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Introduction
This document is a collection of short lecture notes written for the course “The
Finite Element Method” (SF2561), at KTH, Royal Institute of Technology during
Fall 2013. It is in no way intended as a comprehensive and rigorous introduction
to Finite Element Methods but rather an attempt for providing a self-consistent
overview in direction to students in Engineering without any prior knowlegde of
Numerical Analysis.

Content
The course will go through the basic theory of the Finite Element Method during the
first six lectures while the last three lectures will be devoted to some applications.

1. Introduction to PDEs, weak solution, variational formulation.

2. Ritz method for the approximation of solutions to elliptic PDEs

3. Galerkin method and well-posedness.

4. Construction of a Finite Element approximation space.

5. Polynomial approximation and error analysis.

6. Time dependent problems.

7. Adaptive control.

8. Stabilized finite element methods.

9. Mixed problems.

The course will attempt to introduce the practicals aspects of the methods with-
out hiding the mathematical issues. There are indeed two side of the Finite Ele-
ment Method: the Engineering approach and the Mathematical theory. Although
any reasonable implementation of a Finite Element Method is likely to compute an
approximate solution, usually the real challenge is to understand the properties of
the obtained solution, which can be summarized in three main questions:

1. Well-posedness: Is the solution to the approximate problem unique ?

2. Consistency : Is the solution to the approximate problem close to the contin-
uous solution (or at least “sufficiently” in a sense to determine) ?

3. Stability, Maximum principle: Is the solution to the approximate problem
stable and/or satisfying physical bounds ?

Ultimately, the goal of designing numerical scheme is to combine these properties
to ensure the convergence of the method to the unique solution of the continuous
problem (if hopefully it exists) defined by the mathematical model. In a way, the
main message of the course is that studying the mathematical properties of the
continuous problem hints and deriving discrete counterparts of them (usually in
terms of inequalities) is usually a good way to enforce stability and convergence.

Answering these questions requires some knowledge of elements of numerical
analysis of PDEs which will be introduced throughout the document in a didactic
manner. Nonetheless, while these difficulties will not be hidden, addressing some
technical details is left to more serious and well-written works referenced in the
bibliography.
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Literature
The historical textbook used mainly for the exercises is Computational Differential
Equations [6] which covers many examples from Engineering but is mainly limited
to Galerkin method and in particular continuous Lagrange elements.

The two essential books in the list are Theory and Practice of Finite Elements
[4] and The Mathematical Theory of Finite Element Methods [2]. The first work
provides an extensive coverage of Finite Elements from a theoretical standpoint
(including non-conforming Galerkin, Petrov-Galerkin, Discontinuous Galerkin) by
expliciting the theoretical foundations and abstract framework in the first Part,
then studying applications in the second Part and finally addressing more concrete
questions about the implementation of the methods in a third Part. The Appen-
dices are also quite valuable as they provide a toolset of results to be used for
the numerical analysis of PDEs. The second work is written in a more theoretical
fashion, providing to the Finite Element method in the first six Chapters which is
suitable for a student with a good background in Mathematics. Section 2 about
Ritz’s method is based on the lecture notes [5] and Section 9.1 on the description
of the Stokes problem in [7].

Two books listed in the bibliography are not concerned with Numerical Analysis
but with the continuous setting. On the one hand, book Functional Analysis,
Sobolev Spaces and Partial Differential Equations [3] is an excellent introduction to
Functional Analysis, but has a steep learning curve without a solid background in
Analyis. On the other hand, Mathematical Tools for the Study of the Incompressible
Navier–Stokes Equations and Related Models [1], while retaining all the difficulties
for the analysis of PDEs for fluid problems, possesses a really didactic approach in
a clear and rigorous manner.
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1 Weak formulation of Partial Differential Equa-
tions

1.1 Historical perspective
By “Finite Element Methods”, we denote a family of approaches developed to com-
pute an approximate solution to a partial differential equation (PDE). The physics
of phenomena encoutere in engineering applicatios is often modelled under the form
of a boundary value problem. Equations describing the evolution in time are called
initial value problems and consist of the coupling of an ordinary differential equation
(ODE) in time with a bounday value problem in space.

The study of equations involving derivatives of the unknown has led to rethinking
the concept of derivation: from the idea of variation, then the study of the Cauchy
problem, finally to the generalization of the notion of derivative with the Theory of
Distributions.

1.2 Weak solution to the Dirichlet problem
Let us consider the Poisson problem posed in a domain Ω, an open bounded subset
of Rd, d ≥ 1 supplemented with homogeneous Dirichlet boundary conditions:

−∆u(x) = f(x) (1a)

u(x) = 0 (1b)

with f ∈ C0(Ω) and the Laplace operator,

∆ =

d∑
i=1

∂2

∂x2
i

(2)

thus involving second order partial derivatives of the unknown u with respect to
the space coordinates.

Definition 1.1 (Classical solution). A classical solution (or strong solution) of
Problem (1) is a function u ∈ C2(Ω) satisfying relations (1a) and (1b).

Problem (1) can be reformulated so as to look for a solution in the distributional
sense by testing the equation against smooth functions. Reformulating the problem
amounts to relaxing the pointwise regularity (i.e. continuity) required to ensure the
existence of the classical derivative to the (weaker) existence of the distributional
derivative which regularity is to be interpreted in term in terms of Lebesgue spaces:
the obtained problem is a weak formulation and a solution to this problem (i.e.
in the distributional sense) is called weak solution. Three properties of the weak
formulation should be studied: firstly that a classical solution is a weak solution,
secondly that such a weak solution is indeed a classical solution provided that it is
regular enough and thirdly that the well-posedness of this reformulated problem,
i.e. existence and uniqueness of the solution, is ensured.

1.2.1 Formal passage from classical solution to weak solution

Let u ∈ C2(Ω) be a classical solution to (1) and let us test Equation (1a) against
any smooth function ϕ ∈ C∞c (Ω):

−
∫

Ω

∆u(x)ϕ(x) dx =

∫
Ω

f(x)ϕ(x) dx

6



Since u ∈ C2(Ω), ∆u is well defined. Integrating by parts, the left-hand side reads:

−
∫

Ω

∆u(x)ϕ(x) dx = −
∫
∂Ω

∇u(x) ·nϕ(x) ds+

∫
Ω

∇u(x) ·∇ϕ(x) dx

For simplicity, we recall the one-dimensional case:

−
∫ 1

0

∂2u(x)

∂x2
ϕ(x)dx = −

[
∂u(x)

∂x
ϕ(x)

]1

0

+

∫ 1

0

∂u(x)

∂x

∂ϕ(x)

∂x
dx

Since ϕ has compact support in Ω, it vanishes on the boundary ∂Ω, consequently
the boundary integral is zero, thus the distributional formulation reads∫

Ω

∇u(x) ·∇ϕ(x) dx =

∫
Ω

f(x)ϕ(x) dx , ∀ ϕ ∈ C∞c (Ω)

and we are led to look for a solution u belonging to a functional space such that
the previous relation makes sense.

A weak formulation of Problem (1) consists in solving:∣∣∣∣∣∣∣
Find u ∈ H, given f ∈ V ′, such that:∫

Ω

∇u ·∇v dx =

∫
Ω

fv dx , ∀ v ∈ V
(3)

in whichH and V are a functional spaces yet to be defined, both satisfying regularity
contraints and for H boundary condition constraints. The choice of the solution
space H and the test space is described Section 1.3.

1.2.2 Formal passage from weak solution to classical solution

Provided that the weak solution to Problem (3) belongs to C2(Ω) then the second
derivatives exist in the classical sense. Consequently the integration by parts can be
performed the other way around and the weak solution is indeed a classical solution.

