrix (58) will have a parametrization
following the left-hand side of (61). Thus quality
constraints such as (37) can be written as LMIs.

When the quadratic approximation (34) is not used,
the handling of the quality constraint (27) becomes

more intricate. It is desirable to find a characterization
of (27) such that it is convex in the decision variables
f~ckg. Returning to the characterizations discussed in
Section 6.1, for the family of functions considered in
[34], the constraint for one frequency becomes an
LMI. The characterization in [40] is also an LMI in
the decision variables and the same holds for the
quality constraint in [10, 81]. The MIMO constraint
developed in [27] becomes a bilinear matrix inequality
in the decision variables and the same holds for the
robust H2 deconvolution filter design in [28]. The first
contribution that to our knowledge treated a problem
related to (27) for non-quadratic functions is [32]. It is
shown that the worst-case chordal distance over the
set Eid (the supremum of (57) over Eid) is quasi-convex
in the decision variables.

(4) Optimal closed loop experiment design: It is also
possible to include the controller as a decision vari-
able. However, it turns out that the appropriate, and
equivalent, decision variable is the Youla-parameter
which, when linearly parametrized, allows a wide class
of experiment design problems to be formulated as
semi-definite programs. We refer to [41] for details.

6.3. Implementation aspects

The Achilles’ heel of optimal input design is that the
optimization problem depends on the true system. In
fact both the the level set M� and the confidence
ellipsoid Eidð�Þ depend typically on the true system
(parameters). There are basically two main routes
around this:

(1) Robust experiment design
(2) Adaptive (or sequential) experiment design

(1) Robust experiment design: In robust experiment
design one tries to design an experiment that is satis-
fying for all systems in the a priori model setM�. This
is typically done in a worst-case sense, i.e., in a
min–max formulation. Indicating the dependence of
Vapp on the true system So by adding a second argu-
ment Vapp ¼ VappðM;SoÞ, a robust version of the
quality constraint (15) is

U�ðSoÞ 
 M�
appðSoÞ; 8S 2 M�;

where

M�
appðSoÞ ¼ M : VappðM;SoÞ� 1

2�

� 	
:

There are limited results available on robust experi-
ment design. In [82], the expected value of the
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determinant of the Fisher information matrix is
minimized. A max-min approach is taken in [83]. The
authors in [10] suggest a scenario approach. Through
the use of game-theory methods, [5, 21] establish
formal results on min–max designs, which show that
1=f-noise possesses very interesting robustness prop-
erties.

(2) Adaptive experiment design: In adaptive, or se-
quential, design, one iteratively improves the experi-
ment design as more and more measurements become
available. There is a substantial literature on sequen-
tial design in the statistics literature, see, e.g., [11] and
[26] for references. A framework for adaptive input
design for dynamical systems using prediction error
identification is presented in [84]. The basic idea is
very simple. The input is generated by a filter

uðtÞ ¼ Fðq; 	ÞwðtÞ;
where w is zero mean white noise. Using the certainty
equivalence principle, at each point N in time the
optimal input filter is computed as a function of the
most recent system parameter estimate �̂N, i.e., 	 ¼
	ð�̂NÞ (the solution is obtained from a semi-definite
program as outlined above) and the updated filter
Fðq; 	ð�̂NÞÞ is used to generate one new input sample.
Subsequently a new output sample is collected, the
model is updated as well as the input filter. This is then
repeated. It is argued that under quite general condi-
tions, the same asymptotic statistical properties as for
the optimal input design are achieved. In [42], this
result is formally established for ARX-models. An
early contribution based on high model order
approximation of the variance error is [64].

Example 15 (Example 14 continued): Using the same
settings as in Example 14 the optimal input was
replaced with an adaptive algorithm where for the first
30 samples (not shown) white noise with the same
variance as the optimal input is used as input in order to
obtain an initial parameter estimate. The algorithm then
was shifted to adaptive mode with an update of the input
filter for every newly acquired data sample. In Fig. 10,
the average performance degradation cost (13) is
shown over 100 Monte Carlo runs when adaptive input
design is used. Comparing with Fig. 9a we see that the
performance of the adaptive algorithm is quite similar to
when the optimal input is used. &

In practice it is often not necessary to adapt the
input design for every sample. It may be sufficient
with a few iterations as the following example illus-
trates.

Example 16 ([36]): The process plant is an ARX
structure

AðqÞyðtÞ ¼ BðqÞuðtÞ þ eðtÞ
with AðqÞ ¼ 1� 1:511q�1 þ 0:5488q�2 and BðqÞ ¼
0:02059 q�1þ 0:01686 q�2. The sampling time is 10
seconds and eðtÞ has variance 0.01. This is a slight
modification of a typical process control application
considered in [85]. The process has a rise time of 227
seconds and consequently, as the process response is
slow, collecting data samples for the identification takes
a long time. Therefore the objective of using optimal
input design for this plant is to keep the experiment time
below some preset value.

The optimal design is based on a data length of
Nopt ¼ 500 and the objective is to design a controller
such that the closed loop complementary sensitivity
function is given by the dashed line in Fig. 11. Also the
optimal input spectrum is given in Fig. 11, and as a
comparison the minimum required power spectrum for a
white noise input is shown. Notice that, consistent with
the discussion in Section 5.2, the white noise input needs
to have a spectrum which is the maximum of the optimal
spectrum. Since in this case the required bandwidth is
low, the required energy for the white noise input is
about 10 times higher than for the optimal input, cf.
Example 14.

To handle the more realistic situation where the true
system is unknown, we will replace the optimal design
strategy by a two-step procedure. In the first step an initial
model is estimated based on a PRBS input7. This model
estimate is used as a replacement for the true system in the
input design problem. The obtained sub-optimal solution
is then applied to the process in the second step.