1.2.3 About the boundary conditions

Boundary condition Expression on ∂Ω Property
Dirichlet u = uD “essential” boundary condition
Neumann ∇u · n = 0 “natural” boundary condition

Essential boundary conditions are embedded in the functional space, while nat-
ural boundary conditions appear in the weak formulation as linear forms.

1.3 Weak and variational formulations
1.3.1 Functional setting

Hilbert–Sobolev spaces Hs (Section C.4) are a natural choice to “measure” functions
involved in the weak formulations of PDEs as the existence of the integrals relies
on the fact that integrals of powers | · |p of u and weak derivatives Dαu for some
1 ≤ p < +∞ exist:

Hs(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) , 1 ≤ α ≤ s

}
with the Lebesgue space of square integrable functions on Ω:

L2(Ω) =

{
u :

∫
Ω

|u(x)|2 dx < +∞
}
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endowed with its natural scalar product

( u , v ) L2(Ω) =

∫
Ω

u v dx

Since Problem (3) involves first order derivatives according to relation,∫
Ω

∇u ·∇v dx =

∫
Ω

fv dx

then we should consider a solution in H1(Ω).

H1(Ω) =
{
u ∈ L2(Ω) : Du ∈ L2(Ω)

}
with the weak derivative Du i.e. a function of L2(Ω) which identifies with th
classical derivative (if it exists) “almost everywhere”, and endowed with the norm,

‖ · ‖H1(Ω) = ( · , · )
1/2
H1(Ω)

defined from the scalar product,

( u , v ) H1(Ω) =

∫
Ω

u v dx +

∫
Ω

∇u ·∇v dx

Moreover, the solution should satisfy the boundary condition of the strong form
of the PDE problem. According to Section 1.2.3 the homogeneous Dirichlet con-
dition is embedded in the functional space of the solution: u vanishing on the
boundary ∂Ω yields that we should seek u in H1

0(Ω).

1.3.2 Determination of the solution space

We will now establish that any weak solution “lives” in H1
0(Ω).

Choice of test space: In order to give sense to the solution in a Hilbert–Sobolev
space we need to choose the test function ϕ itself in the same kind of space. Indeed
C∞c (Ω) is not equipped with a topology which allows us to work properly. If we
chose ϕ ∈ H1

0(Ω) then by definition, w can construct a sequence (ϕn)n∈N of functions
in C∞c (Ω) converging in H1

0(Ω) to ϕ, i.e.

‖ϕn − ϕ‖H1(Ω) → 0, as n→ +∞

For the sake of completeness, we show that we can pass to the limit in the
formulation, term by term for any partial derivative:∫

Ω

∂iu ∂iϕ
n →

∫
Ω

∂iu ∂iϕ

as ∂iϕn ⇀ Diϕ in L2(Ω), which denotes the weak convergence i.e. tested on
functions of the dual space (which, in case of L2(Ω), is L2(Ω) itself).∫

Ω

f ϕn →
∫

Ω

f ϕ

as ϕn → ϕ in L2(Ω). Consequently, the weak formulation is satisfied if ϕ ∈ H1
0(Ω).

Choice of solution space: The determination of the functional space is guided,
— firstly, by the regularity of the solution: if u is a classical solution then it

belongs to C2(Ω) which involves that u ∈ L2(Ω) and ∂iu ∈ L2(Ω), thus u ∈ H1(Ω),
— secondly by the boundary conditions: the space should satisfy the Dirichlet

boundary condition on ∂Ω. This constraint is satisfied thanks to the following
trace theorem for the solution to the Dirichlet problem: since Ker(γ) = H1

0(Ω), we
conclude u ∈ H1

0(Ω).
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Lemma 1.2 (Trace Theorem). Let Ω be a bounded open subset of Rd with piecewise
C1 boundary, then there exists a linear application γ : H1(Ω) → L2(∂Ω) continous
on H1(Ω) such that γ(u) = 0⇒ u ∈ Ker(γ).

The weak formulation of Problem (1) reads then:∣∣∣∣∣∣∣
Find u ∈ H1

0(Ω), such that:∫
Ω

∇u ·∇v dx =

∫
Ω

fv dx , ∀ v ∈ H1
0(Ω)

(5)

1.4 Abstract problem
The study of mathematical properties of PDE problems is usually performed on a
general formulation called abstract problem which reads in our case:∣∣∣∣∣ Find u ∈ V , such that:

a(u, v) = L(v) , ∀ v ∈ V
(6)

with a( · , · ) a continuous bilinear form on V ×V and L( · ) a continuous linear form
on V .

Proposition 1.3 (Continuity). A bilinear form a( · , · ) is continuous on V ×W if
there exists a positive constant real number M such that

a(v, w) ≤M ‖v‖V ‖w‖W ,∀ (v, w) ∈ V ×W

For example, in the previous section for Problem (5), the bilinear form reads

a : V × V → R

(u, v) 7→
∫

Ω

∇u ·∇v dx

and the linear form,
L : V → R

v 7→
∫

Ω

f v dx

In the following chapters, we consider the case of elliptic PDEs, like the Poisson
problem, for which the bilinear form a( · , · ) is coercive.

Proposition 1.4 (Coercivity). A bilinear form is said coercive in V if there exists
a positive constant real number α such that for any v ∈ V

a(v, v) ≥ α ‖v‖2V

This property is also know as V –ellipticity.

1.5 Well-posedness
In the usual sense, a well-posed problem admits a unique solution which is bounded
in the V -norm by the data (forcing term, boundary conditions). In this particular
case of the Poisson problem the bilinear form a( · , · ) is the natural scalar product
in H1

0(Ω), thus it defines a norm in H1
0(Ω) (but only a seminorm in H1(Ω) due to

the lack of definiteness, not a norm !).
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Theorem 1.5 (Riesz–Fréchet). Let H be a Hilbert space and H ′ its topological dual,
∀ Φ ∈ H ′, there exists a unique representant u ∈ H such that for any v ∈ H,

Φ(v) = ( u , v )H

and furthermore ‖u‖H = ‖Φ‖H′

This result ensures directly the existence and uniqueness of a weak solution as
soon as a( · , · ) is a scalar product and Φ is continuous for ‖ · ‖a. Now that we
have derived a variational problem for which there exists a unique solution with V
infinite dimensional (i.e. for any point x ∈ Ω), we need to construct an approximate
problem which is also well-posed.

1.6 Exercises
Exercise 1.6 (Weak formulation — 1). Consider the following problem:∣∣∣∣∣∣∣∣∣∣

Find u ∈ C2(Ω̄),Ω = (0, 1) such that:

−d
2u

dx2
(x) = 1 + x ,∀ x ∈ Ω

u(0) = u(1) = 0

(7)

1. Formulate the weak form of the problem.

2. Define the space where the solution will be searched for.

3. Formulate the bilinear and linear forms.

Exercise 1.7 (Weak formulation — 2). Solve Problem (7) with boundary condi-
tions:

u(0) = 0, u(1) = 2

Exercise 1.8 (Weak formulation — 3). Solve Problem (7) with boundary condi-
tions:

du

dx
(0) = 1, u(1) = 2

Exercise 1.9 (Weak formulation + Regularity ⇒ Strong formulation). For the
first problem, show that a solution of the weak formulation uw satisfies the original
problem if it belongs to C2(Ω).

Hint: Let us assume that

1 + x0 −
d2uw(x0)

dx2
6= 0

for some x0 ∈ Ω, use the test function

v(x) =

{
0 if x /∈ (x0 − ε, x0 + ε)

(x− (x0 − ε))2(x− (x0 + ε))2 otherwise

to show contradiction with the fact that uw is a weak solution.
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2 Ritz and Galerkin methods for elliptic problems
In Section 1 we have reformulated the Dirichlet problem to seek weak solutions
and we showed its well-posedness. The problem being infinite dimensional, it is
not computable. It should also be noted that computability is not the only reason
to build a solution with the Galerkin method, but also to prove the existence of a
solution by the method of approximate problems.