7 PRBS is a periodic, deterministic signal with white-noise-like
properties [7].
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Fig. 10. Example 15: Relative performance degradation cost over
100 Monte Carlo runs when adaptive input design is used. Dashed
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First consider the two-step adaptive input design
approach. We use a PRBS with length Ninit ¼ 300 and
amplitude 3 to estimate an initial model estimate Gm of
the true system. This model is used for input design with
no upper bound on the input spectrum and experiment
length Nopt ¼ 500. This strategy is compared to the
approach where a single set of PRBS is used in each
Monte-Carlo run. For the comparison’s sake the
amplitude of the PRBS is tuned so that the signal has
the same input power as the average power of the input
in the two-step approach. Furthermore, the experiment
length is adjusted so that the same confidence level is
achieved as with the two-step approach. One realization
of the input sequences for both strategies is plotted
versus time in hours in Fig. 12. We clearly see that the
experiment time when input design is involved is less
than 2 hours and 15 minutes, but more than 10 hours for
the PRBS input. We conclude that for the considered
quality constraint, the experiment time can be shortened
substantially even when a sub-optimal design is used.&

As we noted in Section 4.1, it is sometimes possible
to estimate a certain property consistently even if a
model of restricted complexity is used if the identi-
fication cost is matched to the performance degrada-
tion cost. When the optimal input depends only on
this property, it is sometimes possible to device an
adaptive algorithm that estimates this property con-
sistently when the model is of restricted complexity.
One such case is the estimation of real valued NMP
zeros. Recall from Section 5.4 that, except for a scal-
ing factor, the input (55) depends only on the zero of
interest. In [24] it is shown that if an FIR model with
only two parameters is estimated with the same
adaptive algorithm as outlined above, complemented
with a projection mechanism, then the model zero will

converge to the desired zero regardless of the com-
plexity of the true system, provided the system has
only one NMP zero. We illustrate this with an
example from [24].

Example 17: Consider the system described by

yðtÞ ¼ ðq� 3Þðq� 0:1Þðq� 0:2Þðqþ 0:3Þ
q4ðq� 0:5Þ uðtÞ

þ q

q� 0:8
eoðtÞ;

where feoðtÞg is Gaussian white noise of variance 0.01.
Notice that the system has exactly one NMP zero at
zo ¼ 3.

In order to initialize the algorithm, the first 20 data
samples are used to estimate a second order FIR model
via the least squares method, with a white noise input
signal of variance 1. One realization of the algorithm is
shown in Fig. 13. &

7. Structured Systems

7.1. Introduction

Many systems are highly structured, consisting of
interconnected subsystems. Examples range from
process industry to sensor networks. It is often of
interest to keep the structure of the model consistent
with the structure of the system as this will facilitate
the interpretation of the model. It is also typically
beneficial in terms of model accuracy (recall that the
model structure can be seen as a prior), e.g., if it
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Fig. 11. Example 16. The process plant. Thick solid line: optimal
input spectrum. Dashed line: transfer function T. Dash-dotted line:
open loop system. Thin solid line: white input spectrum.
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Fig. 12. The process plant. Above: the input sequence not involving
optimal input design. Below: the input sequence when involving
optimal input design. The first part of the signal is used to identify
an initial model estimate. Both signals give the same accuracy.
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known that the same (physical) parameter appears at
several places in the system, the model should reflect
this. However, imposing structural information gen-
erally compounds the identification problem as the
identification criterion typically becomes non-convex.
It may also be hard to find good initial parameter
values for parameter estimation. There are also iden-
tification methods where it is difficult to impose a
certain structure, e.g., subspace identification. Thus it
is of interest to understand how much accuracy is
gained by imposing structural information in the
model. Another issue is that there may be a range of
actuators and sensors available and it is then of
interest to understand how much the use of each one
of these can contribute to a model’s accuracy.

Example 18: ([86]): Consider the cascade system
depicted in Fig. 14 given by

y1ðtÞ ¼ G1ðq; �1ÞuðtÞ þ e1ðtÞ;
y2ðtÞ ¼ G2ðq; �2ÞG1ðq; �1ÞuðtÞ þ e2ðtÞ;

with two first order FIR transfer functions

G1ðtÞ ¼ 1þ b1 q
�1; �1 ¼ b1;

G2ðtÞ ¼ 1þ b2 q
�1; �2 ¼ b2:

The input signal is white noise with variance �u. The
true value of the first FIR parameter is bo1 ¼ 1. The
noise processes fe1ðtÞg and fe2ðtÞg are independent
Gaussian white noise stochastic processes, with known
variances �1 ¼ 1 and �2 ¼ 0:01, respectively. The
second sensor thus provides considerably more accurate
measurements than the first sensor. Suppose now that
the objective is to estimate bo1. The reader may think of
bo2 as a nuisance parameter associated with the second

sensor. Since only bo1 is of interest it is obvious that the
second sensor is not necessary for estimating this
parameter. However, due to the much better accuracy of
the second sensor, it seems intuitive that it would be
beneficial to also use this sensor, even if the objective is
to estimate bo1 only.

Now Fig. 15 shows the mean square error (MSE,
computed over 20,000 Monte Carlo runs and with a
sample size of N ¼ 1000) of the maximum likelihood
estimate of bo1 for two cases: (1) Both y1 and y2 are used
as sensors, and (2) only y1 is used. The MSE is shown as
a function of the true value of the second FIR parameter
bo2. As predicted, the accuracy using both sensors is
higher. However, around bo2 � bo1 the improvement is
very small. Thus for systems where bo2 � bo1, it does not
really pay off to use the second sensor even if it is of very
high quality. &

All the issues discussed above are captured in the
covariance matrix Ry, see (19), of the parameter
estimate. However, unfortunately it is not easy to
decode the information ‘‘hidden’’ in Ry. If we take
prediction error identification as example, the

0 0.5 1 1.5 2 2.5 3
x104 

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

t

z t

Fig. 13. Example 17. Solid line: One realization of the zero estimate
for the adaptive algorithm based on a two parameter FIR model.
Dashed line: True location of the zero.

Fig. 14. Cascade system in Example 18.
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Fig. 15. Example 18. Mean square error of the estimate of bo1 as a
function of the location of bo2. Dashed line: y1 and y2 used as
sensors. Solid line: only y1 used as sensor.
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information is captured in the inverse of the average
information matrix (32) which in the case of open loop
identification of linear time-invariant models is given
by (58). Due to the inverse, it is not easy to see how
properties such as model structure, input spectrum,
model order, etc influence I�1

id ð�oÞ.
Example 19 (Example 18 continued): The average
information matrix in Example 18 is given by (58)
with

�ðzÞ ¼ �1ðzÞ :¼ fðzÞ 0½ �; ð62Þ
where f ðzÞ ¼

ffiffiffiffi
�u

�1

q
z�1, when only y1 is used as sensor,

and by

�ðzÞ ¼ �2ðzÞ :¼
fðzÞ

ffiffiffiffi
�u

�2

q
ð1þ bo2z

�1Þz�1

0
ffiffiffiffi
�u

�2

q
ð1þ bo1z

�1Þz�1

24 35
ð63Þ

when both y1 and y2 are used. It is not obvious that there
is something special happening here when bo2 � bo1 as
indicated in Fig. 15 without further analysis.