Question: How can we construct an approximation to Problem (1) which is also
well-posed and how does the solution to this problem compare to the solution of
the original problem ?

2.1 Approximate problem
In the previous section we showed how a classical PDE problem such as Problem
(1) can be reformulated as a weak problem. The abstract problem for this class of
PDE reads then: ∣∣∣∣∣ Find u ∈ V , such that:

a(u, v) = L(v) , ∀ v ∈ V
(8)

with a( · , · ) a coercive continuous bilinear form on V × V and L( · ) a continuous
linear form on V .

Since in the case of the Poisson problem the bilinear form is continuous, coercive
and symmetric, the well-posedness follows directly from Riesz–Fréchet representa-
tion Theorem. If the bilinear form is still coercive but not symmetric then we will
see that the well-posedness is proven by the Lax–Milgram Theorem.

But for the moment, let us focus on the symmetric case: provided that the
well-posedness holds, we want now to construct an approximate solution un to the
Problem (8).

2.2 Ritz method for symmetric bilinear forms
2.2.1 Formulation

Ritz’s method is based on replacing the solution space V (which is infinite dimen-
sional) by a finite dimensional subspace Vn ⊂ V , dim(Vn) = n.

Problem (9) is the approximate weak problem by Ritz’s method:∣∣∣∣∣∣∣
Find un ∈ Vn, Vn ⊂ V , such that:

a(un, vn) = L(vn) ,∀ vn ∈ Vn
(9)

with a( · , · ) a coercive symmetric continuous bilinear form on V × V and L( · ) a
continuous linear form on V .

Provided that the bilinear form is symmetric, Problem (10) is the equivalent
approximate variational problem under minimisation form:∣∣∣∣∣∣∣∣∣

Find un ∈ Vn, Vn ⊂ V , such that:

J(un) ≤ J(vn) ,∀ vn ∈ Vn

with J(vn) = 1
2a(vn, vn)− L(vn)

(10)

Solution

un =

n∑
j=1

ujϕj (11)
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where uj1≤j≤n is a family of real numbers and B = (ϕ1, . . . , ϕn) a basis of Vn.

2.2.2 Well-posedness

Theorem 2.1 (Well-posedness). Let V be a Hilbert space and Vn a finite dimen-
sional subspace of V , dim(Vn) = n, Problem (9) admits a unique solution un.

Proof. The proof can either use directly the Lax–Milgram Theorem or show that
there exists a unique solution to the equivalent minimisation problem (10) by ex-
plicitly constructing an approximation un ∈ Vn decomposed on a basis (ϕ1, · · · , ϕn)
of Vn:

un =

n∑
j=1

uj ϕj

In so doing, the constructive approach paves the way to the Finite Element Method
and is thus chosen as a prequel to establishing the Galerkin method.

Writing the minimisation functional for un reads:

J(un) =
1

2
a(un, un)− L(un)

=
1

2
a(

n∑
j=1

ujϕj ,

n∑
i=1

uiϕi)− L(

n∑
j=1

uiϕi)

=
1

2

n∑
i=1

n∑
j=1

a(ujϕj , uiϕi)−
n∑
j=1

L(uiϕi)

=
1

2

n∑
i=1

n∑
j=1

ujuia(ϕj , ϕi)−
n∑
j=1

uiL(ϕi)

Collecting the entries by index i, the functional can be rewritten under algebraic
form:

J(u) =
1

2
utAu− utb

where u is the unknow vector:

ut = (u1, . . . , un)

and A, b are respectively the stiffnes matrix and load vector:

Aij = a(ϕj , ϕi),bi = L(ϕi)

Owing to Proposition 2.2,J is a strictly convex quadratic form, then there exists
a unique u ∈ Rn : J(u) ≤ J(v),∀ v ∈ Rn, which in turns proves the existence and
uniqueness of un ∈ Vn.

The minimum is achieved with u satisfying Au = b which corresponds to the
Euler condition J ′(un) = 0

Proposition 2.2 (Convexity of a quadratic form).

J(u) = utKu− utG + F

is a strictly convex quadratic functional iff K symmetric positive definite non-
singular.
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2.2.3 Convergence

The question in this section is: considering a sequence of discrete solutions (un)n∈N,
with each un belonging to Vn, can we prove that un → u in V as n→∞ ?

Lemma 2.3 (Estimate in the energy norm). Let V be a Hilbert space and Vn a
finite dimensional subspace of V . We denote by u ∈ V , un ∈ Vn respectively the
solution to Problem (8) and the solution to approximate Problem (9). Let us define
the energy norm ‖ · ‖a = a( · , · )1/2, then the following inequality holds:

‖u− un‖a ≤ ‖u− vn‖a , ∀ vn ∈ Vn

Proof. Using the coercivity and the continuity of the bilinear form, we have:

α ‖u‖2V ≤ ‖u‖
2
a ≤ ‖u‖

2
V

then ‖u‖a is norm equivalent to ‖u‖V , thus (V, ‖ · ‖a) is a Hilbert space.

a(u− PVn u, vn) = 0 ,∀ vn ∈ Vn

by definition of PVn as the orthogonal projection of u onto Vn with respect to the
scalar product defined by the bilinear form a.

‖u− un‖2a = a(u− un, u− vn) + a(u− un, vn − un) ,∀ vn ∈ Vn

Since the second term of the right-hand side cancels due to the consistency of the
approximation, we deduce un = PVn u, then un minimizes the distance from u to
Vn:

‖u− un‖2a ≤ ‖u− vn‖
2
a ,∀ vn ∈ Vn

which means that the error estimate is optimal in the energy norm.

Lemma 2.4 (Céa’s Lemma). Let V be a Hilbert space and Vn a finite dimensional
subspace of V . we denote by u ∈ V , un ∈ Vn respectively the solution to Problem (8)
and the solution to approximate Problem (9) , then the following inequality holds:

‖u− un‖V ≤
√
M

α
‖u− vn‖V , ∀ vn ∈ Vn

with M > 0 the continuity constant and α > 0 the coercivity constant.

Proof. Using the coercivity and continuity of the bilinear form, we bound the left-
hand side of the estimate (2.3) from below and its right-hand side from above:

α ‖u− un‖2V ≤M ‖u− vn‖
2
V ∀ vn ∈ Vn

Consequently:

‖u− un‖V ≤
√
M

α
‖u− vn‖V , ∀ vn ∈ Vn

Lemma (2.4) gives a control on the discretisation error en = u − un which is
quasi-optimal in the V -norm (i.e. bound multiplied by a constant).

Lemma 2.5 (Stability). Any solution un ∈ Vn to Problem (9) satisfies:

‖un‖V ≤
‖L‖V ′

α

Proof. Direct using the coercivity and the dual norm.
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2.2.4 Method

Algorithm 2.6 (Ritz’s method). The following procedure applies:

1. Chose an approximation space Vn

2. Construct a basis B = (ϕ1, . . . , ϕn)

3. Assemble stiffness matrix A and load vector b

4. Solve Au = b as a minimisation problem

2.3 Galerkin method
2.3.1 Formulation

We use a similar approach as for Ritz’s method, except that the abstract problem
does not require the symmetry of the bilinear form. Therefore we cannot endow V
with a norm defined from the scalar product based on a( · , · ).

Problem (12) is the approximate weak problem by Galerkin’s method:∣∣∣∣∣∣∣
Find un ∈ Vn, Vn ⊂ V , such that:

a(un, vn) = L(vn) ,∀ vn ∈ Vn
(12)

with a( · , · ) a coercive continuous bilinear form on V × V and L( · ) a continuous
linear form on V .