7.2. A Geometric Framework

A geometric interpretation of the asymptotic covar-
iance matrix has been developed in [65, 87–90] which
is helpful for analyzing the impact various quantities
have. In order to introduce the concepts that are used
we first consider the projection of a vector � 2 R

1n on
the row space of a matrix � 2 R

mn. The projection is
given by the standard expression

Projrowspan�f�g ¼ ��T ��T
� �1

�

and the squared norm of the projection is given by

kProjrowspan�f�gk2 ¼ ��T ��T
� �1

��T:

By introducing the inner product8 hX;Y i ¼ XYT, we
can write this last expression as

kProjrowspan�f�gk2 ¼ h�;�ih�;�i�1h�; �i: ð64Þ

Now, the starting point for the connection between
the asymptotic covariance matrix and this projection
result is the observation that the average information
matrix can be written as

Iid ¼ h�;�i ð65Þ

for some function � with range Cn (recall that n is the
number of parameters) and where h�; �i denotes a
suitable inner product (for prediction error identi-
fication of linear systems the inner product is given by
(58)). The next observation is that the asymptotic
covariance matrix (which we now denote by P) is the
inverse of the information matrix

P ¼ h�;�i�1:

Next, as in Section 2.2, take J ðMÞ 2 C to denote the
system property of interest in the application when the
modelM is used in the design. Suppose that the model
set is parametrized by � and suppose thatJ ð�Þ (which is
short-hand notation for J ðMð�ÞÞ) is a smooth func-
tion. Then

ffiffiffiffi
N

p ðJ ð�̂NÞ � J ð�oÞÞ is asymptotically
normally distributed with asymptotic variance given by

AsVarJ ð�̂NÞ ¼ ðJ 0ð�oÞÞTPJ 0ð�oÞ
¼ ðJ 0ð�oÞÞTh�;�i�1J 0ð�oÞ:

ð66Þ

Now the key observation is that there exists functions
�9 such that h�; �i ¼ J 0ð�oÞ whereby we can rewrite
(66) as

AsCovJ ð�̂NÞ ¼ h�;�i h�;�i�1 h�; �i: ð67Þ
But this expression has exactly the form (64) and we
arrive at

AsCovJ ð�̂NÞ :¼ kProjrowspan�f�gk2:

So what are the benefits of this expression? We first
return to the cascade example.

Example 20: (Example 19 continued): Recall the
expressions (62) and (63) for � that generates the
information matrix. With J ð�oÞ ¼ bo1 being the quant-
ity of interest, it follows that the asymptotic variance of
the corresponding estimate is given by

h�1;�1i�1 and 1 0½ �h�2;�2i�1 1
0

� �
ð68Þ

for the cases of one and two sensors, respectively.
Notice now that if � ¼ hðzÞ 0½ � is such that

h�;�1i ¼ 1 (the precise expression of � is immaterial
for our discussion), then h�;�2i ¼ 1 0½ � and thus the
same � can be used to re-write the expressions in (68) as

kProjrowspan�1
f�gk2 and kProjrowspan�2

f�gk2:
ð69Þ

8Again we abuse notation. Entry i, j of hX;Yi is the inner product
between row i of X and row j of Y.

9 � ¼ ðJ 0ð�oÞÞTh�;�i�1� is one such function, but the exact
expression will be of no concern for our discussion.
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Next observe that projecting � on rowspan �1 or on the
joint row-span of �1 and �2, the latter given by

rowspan

f ðzÞ 0

f ðzÞ
ffiffiffiffi
�u

�2

q
ð1þ bo2z

�1Þz�1

0
ffiffiffiffi
�u

�2

q
ð1þ bo1z

�1Þz�1

26664
37775 ¼

rowspan

f ðzÞ 0

0
ffiffiffiffi
�u

�2

q
ð1þ bo2z

�1Þz�1

0
ffiffiffiffi
�u

�2

q
ð1þ bo1z

�1Þz�1

26664
37775;

ð70Þ

gives the same result. This is due to the structure of
�, i.e. the zero second element. However, the row-span
of �2 is a subspace in the joint row-span of �1 and �2.
But in view of that the same function � is projected in the
two expressions in (69), we conclude that

kProjrowspan�1
f�gk2 �kProjrowspan�2

f�gk2;
i.e. we have shown that using two sensors will be no
worse than using one sensor. It may seem like we have
spent a lot of work establishing this rather evident
result. However, it is now also immediate that the
asymptotic variances will be equal when bo1 ¼ bo2 since
then (70) equals the row-span of �2:

rowspan

f ðzÞ 0

0
ffiffiffiffi
�u

�2

q
ð1þ bo2z

�1Þz�1

0
ffiffiffiffi
�u

�2

q
ð1þ bo2z

�1Þz�1

26664
37775 ¼

rowspan
f ðzÞ

ffiffiffiffi
�u

�2

q
ð1þ bo2z

�1Þz�1

0
ffiffiffiffi
�u

�2

q
ð1þ bo2z

�1Þz�1

264
375 ¼

rowspan�2:

Referring to Fig. 15, this explains why there is only
minor improvement when using two sensors around
bo2 ¼ bo1. Notice also that this is a structural property
which holds regardless of how small the noise variance
�2 of the second sensor is (as long as it is positive).&

The particular behavior around bo2 ¼ bo1 in the
example is due to that there will be a double root of
the polynomial that determines the zeros of the joint
system G1G2. For a more detailed discussion around
this we refer to [86, 91].

7.3. Structural Analysis Using Geometric Tools

Example 20 illustrates that the geometric formulation
(67) of the asymptotic variance can be used to deduce
structural properties of an identification. Notice that

in the example we did not have to determine the
function � that was projected. We only made use of its
structure in our derivations. This type of geometric
analysis has many applications. In [91] the reader can
find results on how adding model parameters and
inputs impact a model’s accuracy, as well as the dif-
ference between open and closed loop identification.
The methodology is also used to derive variance
expressions for identification of non-linear systems.

(1) Adding sensors: The result in Example 20 can be
generalized [65, 88]. With G1 and G2 being indepen-
dently parametrized transfer functions and with the
input having arbitrary spectrum, it follows that the
second sensor is useless for estimating any parameters
in G1 if the row-span of G0

1G2 are in the row-span of
G1G

0
2.