2.3.2 Convergence

The following property is merely a consequence of the consistency, as the continuous
solution u is solution to the discrete problem (i.e. the bilinear form is the “same”),
but it is quite useful to derive error estimates in Section 5. Consequently, whenever
needed we will refer to the following proposition:

Proposition 2.7 (Galerkin orthogonality). Let u ∈ V , un ∈ Vn respectively the
solution to Problem (8) and the solution to approximate Problem (12), then:

a( u− un, vn ) = 0 , ∀ vn ∈ Vn
Proof. Direct consequence of the consistency of the method.

Lemma 2.8 (Consistency). Let V be a Hilbert space and Vn a finite dimensional
subspace of V . we denote by u ∈ V , un ∈ Vn respectively the solution to Problem (8)
and the solution to approximate Problem (12), then the following inequality holds:

‖u− un‖V ≤
M

α
‖u− vn‖V , ∀ vn ∈ Vn

with M > 0 the continuity constant and α > 0 the coercivity constant.

Proof. Using the coercivity:

α ‖u− un‖2V ≤ a(u− un, u− un)

≤ a(u− un, u− vn) + a(u− un, vn − un)︸ ︷︷ ︸
0

≤ a(u− un, u− vn)

≤ M ‖u− un‖V ‖u− vn‖V

‖u− un‖V ≤ M

α
‖u− vn‖V

14



The only difference with the symmetric case is that the constant is squared due
to the loss of the symmetry.

2.3.3 Well-posedness

Theorem 2.9 (Lax–Milgram). Let V be a Hilbert space. Provided that a( · , · ) is
a coercive continuous bilinear form on V × V and L( · ) is a continuous linear form
on V , Problem (6) admits a unique solution u ∈ V .

Proof.

2.3.4 Method

Algorithm 2.10 (Galerkin’s method). The following procedure applies:

1. Chose an approximation space Vn

2. Construct a basis B = (ϕ1, . . . , ϕn)

3. Assemble stiffness matrix A and load vector b

4. Solve Au = b

2.4 Exercises
Exercise 2.11 (Ritz Galerkin method — 1). Let us consider Problem (7) from the
previous chapter:

1. Formulate the approximation to this problem using the (finite dimensional)
space of continuous functions, piecewise linear on intervals{[

0,
1

4

]
,

[
1

4
,

1

2

]
,

[
1

2
,

3

4

]
,

[
3

4
, 1

]}
2. Write the basis functions.

3. Construct the linear system explicitely.

Exercise 2.12 (Ritz Galerkin method — 2). Repeat the previous exercise with
boundary condition u(1) = 2.

Exercise 2.13 (Lax Milgram). Consider the following problem posed on Ω ⊂ R2:∣∣∣∣∣∣∣
Find u ∈ C2(Ω̄) such that:

−∇· (k(x) ·∇u(x)) + r(x)u = f(x) ,∀ x ∈ Ω
u = 0 ,∀ x ∈ ∂Ω

(13)

with the source term f ∈ L2(Ω), the diffusive coefficient 0 < α ≤ k(x) ≤ β, and the
reaction coefficient 0 < α ≤ r(x) ≤ β.

1. Formulate the weak problem.

2. Show that assumptions of the Lax-Milgram theorem hold.
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3 Finite Element spaces
In the previous lectures we have studied the properties of coercive problems in an
abstract setting and described Ritz and Galerkin methods for the approximation
of the solution to a PDE, respectively in the case of symmetric and non-symmetric
bilinear forms.

The abstract setting reads:∣∣∣∣∣ Find uh ∈ Vh ⊂ H such that:

a(uh, vh) = L(vh) , ∀ vh ∈ Vh

such that:

• Vh is a finite dimensional approximation space characterized by a discretiza-
tion parameter h,

• a( · , · ) is a continuous bilinear form on Vh × Vh, coercive w.r.t ‖ · ‖V ,

• L( · ) is a continuous linear form.

Under these assumptions existence and uniqueness of a solution to the approx-
imate problem holds owing to the Lax–Milgram Theorem and uh is called discrete
solution. Provided this abstract framework which allows us to seek approximate
solutions to PDEs, we need to chose the approximate space Vh and construct a
basis B = (ϕ1, · · · , ϕN ) of Vh on which the discrete solution is decomposed:

uh =

NVh∑
j=1

uj ϕj

with NVh
= dim(Vh), {uj} a family of NVh

real numbers called global degrees of
freedom and {ϕj} a family of NVh

elements of Vh called global shape functions.

To construct the approximate space Vh, we need two ingredients:

1. An admissible mesh Th generated by a tesselation of domain Ω.

2. A reference finite element (K̂, P̂, Σ̂) to construct a basis of Vh.

3.1 Admissible mesh
Definition 3.1 (Mesh). Let Ω be polygonal (d = 2) or polyhedral (d = 3) subset
of Rd, we define Th (a triangulation in the simplicial case) as a finite family {Ki}
of disjoints non-empty subsets of Ω named cells. Moreover Nh = {Ni} denotes the
set a vertices of Th and εh = {σKL = K ∩ L} denotes the set of edges.

Definition 3.2 (Mesh size).

hT = max
K∈Th

(diam(K))

Definition 3.3 (Geometrically conforming mesh). A mesh is said geometrically
conforming if two neighbouring cells share either exactly one vertex, exactly one
edge, or in the case d = 3 exactly one facet.

The meaning of the previous condition is that there should not be any “hanging
node” on a facet. Moreover some theoretical results require that the mesh satisfies
some regularity condition: for example, bounded ratio of equivalent ball diameter,
Delaunay condition on the angles of a triangle, . . .
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3.2 Reference Finite Element
Definition 3.4 (Finite Element – [4] page 19, [2] page 69). A Finite Element
consists of a triple (K,P,Σ), such that

• K is a compact, connected subset of Rd with non-empty interior and with
regular boundary (typically Lipshitz continuous),

• P is a finite dimensional vector space, dim(P) = N , of functions p : K → R,
which is the space of shape functions,

• Σ is a set {σ}j of linear forms,

σj : P → R , ∀ j ∈ [[1, N ]]

p 7→ pj = σj(p)

which is a basis of L(P,R), the dual of P.

Practically, the definition constructs first the Finite Element on a cell K which
can be an interval (d = 1), a polygon (d = 2) or a polyhedron (d = 3) (Example:
triangle, quadrangle, tetrahedron, hexahedron). Then an approximation space P
(Example: polynomial space) and the local degrees of freedom Σ are chosen (Exam-
ple: value at N geometrical nodes {ai}, σi(ϕj) = ϕj(ai)). The local shape functions
{ϕi} are then constructed so as to ensure unisolvence.

Proposition 3.5 (Determination of the local shape functions). Let {σi}1≤i≤N
be the set of local degrees of freedoms, the local shape functions are defined as
{ϕi}1≤i≤N a basis of P such that,

σi(ϕj) = δij , ∀ i, j ∈ [[1, N ]]

Definition 3.6 (Unisolvence). A Finite Element is said unisolvent if for any vector
(α1, · · · , αN ) ∈ RN there exists a unique representant p ∈ P such that σi(p) = αi,
∀ ∈ [[1, N ]].

The unisolvence property of a Finite Element is equivalent to construct Σ as
dual basis of P, thus we can express any function p ∈ P as

p =

N∑
j=1

σj(p) ϕj

the unique decomposition on {ϕj}, with pj = σj(p) the j-th degree of freedom. In
other words, the choice of Σ = {σj} ensures that the vector of degree of freedoms
(p1, · · · , pN ) uniquely defines a function of P. Defining Σ as dual basis of P is
equivalent to:

dim(P) = card(Σ) = N (14a)

∀ p ∈ P, (σi(p) = 0, 1 ≤ i ≤ N)⇒ (p = 0) (14b)

in which Property (14a) ensures that Σ generates L(P,R) and Property (14b) that
{σi} are linearly independent.