(2) Adding inputs: A problem dual to the above is to
determine when adding inputs can help improve the
model quality. This problem is analyzed in [92] using
algebraic tools. This problem can also be analyzed using
the geometric approach [65, 88]. Consider the model

yðtÞ ¼ G1ðq; �; 	Þu1ðtÞ þ G2ðq; 	Þu2ðtÞ þ eðtÞ

where � and 	 are unknown parameter vectors, where
u1 and u2 are two separate inputs to the system, and
where feðtÞg is white noise. The property of interest is
the parameter �. The user has planned to perform an
experiment where the first input u1 is persistently
exciting. If we assume that Gðq; �; 	Þ is globally iden-
tifiable it will then be possible to estimate both � and 	
using only this input excitation. However, the user
also has the possibility of performing an experiment
where, in addition to u1, also u2 excites the system. The
question now is whether this will help improve the
estimate of �. It is immediate that u2 will be helpful for
estimating 	 since the dynamics G2 that this input
excites depends on 	. However, one may suspect that
an improved estimate of 	 in turn will result in an
improved estimate of �. To see this take the extreme
case that the power of u2 is taken very large and that
this input is persistently exciting, then G2ðq; 	Þ will be
estimated exactly which in turn means that all energy
of u1 can be used for estimating �. Let us now analyze
whether this is correct using the geometric tools
above. Denoting the stable minimum phase spectral
factors of the two inputs by R1 and R2, then the two
cases when u1 is used and when both u1 and u2 are used
correspond to information matrices (65) where

� ¼ �1 :¼ G1
�R

1 0
G1

	R
1 0;

� �
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and

� ¼ �2 :¼ G1
�R

1 0
G1

	R
1 G2

	R
2 ¼ �1 þ 0 0

0 G2
	R

2

� �
;

�

respectively. Consider now a scalar property J which
depends on � only. Then the function � should be
chosen such that

J �

0

� �
¼ h�1; �i ¼ G1

�R
1 0

G1
	R

1 0

� �
; �

� �
; ð71Þ

where J � ¼ @J =@� evaluated at the true parameter.
Now with u1 persistently exciting it is always possible
to find a � which belongs to the row-span of �1 such
that (71) is satisfied. For such � we have

h�2; �i ¼ h�1; �i þ 0 0
0 G2

	R
2

� �
; �

� �
¼ h�1; �i ¼ J �

0

� �

since 0 G2
	R

2
� �

is orthogonal to the row-span of �1

(to which � belongs). Thus we can use this � when
computing the asymptotic variance of the estimate of
J both when using one input and two inputs. However
since we now have constructed � to belong to the row-
span of �1 the asymptotic variance when only one
input is used is given by the squared norm of � whereas
when two inputs are used, � should first be projected
on the row-space of �2. This projection will obviously
not increase the norm and thus we conclude that the
asymptotic variance of J ð�̂NÞ when two inputs are
used cannot be larger than when only one input is
used. The question now is if there can be equality, i.e.
can there be cases when using the second input does
not help in improving the accuracy? For this to hold,
� has to belong to the row-space of �2. Consider the
case when G1

�R
1 is orthogonal to G1

	R
1. Then we see

from (71) that � belongs to the row-space of

G1
�R

1 0
� �

, but this is a subspace of the row-space of
�2 and thus � also belongs to this row-space and the
asymptotic variances will be equal. The analysis can be
extended to show that this orthogonality condition is
necessary and sufficient for there to be no function of �
for which using u2 will improve the accuracy.

Example 21: Consider the model

yðtÞ ¼ G1ðq; �; 	Þu1ðtÞ þ G2ðq; 	Þu2ðtÞ;
where G1ðq; �; 	Þ ¼Pn

k¼ 1 �kq
�k þPm

k¼ nþ 1 	kq
�k.

In this case

G1
�ðzÞR1ðzÞ ¼ z�1 . . . z�n

� �T
R1ðzÞ;

G1
	ðzÞR1ðzÞ ¼ z�ðnþ1Þ . . . z�m

� �T
R1ðzÞ:

When u1 is white noise, these two vectors become
orthogonal and thus the estimate of � will not be
improved asymptotically when u2 is used. This holds
regardless of the power of u2 (as long as it is finite) and
how G2 is parametrized (	 may for example be a
scalar). &

(3) LTI systems: For prediction error identification of
LTI systems, the geometric expression (67) can be re-
formulated. Consider prediction error identification
of the system in Fig. 3 using the model structure (1)
and input-output measurements uðtÞ; yðtÞ.

Let J ð�Þ be a two times continuously differentiable
real valued scalar function of � which does not depend
on the parameters in the noise model Hðq; �Þ and
express J in terms of the system impulse response
coefficients g ¼ fg1; g2; . . .g according to J ð�Þ ¼
Jgðgð�ÞÞ for some function Jg. The asymptotic vari-
ance expression then takes the form

As Var J ð�̂NÞ ¼����Projrowspan� rJg
ffiffiffiffi
�0

p
H�

o

S�
oR

� 0
h in o����2; ð72Þ

where So is the closed loop sensitivity function and
where rJg is the z-transform of the sensitivities of Jg:

rJgðzÞ ¼
X1
k¼1

@JgðgoÞ
@gk

� �
z�k

(go denotes the true impulse response). In (72) we
notice that the only quantity that depends on the
property of interest is rJgðzÞ. We also recognizeffiffiffiffiffi

�e

p
H�

o=ðS�
oR

�Þ as the non-minimum phase unstable
spectral factor of the noise to signal ratio �v=�

r
u,

where�r
u denotes the part of the input spectrum that is

due to the external reference signal r. Thus the
asymptotic variance depends on the signal to noise
ratio. Finally, � is related to the model structure and
the experimental conditions.

From (72) we directly obtain bounds on the vari-
ance if we remove the projection:

AsVarJ ð�̂NÞ�
����rJg

ffiffiffiffiffi
�0

p
H�

o

S�
oR

�

����2 ¼ krJgk2�v
�ru

:

For example the bounds in Table 1 can be derived
[65, 87].

The expression has also been used to derive
experimental conditions such that the asymptotic
variance becomes insensitive to the model and system
complexity [20, 65]. This is closely linked to the dis-
cussion in Section 3.6 concerning when it is possible to
guarantee the model quality constraint regardless of
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model structure. The results in [20, 65] generalize the
results in Section 5.4 on NMP-zero estimation to
other system properties.

8. Conclusions

So what is the essence of our discourse? The main
message is that it is important to understand the shape
of the level-sets of the performance degradation cost.
In hindsight this is not surprising; after all the
application should govern the identification set-up.
But once the user has a grasp of this issue, the problem
is captured by the simple constraint (37) and it is
straightforward to compute the cost of complexity
and suitable experiment designs, at least when the user
has some prior understanding of what the process is (i.
e., in the language of the paper, a reasonable guess of
�o is available.). When the application is designed
explicitly based on the model, cf. model reference
control, it is straightforward to compute the Hessian
V 00

appð�oÞ. However, there are many applications where
this is not trivial at all, examples include optimal
control designs such as H1, LQG and MPC, and
robust filter design. Notice that this is an issue that has
to be coped with no matter what experiment design
approach that is chosen.