Usually the unisolvence is part of the definition of a Finite Element since chosing
the shape functions such that σi(ϕj) = δij is equivalent.
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Definition 3.7 (Local interpolation operator – [4] page 20).

πK : V (K) → P

v 7→
N∑
j=1

σj(v) ϕj

Remark 3.8. The notation using the dual basis can be confusing but with the
relation σi(p) = p(ai) in the nodal Finite Element case it is easier to understand that
the set Σ of linear forms defines how the interpolated function πh u “represents” its
infinite dimensional counterpart u through the definition of the degrees of freedom.
In the introduction, we defined simply ui = σi(u) without expliciting it. A natural
choice is the pointwise representation ui = u(ai) at geometrical nodes {ai}, which is
the case of Lagrange elements, but it is not the only possible choice ! For example,
σi can be:

• a mean flux trough each facet of the element (Raviart–Thomas)

σi(v) =

∫
ξ

v ·nξ ds

• a mean value over each facet of the element (Crouzeix–Raviart)

σi(v) =

∫
ξ

v ds

• a mean value of the tangential component over each facet of the element
(Nédelec)

σi(v) =

∫
ξ

v · τξ ds

A specific choice of linear form allows a control on a certain quantity: divergence
for the first two examples, and curl for the third. The approximations will then not
only be Hs-conformal but also include the divergence or the curl in the space.

3.3 Transport of the Finite Element
In practice to avoid the construction of shape functions for any Finite Element
(K,P,Σ), K ∈ Th, the local shape functions are evaluated for a reference Finite
Element (K̂, P̂, Σ̂) defined on a reference cell K̂ and then transported onto any
cell K of the mesh. For example, in the case of simplicial meshes the reference
cell in one dimension is the unit interval [0, 1], in two dimension the unit triangle
with vertices {(0, 0), (0, 1), (1, 0)}. In so doing, we can generate any Finite Element
(K,P,Σ) on the mesh from (K̂, P̂, Σ̂) provided that we can construct a mapping
such that (K,P,Σ) and (K̂, P̂, Σ̂) are equivalents.

Definition 3.9 (Equivalent Finite Elements). Two Finite Elements (K,P,Σ) and
(K̂, P̂, Σ̂) are said equivalent if there exists a bijection TK from K̂ onto K such
that:

∀ p ∈ P, p ◦TK ∈ P̂
and

Σ = TK(Σ̂)

By collecting the local shape functions and local degrees of freedom from all
the generated (K,P,Σ) on the mesh, we then construct global shape functions and
global degrees of freedom and thus the approximation space Vh.

For Lagrange elements the transformation used to transport the Finite Element
on the mesh is an affine mapping, but this is not suitable in general !
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3.4 Numerical integration
The contributions are integrated numerically, usually using quadrature rules.

3.5 Method
Algorithm 3.10 (Finite Element Method). Solving a problem by a Finite Element
Method is defined by the following procedure:

1. Choose a reference finite element (K̂, P̂, Σ̂).

2. Construct an admissible mesh Th such that any cell K ∈ Th is in bijection
with the reference cell K̂.

3. Define a mapping to transport the reference finite element defined on K̂ onto
any K ∈ Th to (K,P,Σ).

4. Construct a basis for Vh by collecting all the finite element basis of finite
elements {(K,P,Σ)}K∈Th sharing the same degree of freedom.

Remark 3.11. The Finite Element approximation is said H-conformal if Vh ⊂ H
and is said non-conformal is Vh 6⊂ H. In this latter case the approximate problem
can be constructed by building an approximate bilinear form

ah( · , · ) = a( · , · ) + s( · , · )

as described, for instance, in the case of stabilized methods for advection-dominated
problems in Section 8.3.

3.6 Exercises
3.6.1 Reference element, affine mapping

Consider the triangular elementK with vertices having coordinates,v1 = (0, 0), v2 =
(0.2, 0.2), v3 = (0.1, 0.6) and piecewice linear basis functions Φ1,Φ2,Φ3 where Φi(vj) =
δij

Compute the integral
∫
K
∇Φ3.∇.Φ3dx by first finding the formula for Φ3.

Consider the reference element K̂ with vertices having coordinates (0, 0), (1, 0), (0, 1).
Find an isoparametric mapping to map points in K̂ to K. Compute the same inte-
gral using this mapping.

3.6.2 Local element matrix, local load vector

Compute a local element matrix and a local load vector for one cell for the first
exercise Ritz-Galerkin methods chapter.
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4 Simplicial Lagrange Finite Element

4.1 Polynomial interpolation in one dimension

Let Pk([a, b]) be the space of polynomials p =
∑k
i=0 αix

i of degre lower or equal to
k on the interval [a, b], with cixi the monomial of order i, ci a real number.

A natural basis of Pk([a, b]) consists of the set of monomials
{

1, x, x2, · · · , xk
}
.

We can verify that its elements are linearly independent. But in the frame of Finite
Elements we can chose another basis which is the Lagrange basis

{
Lki
}

0≤i≤k of
degree k defined on a set of k+ 1 points {ξi}0≤i≤k which are called Lagrange nodes.

Definition 4.1 (Lagrange polynomials – [4] page 21, [6] page 76). The Lagrange
polynomial of degree k associated with node ξm reads:

Lkm(x) =

∏k
i=0
i6=m

(x− ξi)∏k
i=0
i6=m

(ξm − ξi)

Proposition 4.2 (Nodal basis – [4]). Lagrange polynomials form a nodal basis i.e.

Lki (ξj) = δij , 0 ≤ i, j ≤ k

The following result gives a pointwise control of the interpolation error:

Theorem 4.3 (Pointwise interpolation inequality – [6] page 79). Let u ∈ Ck+1([a, b])
and πk u ∈ Pk([a, b]) its Lagrange interpolate of order k, with Lagrange nodes
{ξi}0≤i≤k, then ∀ x ∈ [a, b]:

|u(x)− πk u(x)| ≤

∣∣∣∣∣
∏k
i=0(x− ξi)
(k + 1)!

∣∣∣∣∣max
[a,b]

∣∣∂k+1u
∣∣

4.2 A nodal element
Let us take {ξ1, · · · , ξN} a family of points of K such that σi(p) = p(ξi), 1 ≤ i ≤ N :

• {ξ}1≤i≤N is the set of geometrical nodes,

• {ϕi}1≤i≤N is a nodal basis of P, i.e. ϕi(ξj) = δij .

We can verify, for any p ∈ P that:

p(ξj) =

N∑
i=1

σi(p) ϕi(ξi)︸ ︷︷ ︸
δij

, 1 ≤ i, j ≤ N

which reduces to:
p(ξj) = σi(p)

Remark 4.4 (Support of shape functions). The polynomial basis being defined
such that {

ϕi(ξi) = 1

ϕi(ξj) = 0 , i 6= j

then any shape function ϕi is compactly supported on the union of cells containing
the node ξi.
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The Lagrange polynomials (4.1) are used to build directly the one-dimensional
shape functions, while in higher dimensions the expression of the shape functions is
reformulated in term of barycentric coordinates:

λi : Rd → R

x 7→ λi(x) = 1− (x− ξi) · ni
(ξf − ξi) · ni

with ni the unit outward normal to the facet opposite to ξi, and ξf a node belonging
to this facet.

Example 4.5 (Lagrange elements of polynomial degree k = 1, 2 on triangle). The
shape functions are given by:

k = 1, ϕi = λi , 0 ≤ i ≤ d

k = 2, ϕi = λi(2λi − 1) , 0 ≤ i ≤ d
ϕi = 4λiλj , 0 ≤ i ≤ d

4.3 Reference Finite Element
4.3.1 Examples in one dimension

y

x

Figure 1: Lagrange P1 on the unit interval.

y

x

Figure 2: Lagrange P2 on the unit interval.
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4.4 Formulation of the Poisson problem
The approximate problem of Problem (5) by Lagrange P1 elements reads:∣∣∣∣∣∣∣

Find u ∈ Vh, given f ∈ L2(Ω), such that:∫
Ω

∇u ·∇v dx =

∫
Ω

fv dx , ∀ v ∈ Vh
(15a)

with the approximation space Vh chosen as:

Vh =
{
v ∈ C0(Ω) ∩H1

0(Ω) : v|K ∈ P1(K),∀ K ∈ Th
}

(15b)

4.5 Exercises
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5 Error analysis
The goal of this section is to bound the discretisation error eh = u−uh in a Sobolev
or Lebesgue norm. To this purpose we have already two ingredients:

— on the one hand, i in the analysis of Ritz’s and Galerkin’s methods, consis-
tency estimates like Cea’s Lemma gives a control on the discretisation error in the
solution space V in term of “distance” between the solution space and the approxi-
mation space:

‖u− uh‖V ≤ C ‖u− vh‖V , ∀ vh ∈ Vh
with C > 0 a constant real number,

— on the other hand, the pointwise interpolation inequality of Theorem (4.3)
gives a control on the interpolation error eπ = u− πk u.

Question: Can we control the discretization error by bounding the right-hand
side of the consistency inequality using interpolation properties ?

5.1 A priori error estimate with Lagrange P1

Theorem 5.1 (Interpolation inequality in H1
0(Ω) and L2(Ω)). Let v ∈ H2(Ω),

∃C1 > 0 such that
|v − vh|H1(Ω) ≤ C1hT |v|H2(Ω) (16)

and ∃C0 > 0 such that

‖v − vh‖L2(Ω) ≤ C0h
2
T |v|H2(Ω) (17)

with hT = maxK∈Th(hK).

Proof. The proof is based on the Mean-Value Theorem and a decomposition of the
error per element. The global interpolation error is then recovered by summing
over the cells. This makes sense since the polynomial estimate is defined pointwise:
this is then a local property. In the same spirit the stability of the interpolation
operator is also a local property, defined element-wise.

The discretization error being bounded in O(hT ) the method is first order in
H1

0(Ω).

Remark 5.2 (Convergence order in H1(Ω)). On the other hand we know that
∃CI > 0 such that, ∀ v ∈ H2(Ω):

‖v − π1 v‖L2(Ω) ≤ CI h
2
T |v|H2(Ω)

Using the definition of the norm

‖v − π1 v‖2H1(Ω) = ‖v − π1 v‖2L2(Ω) + |v − π1 v|2H1(Ω)

we get:
‖v − π1 v‖2H1(Ω) ≤ C

2
I (h4

T |v|
2
H2(Ω) + h2

T |v|
2
H2(Ω))

‖v − π1 v‖H1(Ω) ≤ CI hT (1 + h2
T )1/2 |v|H2(Ω)

Thus, we verify that the approximation is also first order in H1(Ω).
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5.2 Superconvergence
The following result shows the the convergence properties of the method is not only
limited by the interpolation inequality. Indeed, using a result by Aubin–Nitsche,
we show that even if the approximation is not H2-conformal, we can improve the
error estimate by one order: the convergence order in L2(Ω) becomes then two.

Theorem 5.3 (Superconvergence). Let Ω be a convex polygonal subset of Rd, d ≥ 1,
f ∈ L2(Ω), u solution to the Dirichlet Problem (1) and uh approximate solution,
hT = maxK∈Th(hK):

‖u− uh‖H1(Ω) ≤ C1 hT and ‖u− uh‖L2(Ω) ≤ C0 h
2
T

Proof. If u is solution to the Poisson problen then u ∈ H1
0(Ω), then by regularity

Theorem (??) (by density of H2(Ω) in H1(Ω)), u ∈ H2(Ω), thus ∃C1 > 0 such that:

‖u‖H2(Ω) ≤ C1 ‖f‖L2(Ω)

Thus replacing the H2-seminorm in the right-hand side of the error estimate, we
have

‖u− uh‖H1(Ω) ≤ C1 hT ‖f‖L2(Ω) (18)

Let us introduce the following auxiliary problem:

−∆ϕ(x) = eh(x) , x ∈ Ω (19a)

ϕ(x) = 0 , x ∈ ∂Ω (19b)

and its weak formulation:∣∣∣∣∣∣∣
Find ϕ ∈ H1

0(Ω), given eh ∈ L2(Ω), such that:∫
Ω

∇ϕ ·∇φ dx =

∫
Ω

ehφ dx , ∀ φ ∈ H1
0(Ω)

(20)

Since eh is bounded in L2(Ω) then the same regularity result holds for the auxiliary
Problem (19), ∃C2 > 0 such that:

‖ϕ‖H2(Ω) ≤ C2 ‖eh‖L2(Ω)

and thus: estimate, we have

‖ϕ− ϕh‖H1(Ω) ≤ C2 hT ‖eh‖L2(Ω) (21)

Let us try to bound the L2-norm of the discretization error by noticing that its
amounts to take φ = eh in (20):

‖eh‖L2(Ω) =

∫
Ω

|eh|2 dx =

∫
Ω

∇ϕ ·∇eh dx

If we consider the approximate of Problem (20) by Galerkin’s method, with ϕh ∈ Vh
its solution, then the Galerkin orthogonality reads:∫

Ω

∇ϕh ·∇eh dx = 0

Thus we can substract and add this latter to the previous expression:

‖eh‖L2(Ω) =

∫
Ω

∇(ϕ− ϕh) ·∇eh dx +

∫
Ω

∇ϕh ·∇eh dx︸ ︷︷ ︸
0
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First we use Cauchy-Schwarz and make the H1-norm of the discretization errors
appear since we control them by Equation (18) and (21):

‖eh‖L2(Ω) ≤ ‖ϕ− ϕh‖H1(Ω) ‖eh‖H1(Ω)

Replacing by the bounds from the interpolation inequalities we get:

‖eh‖L2(Ω) ≤ C1 C2 h
2
T ‖f‖L2(Ω)

which concludes the proof. We have then a second order error estimate in L2.

5.3 Exercises
5.3.1 A priori error estimation

Consider the following differential equation

−u′′(x) + u(x) = f(x),x ∈ (0, 1)

u(0) = u(1) = 0

Derive a weak formulation and galerkin discretization with appropriate functional
spaces, prove a priori error estimates in the energy norm ‖v‖E where ‖v‖2E =

‖v′‖2L2(Ω) + ‖v‖2L2(Ω)
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6 Time-dependent problems
The objective of this section is to introduce the a priori stability analysis of time-
dependent problems on several examples to obtain estimates similar to Lemma (??).