We have also discussed how to cope with a large
numberof estimatedparameters.Herewehave pointed
out the importance of adapting the confidence set to
the level curve of the performance degradation cost. To
this end, we have suggested to use confidence ellipsoids
of the type (26) with � adapted to the performance
degradation cost (see Theorem 3.1) and to project the
performance degradation cost (see Section 4.3).

The amount of system information that has to be
extracted from the system corresponds to the fraction
of eigenvalues that dominate the Hessian of the per-
formance degradation cost. This is the factor � that we
have encountered in the quoted result (7) on the cost
of complexity for frequency function estimation and
in the model reference application (see Example 14).
In fact, (37) suggests the simple rule of thumb that the

cost of complexity (measured in terms of required
input energy) is proportional to

� �n�e

where � is the desired accuracy, n the total number of
parameters and �e the noise variance. In the lucky
situation thatV 00

app is rank deficient and where the rank
does not depend on the system or model complexity,
the cost of complexity becomes independent of the
system complexity.

We have also been able to connect this framework
with earlier studies in identification for control where
the benefits of matching the identification criterion to
the performance degradation cost of the application
were stressed from a bias error perspective. Here we
have shown that this concept is inherent in optimal
designs, and that this simplifies model structure and
model order selection. A key observation is that the
scaling of the identification criterion, relative to the
performance degradation cost, is important in order
to ensure that the desired objective is met. Achieving
this requires often proper experiment design.

We have also discussed existing work on how to
compute and implement optimal experiment designs
and we have argued that adaptive (sequential) designs
is a promising avenue for future research. With the
new insights that have appeared over the last years on
experiment design it is perhaps time to revisit adaptive
and dual control?

We have also discussed some aspects regarding
identification of structured systems. We have illu-
strated that there may arise certain structural limita-
tions. In order to uncover these we employed a
geometric variance analysis framework recently
developed and we have given some glimpses of how
this framework can be used.
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Wahlberg B. A control perspective on optimal input
design in system identification. In: Forever Ljung
in System Identification. Studentlitteratur, Sept. 2006,
ch. 10
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Appendix I

Alternative Approaches to Identification

With an Objective

An approach to identification with an objective, clo-
sely related to the approach used in this paper, is to try
to ensure that the average performance degradation
cost of a property of interest is below a given level. As
in Section 2.2, take J ðMÞ to denote the system
property of interest in the application when the model
M is used in the design and consider the relative per-
formance degradation cost (9). Suppose that the
model set is parametrized by � and suppose that J ð�Þ
(which is short-hand notation for J ðMð�ÞÞ) is a
smooth function. The average relative performance
degradation cost is then given by

E ð�̂N � �oÞT J 0ð�oÞ
J ð�oÞ ;

J 0ð�oÞ
J ð�oÞ

� �
ð�̂N � �oÞ

� �
¼ 1

N
TrRy J 0ð�oÞ

J ð�oÞ ;
J 0ð�oÞ
J ð�oÞ

� �
¼ 1

N
TrRyV 00

appð�oÞ

when (19) holds. We can then impose the constraint

TrRyV 00
appð�oÞ�

N

�
: ð73Þ

When the Euclidean norm is used, the left hand side of
(73) can also be interpreted as the variance of J ð�̂NÞ
normalized by the square of the desired quantity
J ð�oÞ.

To see the relation between this approach and the
approach in this paper we will compare (73) with (37).
Factorize

V 00
appð�oÞ ¼ ��T:

Then (73) can be expressed as
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Tr�TRy�� N

�
: ð74Þ

With

R� � Rank�

N
��T ¼ � RankV 00

appð�oÞ
N

V 00
appð�oÞ

ð75Þ
(74) will be satisfied. We see that the condition (75) is
very similar to (37). The main difference is that �2

�ð~nÞ
(recall that ~n is the rank of V 00

appð�oÞ) is replaced by
RankV 00

appð�oÞ. However, from (23) we see that these
quantities are of the same order. Of course, (75) is only
a sufficient condition for (74), but the above clearly
shows the connection between the two approaches to
robust identification.

Another, but closely related, way of considering the
identification problem is to see the model estimation
step as a way of condensing the data into a set
U�ðZNÞ 	 M of candidate models which contains the
true system (with a certain probability). Notice that, as
opposed to U�ðSoÞ used in this paper, the set
U�ðZNÞ 	 M depends on the data and hence is
stochastic, e.g. it is typically centered around the
parameter estimate. Then the application uses some
robust design method to account for the uncertainty
represented byU�ðZNÞ. The objective is now to choose
design variables such that a guaranteed performance
is achieved for all systems in the set U�ðZNÞ. For
example, [10] uses this approach. This approach is
generally to be preferred since the application expli-
citly takes the model uncertainty into account. How-
ever, for the same reason, and also due to the
stochastics involved, it seems much harder to analyze
and get insights from than the approach used in the
paper.

Appendix II

Non-informative Data Sets and

Non-identifiable Model Structures

The minimum amount of input excitation required
to obtain a certain accuracy of a certain system
property may correspond to an excitation such that
the true parameter vector is not identifiable from the
data, even if the used model structure is globally
identifiable. In this section we shall therefore briefly
discuss the statistical properties of a prediction error
estimate when the information matrix is singular.
ML identification with a singular Fisher information
matrix may be treated in a similar way. Formally,

Riemannian geometry may be used [91] but here we
will take a more pedestrian approach.

Suppose that the model set is defined by some,
possibly nonlinear, predictors parametrized by
� 2 DM 	 R

n : W ¼ Wð�Þ. The output predictor is
given by ŷðtjt� 1; �Þ ¼ WðZt; �Þ (recall that zðtÞ is the
joint input-output sample and that Zt ¼ fzðsÞgts¼1).
Assuming the true system to be in the model set, when
the model structure is globally identifiable at the
parameter �o corresponding to the true system and
when

Iidð�oÞ ¼ 1

�e
E W 0ðZ1; �oÞðW 0ðZ1; �oÞÞT
h i

> 0;

ð76Þ
where �e is the variance of the innovations of the true
system and where W 0ðZt; �oÞ :¼ @WðZt; �Þ=@�, it
holds under mild conditions that

�̂N ! �o; w:p:1;

ffiffiffiffi
N

p
ð�̂N � �oÞ � AsNð0; I�1

id ð�oÞÞ; ð77Þ

Nð�̂N � �oÞT Iidð�oÞÞ ð�̂N � �oÞ � As�2ðnÞ: ð78Þ
Now, let Z1 ¼ fzð1Þ; zð2Þ; . . .g be a given data set and
let WðZtÞ and �WðZtÞ denote two predictors corre-
sponding to two different models. In prediction error
identification with a quadratic cost function, it is only
possible to discriminate these two models if