6.1 Time marching schemes

6.2 A priori stability estimates
6.2.1 Heat equation

Firstly, let us derive the energy estimate for the heat equation in the by recalling
the weak form and then taking the test function to be the unknown u:∫

Ω

∂tu v dx + κ

∫
Ω

∇u.∇v dx =

∫
Ω

f v dx

∫
Ω

∂tuu dx + κ

∫
Ω

|∇u|2 dx =

∫
Ω

f u dx

1

2

∫
Ω

∂t|u|2 dx + κ

∫
Ω

|∇u|2 dx =

∫
Ω

f u dx

1

2

d

dt

∫
Ω

|u|2 dx + κ

∫
Ω

|∇u|2 dx =

∫
Ω

f u dx

1

2

d

dt
‖u‖2L2(Ω) + κ |u|2H1(Ω) dx =

∫
Ω

f u dx

In the case of an homogeneous equation, the latest relation is directly the in-
stantaneous conservation of energy

1

2

d

dt
‖u‖2L2(Ω) + κ |u|2H1(Ω) = 0 (22)

with the first term being the variation of kinetic energy and the second term being
the dissipation of energy with diffusion coefficient κ. Integrating over the time
interval, we get the energy budget over [0, T ]:

1

2
‖u‖2L2(Ω) + κ

∫ T

0

|u|2H1(Ω) dt = 0 (23)

Let us consider now a non-zero source term f , then using the Cauchy–Schwarz
inequality yields the following relation:

1

2

d

dt
‖u‖2L2(Ω) + κ |u|2H1(Ω) ≤ ‖f‖L2(Ω) ‖u‖L2(Ω) (24)

Since the bound should depend only on the data, the name of the game is to absorb
any term involving the unknown in the left-hand side. To this purpose, inequalities
like Hölder, Korn, Sobolev injections are to be used in order to get a power of
the proper Lp or Hs norm of the unknown. In the case of coercive problems,
the diffusion term giving directly the H1 seminorm (to a factor depending on the
diffusive coefficient), we should try to make it pop from the right-hand side. Using
first the Poincaré inequality (Lemma D.8) and then the Young inequality (Lemma
D.3), we can bound the right-hand side by the data and the H1 seminorm,

‖f‖L2(Ω) ‖u‖L2(Ω) ≤
1

2γ2c2P
‖f‖2L2(Ω) +

γ2

2
|u|2H1(Ω) (25)
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with γ a positive real number which can be chosen arbitrarily. Therefore, as soon
as we choose γ <

√
2κ, it is possible to substract the second term of (25) to the

left-hand side of the estimate, given that

1

2

d

dt
‖u‖2L2(Ω) +

2κ− γ2

2
|u|2H1(Ω) ≤

1

2γ2c2P
‖f‖2L2(Ω) (26)

Consequently, taking γ =
√
κ there exists a constant C > 0 depending on the

Poincaré constant, such that
d

dt
‖u‖2L2(Ω) + κ |u|2H1(Ω) ≤ C(cP ) ‖f‖2L2(Ω) (27)

This inequality yields a control of the L2 norm and H1 seminorn of the solution
at any time t of the time interval [0, T ]. Similarly to Equation (23), if we integrate
over the time, we get

‖u‖2L2(Ω) + κ

∫ T

0

|u|2H1(Ω) dt ≤ C(cP )

∫ T

0

‖f‖2L2(Ω) dt

which, by defining,

‖v‖Lr(0,T ;Lp(Ω)) =

(∫ T

0

‖v‖rLp(Ω) dt

)1/r

(28)

can be rewritten as

‖u‖2L2(Ω) + κ ‖u‖2L2(0,T ;H1
0(Ω)) ≤ C(cP ) ‖f‖2L2(0,T ;L2(Ω))

The solution is said to be bounded in L∞(0, T ; L2(Ω)), i.e. u ∈ L2(Ω) for almost
every t ∈ [0, T ], and is it also bounded in L2(0, T ; H1(Ω)) by the data (provided
that f ∈ L2(0, T ; L2(Ω)) of course).

Now, if we turn to the discrete case the estimate is not different aside from the
the discrete time derivative. The term for the discrete time derivative in the case
of backward Euler reads

1

δt

∫
Ω

(u− u∗)u dx

with δt the current time step, u and u∗ respectively the solution at the current and
previous time stepping.

6.2.2 Wave equation

6.3 Well-posedness

6.4 Exercises
Exercise 6.1. Consider the following initial-boundary value problem

u̇(x)−∆u(x) = 0 , (x, t) ∈ Ω× I
u = 0 , (x, t) ∈ ∂Ω× I

u(x, 0) = u0(x) , x ∈ Ω

1. Show the stability estimates

‖u(t)‖2L2(Ω) +

∫ t

0

‖∇u(s)‖2L2(Ω) ds ≤ ‖u(0)‖2L2(Ω)

‖∇u(t)‖2L2(Ω) +

∫ t

0

‖4u(s)‖2L2(Ω) ds ≤ ‖∇u(0)‖2L2(Ω)
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7 Adaptive error control
In Section 5. we derived a priori error estimates which give a control of the dis-
cretization error for any approximate solution. The order of convergence given by
the exponent O(hαT ) is an indication on “how close” to the continuous solution any
approximate solution is expected to be. Provided that we are able to compute an
approximate solution uh, we want now to evaluate the “quality” of this solution in
the sense of the residual of the equation: such an estimate is thus called a posteriori
as it gives a quality measure of a computed solution.

Question: How can we evaluate the quality of a computed approximate solution
in the sense of the residual of the equation ?

7.1 A posteriori error estimate
Let u and uh be respectively the solutions to Problem (5) and Problem (15)

|eh|2H1(Ω) =

∫
Ω

∇eh ·∇eh dx

=

∫
Ω

∇eh ·∇(eh − πh eh) dx

=

∫
Ω

∇u ·∇(eh − πh eh) dx−
∫

Ω

∇uh ·∇(eh − πh eh) dx

=

∫
Ω

f (eh − πh eh) dx−
∫

Ω

∇uh ·∇(eh − πh eh) dx

To obtain the residual R(uh) we need to consider the equation element-wise, then
integrating by part on any cell K ∈ Th, we obtain∫
K

∇uh ·∇(eh− πh eh) dx =

∫
∂K

∇uh ·n (eh− πh eh) dx−
∫
K

∆uh (eh− πh eh) dx

with
RK(uh) = (f + ∆uh)|K

Summing again over the domain yields

|eh|2H1(Ω) =
∑
K∈Th

[∫
K

RK(uh) ∇(eh − πh eh) dx +

∫
∂K

∇uh ·n (eh − πh eh) dx

]
noting that in the case of continuous elements the boundary term cancels. Using
first the Cauchy–Schwarz inequality

|eh|2H1(Ω) ≤ ‖R(uh)‖L2(Ω) ‖eh − πh eh‖L2(Ω)

then the interpolation inequality with constant CI

|eh|2H1(Ω) ≤ CI ‖R(uh)‖L2(Ω) |heh|H1(Ω)

Consequenlty, we conclude

|eh|H1(Ω) ≤ CIhT ‖R(uh)‖L2(Ω)
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7.2 Dual weighted residual estimate
7.2.1 Adjoint operator

Definition 7.1 (Adjoint operator). Let us define A?, the adjoint operator of A as:

( Au , v ) = ( u , A?v )

Example 7.2 (Matrix ofMN (R)). Let A = A be a real square matrix of dimension
N ×N and x, y ∈ RN :

( Ax , y ) = ( Ax , y ) = ( x , Aty ) = ( x , A?y )

with ( · , · ) the scalar product of RN , then A? = At.

Example 7.3 (Weak derivative). Let A = Dx and u, v ∈ L2(Ω), with compact
support on Ω:

( Au , v ) = ( Dxu , v ) = − ( u , Dxv ) = ( u , A?v )

with ( · , · ) the scalar product of L2(Ω) (to simplify), then A? = −Dx.

Example 7.4 (Laplace operator). Let A = −∆ and u, v ∈ H1
0(Ω):

( Au , v ) = ( −∆u , v ) = ( ∇u , ∇v ) = ( u , −∆v ) = ( u , A?v )

with ( · , · ) the scalar product of L2(Ω), then A? = −∆. The Laplace operator is
said self-adjoint.