E ðWðZtÞ � �WðZtÞÞ2
h i

6¼ 0: ð79Þ

Example 22: Consider the model

yðtÞ ¼
Xn
k¼1

�kuðt� kÞ þ eðtÞ:

If uðtÞ � u (constant), then all models with the samePn
k¼1 �k give rise to the same predictor and are indis-

tinguishable. &

There are two reasons for why two parameters � 6¼ ��
may give rise to the same prediction error. First, it
may be due to that the model structure is not identi-
fiable. Second, as in Example 22, it may be due to that
the data set Z1 is not sufficiently informative with
respect to the model structure. In this case it is only
guaranteed that �̂N converges to a set corresponding
to the best predictor for the data set Z1. When the
true system belongs to the model set, but the data set is
not informative, i.e., (79) does not hold for two
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different predictors, this set will not only include the
predictor that is optimal for all types of excitation but
also other predictors optimal only for the data set Z1.
We will now provide an interpretation to (77)–(78) in
this case.

Now let us lump together equivalent predictors for
Z1, the data set under consideration, by introducing
� ¼ �ð�Þ 2 R

nZ ; nZ � n, and corresponding predictorseWð�Þ such that

8� 2 DM; 9� ¼ �ð�Þ :
E ðWðZt; �Þ � eWðZt; �ÞÞ2
h i

¼ 0:
ð80Þ

We will make the assumptions that it is possible to
construct �ð�Þ such that

(1) �ð�Þ is differentiable.
(2) eWð�Þ is differentiable.
(3) There is a unique � :¼ �o corresponding to the

optimal predictor for the true system for the data
set Z1.

(4) It holds

Iid;� :¼ 1

�e
E eW 0ðZ1; �ð�oÞÞð eW 0ðZ1; �ð�oÞÞÞT
h i

> 0:

where eW 0ðZt; �Þ :¼ @ eWðZt; �Þ=@�.

Notice that �o ¼ �ð�oÞ and that this quantity
depends on the properties of the data set Z1 under
consideration. The last two assumptions imply that
the model structure defined by eWð�Þ is locally
identifiable at �o. For models that are linear in the
parameters it is easy to construct �: Let Iid have
rank nZ with eigendecomposition Iid ¼ EDET with
D 2 R

nZnZ non- singular. Then take � ¼ ET� andeWð�Þ :¼ WðE�Þ.
Now let �̂n be the prediction error estimate corre-

sponding to the model structure defined by eWð�Þ.
Under mild conditions it holds that

�̂N ! �o; w:p:1; ð81Þ
ffiffiffiffi
N

p
ð�̂N � �oÞ � AsN 0; Iid; ��1ð�oÞ� 

; ð82Þ

where Iid; � is defined similar to (76), with eW� repla-
cing W�.

Under the assumptions above, we have also that �̂N
will converge to the set �� ¼ f� : �ð�Þ ¼ �og. Below
�� denotes an arbitrary parameter from this set.

Now we observe that since WðZt; �Þ ¼ eWðZt; �ð�ÞÞ
(in a mean-square sense according to (80)), it holds
that

@WðZt; ��Þ
@�

¼ 	T @ eWðZt; �ð��ÞÞ
@�

;

where 	 ¼ d�ð�Þ
d� j�¼�� , and hence

Iidð��Þ ¼ 	TIid;�ð�oÞ	: ð83Þ

Notice that Iidð��Þ is singular when nZ < n (by
assumption). From (83)

I�1
id;�ð�oÞ ¼ 	 I

y
idð��Þ	T: ð84Þ

Now the only functions J ð�Þ of the system para-
meters � that are identifiable, are those that are
functions of �, i.e. when J ð�Þ ¼ eJ ð�ð�ÞÞ. For such a
function it holds thatffiffiffiffi

N
p

ðJ ð�̂NÞ � J ð��ÞÞ � AsNð0;AsCovJ ð�̂NÞÞ;
ð85Þ

where the asymptotic covariance matrix is given by
Gauss approximation formula:

AsCovJ ð�̂NÞ ¼ AsCoveJ ð�̂NÞ
¼ eJ 0ð�oÞ
h iT

Iid; ��1ð�oÞeJ 0ð�oÞ:

But inserting (84) gives

AsCovJ ð�̂NÞ ¼ 	T eJ 0ð�oÞ
h iT

I
y
idð��Þ	T eJ 0ð�oÞ

¼ J 0ð��Þ½ �TIyidð��ÞJ 0ð��Þ:
ð86Þ

From (85) and (86) we see that even if �o is not iden-
tifiable, we can still use the use the formula (77) if it
only is applied to functions of � which are identifiable
and if I�1

id ð�oÞ is replaced by the pseudo-inverse I
y
idð�oÞ

(we can take �� ¼ �o).
In particular notice that

ð�̂N � �oÞTIidð�oÞð�̂N � �oÞ
¼ 	ð�̂N � �oÞ
h iT

Iid;�ð�oÞ	ð�̂N � �oÞ
� ð�̂N � �oÞTIid;�ð�oÞð�̂N � �oÞ:

Thus, even though �̂N is not well defined, it holds that
Nð�̂N � �oÞTIidð�oÞð�̂N � �oÞ has the same asymptotic
distribution as ð�̂N � �oÞTIid;�ð�oÞð�̂N � �oÞ. In view of
(82) we thus have

Nð�̂N � �oÞTIidð�oÞð�̂N � �oÞ � �2ðnZÞ
rather than (78) when we do not have identifiability in
the original parametrization.
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Next notice that nZ, the number of identifiable
parameters from Z1, can be determined from the
rank of Iidð�oÞ. This follows from (83) where Iid; �ð�oÞ
has full rank.

Summarizing, the notationffiffiffiffi
N

p
ð�̂N � �oÞ � AsN 0; Iyidð�oÞ


 �
implies that the estimate of any identifiable quantity
J ð�Þ has asymptotic distributionffiffiffiffi

N
p

ðJ ð�̂NÞ � J ð�oÞÞ
� AsN 0; J 0ð�oÞ½ �TIyidð�oÞJ 0ð�oÞ


 �
:

Furthermore, the rank of J 0ð�oÞ for any such quantity
is at most Rank Iidð�oÞ.

Appendix III

Proof of Theorem 3.1

We start with proving that Eidð�Þ 
 Eapp if and only if

� �TRy�
� y

�T � ��2
�ðmÞ
N

V 00
appð�oÞ: ð87Þ

This follows from the following lemma.

Lemma 3.1: Let T1 � 0 and T2 � 0. Then

�TT1�� 1 ) �TT2�� 1 ð88Þ
and

T1 �T2

are equivalent.

Proof: The proof of the lemma is almost trivial. It is
also a direct consequence of the S-procedure [72].
However, since it is important for our arguments we
will prove the result.

): Consider first a � ¼ ~� such that T1
~� ¼ 0 (if such

a � exists). Suppose that for ~�; ~�TT2
~� ¼ v > 0. Then

take � ¼ 2~�=
ffiffiffi
v

p
. Then �TT1� ¼ 0� 1 but

�TT2� ¼ 4
v
~�TT2

~� ¼ 4 > 1. Thus (88) is not
satisfied. Hence we have shown that T2 must share
all eigenvectors of T1 corresponding to zero eigenva-
lues.

Consider now a � ¼ ~� for which T1
~� 6¼ 0. Suppose

now that for ~�; ~�TðT1 � T2Þ~� < 0. This implies that
~�TT1

~� < ~�TT2
~�. Now let � be a scaled version of ~� such

that �TT1� ¼ 1, but then the preceding observation
implies �TT2� > 1 and hence (88) is violated. Thus for

(88) to hold for � not in the kernel of T1, we must have
�TðT1 � T2Þ�� 0.

Summing up the two results above, we have shown
that (88) implies (89).

(: Suppose that � is such that the left part of (88)
holds. Then �TT2� ¼ �TT1� þ �TðT2 � T1Þ�� 1þ
0� 1, i.e. the right part of (88) holds. This concludes
the proof. &

To simplify the notation and the derivations, we
assume that e� eMe�T is an eigenvalue decomposition of
��2

�ðmÞ
N V 00

appð�oÞ with e�Te� ¼ I and eM > 0. Notice that
the rank of e� equals the rank of � in the theorem.
Thus (87) is equivalent to

e� e�TRye�
 �y
� eM� �e�T � 0: ð90Þ

Now we proceed and observe that (90) is equivalent to

e�TRye�
 �y
� eM� 0: ð91Þ

Clearly (91) implies (90) and multiplying (90) from left
by e�T and from right by e�we see that (90) implies (91).
Next observe that eM is non-singular and hence (91)
implies that e�TRye�
 �y

is nonsingular as well, which in
turn is equivalent to that

e�TRye� > 0: ð92Þ
This inequality is equivalent to that e� is in the range
space of R. To see this let R ¼ EDET be an eigenvalue
decomposition of R with ETE ¼ I and D > 0, so
that Ry ¼ ED�1ET. Now, for (92) to hold it is clear
that e�must be in the range ofEwhich is the range ofR.
But e� being in the range of R is equivalent toe�TðI� RRyÞ ¼ 0 since

0 ¼ e�TðI� RRyÞ ¼ e�T � e�TEDETED�1ET

¼ e�T � e�TEET

,e� ¼ EETe�;

and EET is the projection operator onto the range of
E. Summarizing we have so far shown that (87) is
equivalent to

eM�1 � e�TRye�� 0;

Ry � 0;e�T I� RRy�  ¼ 0:

Using Schur complement [72] this is equivalent to
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eM�1 e�Te� R

� �
� 0;

and using Schur complement again gives that this is
equivalent to

R� e� eMe�T � 0;eM�1 � 0;e� I� eM�1 eM
 �
¼ 0;

where the last to conditions are trivially satisfied.

Now observing that e� eMe�T ¼ ��2
�ðmÞ
N V 00

appð�oÞ
concludes the proof.

Appendix IV

Model Selection for Linear Regression

Problems

In this appendix we will consider a linear regression
problem, with the true system given by

Y ¼ ��o þW; Y 2 R
N; �o 2 R

n;

where W � Nð0; �eIÞ. We will assume the noise vari-
ance �e to be known. We will also assume that the
regressor vector � is deterministic.

Taking into account that we now use finite data this
means that

Vappð�Þ ¼ 1

��2
�ðnÞ�e

ð� � �oÞ�T�ð� � �oÞ:

We will assume that an ‘‘oracle’’ with complete
knowledge of the true system has designed the iden-
tification experiment so that the identification cri-
terion matches the performance degradation cost. The
question is thus what we can do with the given data.

We start our analysis with defining the prediction
error

Eð�Þ ¼ Y� �� ¼ �ð�o � �Þ þW

and the corresponding quadratic cost

VLSð�Þ :¼ Eð�ÞTEð�Þ
¼ ð� � �oÞ�T�ð� � �oÞ þWTWþ 2ð�o � �ÞT�TW

¼ ��2
�ðnÞ�e Vappð�Þ þWTWþ 2ð�o � �ÞT�TW:

ð93Þ
Thus for a given �, VLSð�Þ provides an observation of
the corresponding performance degradation cost, but

a noisy one. Since we would like to make Vapp small it
is natural to use the ‘‘observer’’ VLS for the optim-
ization. However, then care has to be exercised
since as soon as we start choosing � depending on
what we observe, we introduce correlations since VLS

is a noisy observation. Since we are interested in
minimizing the performance degradation cost it is
natural to use the parameter that minimizes VLS. We
will consider different model orders so first we make
the partitions

� ¼ e� �e

� �
; e� 2 R

N~n;

�o ¼ e�o �oe

h i
; e�o 2 R

~n:

The least-squares estimate of � in the model

Y ¼ e��

is given by

�̂ ¼ ~R�1e�TY

¼ ~R�1e�T
h e� �e

h i e�o �oe

h i
þW

i
¼ e�o þ ~R�1e�T�e�

o
e þ ~R�1e�TW;

where ~R ¼ e�Te�h i
.

Introducing

�ð�̂Þ ¼ �̂
0

� �
;

we obtain

�o � �ð�̂Þ ¼ � ~R�1e�T�e�
o
e � ~R�1e�TW

�oe

� �
and

ð�o � �ð�̂ÞÞT�TW ¼

�ð�oeÞT�T
e
e� ~R�1 �WTe� ~R�1 ð�oeÞT

� � e�T

�T
e

" #
W

in turn. Plugging these expressions into (93) gives

VLSð�ð�̂ÞÞ
¼ ��2

�ðnÞ�e Vappð�ð�̂ÞÞ þWTWþ 2ð�o � �̂ÞT�TW

¼ ��2
�ðnÞ�e Vappð�ð�̂ÞÞ þWTW� 2WTe� eR�1e�TW

þ 2ð�oeÞT�T
e I� e� eR�1e�T
h i

W

¼ ��2
�ðnÞ�e Vappð�ð�̂ÞÞ �W1 þW2 þW3;
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where

W1 ¼ WTe� eR�1e�TW;

W2 ¼ WTW�W1;

W3 ¼ 2ð�oeÞT�T
e I� e� eR�1e�T
h i

W:

Notice that

1

�e
W1 � �2ð~nÞ;

1

�e
W2 � �2ðN� ~nÞ;

W3 � N 0; 4�eð�oeÞT�T
e I� e� eR�1e�T
h i

�e�
o
e


 �
;

and that all these three variables are independent of
each other. Notice also that the variance ofW3 can be
expressed as

4�eVappð�ð��ÞÞ;

where �ð��Þ is the minimizer of Vappð�ð�ÞÞ.
Thus VLSð�̂Þ is an observation of ��2

�ðnÞVappð�̂Þ in
noise with mean value �eðN� ~nÞ � �e~n. Thus an un-
biased estimate of Vappð�̂Þ is given by

V̂appð�̂Þ ¼ VLSð�̂Þ þ 2�e~n�N�e

��2
�ðnÞ�e

:

Notice that the model order dependent term is

VLSð�̂Þ þ 2�e~n

and that this expression corresponds to AIC (when,
as we assume, the noise variance �e is known). Thus
AIC will provide us with an estimate of which least-
squares estimate in a sequence of of increasing order
that will give the smallest performance degradation
cost!

Appendix V

Minimizing the Experimental Cost

An eigenvalue decomposition gives

V 00
appð�oÞ ¼ EDET ¼ EaDaE

T
a þ E�D�E

T
�;

where Da and D� are diagonal matrices containing
the eigenvalues of V 00

appð�oÞ and where Ea E�½ �
Ea E�½ �T¼ I. Now take

~V
00
appð�oÞ :¼ EaDaE

T
a

and design an experiment such that (37) holds
with V 00

appð�oÞ replaced by ~V
00
appð�oÞ and where m is

the rank of ~V
00
appð�oÞ. This will ensure that �̂Nwill endup

in the set

ð� � �oÞT ~V
00
appð�oÞð� � �oÞ� 1

�

with given probability �. But our concern is with what
we can say about

ð�̂N � �oÞTV 00
appð�oÞð�̂N � �oÞ:

Now the experiment design has not taken Vapp into
account which means that the model may have tried to
pick up system properties from data which are relev-
ant for Vapp but not for ~Vapp, and that this has been
done poorly since the experiment was not designed for
Vapp. To overcome this problem one should project
the estimate on the range space of ~V

00
appð�oÞ, i.e. one

should use

�̂ proj
N ¼ EaE

T
a �̂N:

For this estimate we get

ð�̂ proj
N � �oÞTV 00

appð�̂ proj
N � �oÞ

¼ EaE
T
a ð�̂N � �oÞ � E�E

T
��o


 �T
EaDET

a þ E�D�E
T
�

� 
EaE

T
a ð�̂N � �oÞ � E�E

T
��o


 �
¼ð�̂N � �oÞT ~V

00
appð�oÞð�̂N � �oÞ þ �oð ÞTE�D�E

T
��o:

Thus we have that

ð�̂ proj
N � �oÞTV 00

appð� � �oÞð�̂ proj
N � �oÞ

� 1

�
þ �oð ÞTE�D�E

T
��o

ð94Þ

with probability �. Clearly E�D�E
T
� should be

selected so that the second term in (94) is minimized.
Formally, we would like to approximate V 00

appð�oÞ with
a symmetric positive semi-definite matrix of some
rank m (this is EDET) such that ð�oÞTðV 00

appð�oÞ �
EDETÞ�o is minimized. Writing �o ¼ E E�½ �� gives

�oð ÞTV 00
appð�oÞ�o ¼ �T D

0 D�

� �
� ¼

Xn
k¼ 1

�2
k�k

from which we see that if we order the eigenvalue
decomposition V 00

appð�oÞ in descending order of �2
k �k

�oð ÞTE�D�E
T
��o ¼

Xn
k¼mþ 1

�2
k �k
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is minimized. It is now straightforward to derive the
properties of the algorithm in Section 4.3.

Appendix VI

A Separation Principle

A fundamental question related to how to identify
complex systems is whether it is necessary to model
the full system. Sometimes it is argued that it is better
to use a biased model when it is possible to reduce the
variance error more than the bias error increases,
resulting in a net decrease of the mean square error.

Let �̂ML be theML-estimate of � 2 DM 2 Rn and let
f : DM ! 
 	 Rm with m� n. It then holds that
fð�̂MLÞ is the ML-estimate of fð�Þ. This is the so called
invariance principle for ML-estimation [66] (Theorem
5.1.1 in [94]). Hence, it follows under very general
conditions on f that if �̂ML is asymptotically efficient, i.
e. it is consistent and its asymptotic covariance matrix
reaches the Cramér-Rao lower limit [7], then fð�̂MLÞ is
also asymptotically efficient.

Consider a model set parametrized by �, which does
not contain the true system. Using data, an estimate
�ðZNÞ is produced which converges to some point ��

as N ! 1. When N is sufficiently large, the per-
formance degradation cost associated with using
�ðZNÞ can be approximated by

E Jð�ðZNÞÞ� � � Jð��Þ þ J 0ð��ÞE ð�ðZNÞ � ��Þ� �
þ 1

2
E ð�ðZNÞ � ��ÞTJ 00ð��Þð�ðZNÞ � ��Þ
h i

� Jð��Þ þ 1

2
TrJ 00ð��ÞE ð�ðZNÞ � ��Þð�ðZNÞ � ��ÞT

h i
:

Notice that since �ðZNÞ depends on the data which in
turn depends on the true parameter vector �o, it holds
that �� ¼ ��ð�oÞ. Thus we can see �� as a system
property that we are trying to estimate consistently.
But then the invariance principle gives that the
estimate with smallest covariance matrix is given by
��ð�̂MLÞ, at least as the sample size becomes large. This
implies

lim
N!1

N E Jð�ðZNÞÞ� �� E Jð��ð�̂MLÞÞ
h i
 �

� 0;

The interpretation is that the performance of an
application based on a model set of restricted com-
plexity can be improved by first doing maximum
likelihood estimation of a full order model and then
using this model as if it is the true system for com-
puting what the limit estimate �� of �ðZNÞ would be,
and then using this estimate in the application.

The invariance principle can thus be seen as a sep-
aration principle where the estimation problem is
separated from the application dependent part of the
problem.
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