7.2.2 Duality-based a posteriori error estimate

We define the dual problem as seeking η satisfying A?η = eh, which gives a control
on the discretization error, using the definition of the adjoint operator A?:

‖eh‖L2(Ω) = ( eh , eh )

= ( eh , A?η )

= ( Aeh , η )

= ( Au , η )− ( Auh , η )

= ( f −Auh , η )

= ( R(uh) , η )

with R(uh) = f −Auh. Moreover, if the dual problem is stable then there exists a
constant S such that the dual solution η is bounded:

‖η‖L2(Ω) ≤ S ‖eh‖L2(Ω)

with the stability factor S satisfying

S = max
θ∈L2(Ω)

|η|H2(Ω)

‖θ‖L2(Ω)

Thus we can obtain a bound of the form:

‖eh‖L2(Ω) ≤ S ‖R(uh)‖L2(Ω)

Combining this estimate with an interpolation inequality in Hα, we can bound
the discretization error in terms of the residual and the stability factor. For instance,
if we control the second derivatives of the dual solution, i.e. α = 2,

‖eh‖L2(Ω) ≤ CI
∥∥h2R(uh)

∥∥
L2(Ω)

|η|H2(Ω)

‖eh‖L2(Ω)

Consequently,

‖eh‖L2(Ω) ≤ CI S
∥∥h2R(uh)

∥∥
L2(Ω)
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7.3 Method
Definition 7.5 (h-adaptivity). Given a tolerance parameter εtol > 0 defining a
quality criterion for the computed solution uh, adapt the mesh such that it satisfies:

εT =
∑
K∈Th

εK < εtol

Algorithm 7.6 (Adaptive mesh strategy). The following procedure applies:

• Generate an initial coarse mesh T 0
h .

• Perform adaptive iterations for levels ` = 0, · · · , `max :

1. Solve the primal problem with solution uh0 ∈ V `h .
2. Compute the residual of the equation R(uh

`).

3. If dual weighted, solve the dual problem with solution η ∈W`
h.

4. Compute error indicators εK , ∀ K ∈ T `h .
5. If (εT ≥ εtol) :
→ Generate mesh T `+1

h by refining cells with largest values of εK .
Else :
→ Terminate adaptive iterations, `max = `.

7.4 Exercises
Exercise 7.7 (Diffusion–Reaction problem on the unit interval). Consider the fol-
lowing one-dimensional problem:

−∂x
(
a(x) ∂xu(x)

)
+ c(x) u(x) = f(x) , ∀ x ∈ Ω = [0, 1]

with a > 0, c ≥ 0, and supplemented with homogeneous Dirichlet boundary condi-
tions

u(0) = u(1) = 0

1. Write the weak formulation for the given problem and its approximation by
piecewise linear Lagrange elements.

2. Write the dual problem for unknown η.

3. Obtain the following estimate:

‖eh‖L2(Ω) ≤
∥∥h2R(uh)

∥∥
L2(Ω)

∥∥h−2(η − π1 η)
∥∥

L2(Ω)

with the discretization error eh = u − uh, the equation residual R(uh) =
f+∂x

(
a ∂xuh

)
−c uh and the Lagrange P1 intepolation operator π1 . First you

should test the dual equation against eh, then write the expression element-
wise to be able to define the residual.

4. Conclude that the a posteriori error estimate holds

‖eh‖L2(Ω) ≤ CI S
∥∥h2R(uh)

∥∥
L2(Ω)

with CI the interpolation constant and S a stability factor that you will define.
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7.4.1 A posteriori error estimation

Consider the following differential equation

−u′′(x) + u′(x) + u(x) = f(x),x ∈ (0, 1)

u(0) = u(1) = 0

Derive a weak formulation and Galerkin discretization with appropriate functional
spaces,

Use the solution of the dual problem

−θ′′(x)− θ′(x) + θ(x) = ex ∈ (0, 1)

θ(0) = θ(1) = 0

to derive the a posteriori error estimate in L2 norm.

31



8 Stabilized methods for advection dominated prob-
lems

8.1 An advection–diffusion problem in one dimension
According to Problem 18.6 from [6], let us consider the following one-dimensional
advection–diffusion problem:

−∂x
(
ν(x) ∂xu(x)

)
+ ∂xu(x) = f(x) , ∀ x ∈ Ω = [0, 1]

with viscosity ν > 0, and supplemented with boundary conditions:

u(0) = 1 , u(1) = 0

8.2 Coercivity loss

8.3 Stabilization of the Galerkin method
Galerkin ( Au , v ) = ( f , v )

Galerkin–Least squares ( Au , v + δAv ) = ( f , v + δAv )

( Au , v ) + ( Au , δAv ) = ( f , v ) + ( f , δAv )

Streamline Diffusion ( Au , v + δAv ) + ( νh∇u , ∇v ) = ( f , v + δAv )

Entropy viscosity ( Au , v ) + ( νh∇u , ∇v ) = ( f , v )

8.4 Exercises
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9 Mixed problems
This section is an opportunity to describe step by step the methodology described
throughout the course by studying the Stokes problem and to give an overview of
the difficulties arising in mixed problems.

Question: In the case of a problem involving a pair of unknown (u, p), is there
a criterion to chose the approximation spaces ?

9.1 The Stokes equations
9.1.1 Position of the problem

Let us consider the equations governing the velocity ū and pressure p of an in-
compressible creeping flow, subject to the gravity, in a domain Ω, open bounded
subset of Rd. As the flow is supposed to be sufficiently slow to neglect the advection
compared to the diffusion, the momentum balance equation reduces to

−∇·σ(x) = %(x)g(x) (29a)

with the stress tensor
σ = τ − p I (29b)

consisting of a viscous stress tensor τ and a pressure term with I the identity matrix
ofMd(R). The incompressibilty constraint

∇· ū(x) = 0 (29c)

represents the mass conservation for an incompressible continuum. Moreover, the
relations are supplemented with boundary conditions on ∂Ω = ∂ΩD∪∂ΩN . Dirichlet
boundary conditions are enforced on ∂ΩD

ū = uD (29d)

with uD while Neumann boundary conditions on ∂ΩN

σ ·n = σN (29e)

with σN a surface force acting on ∂ΩN .

According to the method developed during the course, we would like first of all
to derive a weak formulation by testing Equations (29a) and (29c) against smooth
functions, such that we consider

−
∫

Ω

∇· τ ·v dx +

∫
Ω

∇p ·v dx =

∫
Ω

%g ·v dx ,∀ v ∈ V

and ∫
Ω

∇· ū q dx = 0 ,∀ q ∈M

Integrating by parts to report the derivatives on the tests functions:

−
∫

Ω

∇· τ ·v dx = −
∫

Ω

∇· (τ t ·v) dx +

∫
Ω

τ : ∇v dx

which uses the tensor identity, given under repeated indices form:

∂j (τij)vi = ∂j (τjivi)− τij∂j vi
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Owing to relation

−
∫

Ω

∇· τ ·v dx = −
∫
∂Ω

τ ·n ·v ds+

∫
Ω

τ : ∇v dx

and
−
∫

Ω

∇p ·v dx = −
∫
∂Ω

pn ·v ds+

∫
Ω

p∇·v dx

the weak formulation of Problem (29) reads:∣∣∣∣∣∣∣∣∣∣∣

Find (ū, p) ∈W ×M such that:∫
Ω

τ : ∇v dx−
∫

Ω

p∇·v dx =

∫
Ω

%g ·v dx +

∫
∂ΩN

σN ·n ds ,∀ v ∈ V∫
Ω

∇· ū q dx = 0 ,∀ q ∈M

In the case of a Newtonian fluid the stress tensor reads

σ(ū, p) = 2νε(ū)− pI

with the strain rate tensor

ε(ū) =
1

2
(∇ū + ∇tū)

which is symmetric.

9.1.2 Abstract weak formulation

As a first step we can reformulate the previous problem as:∣∣∣∣∣∣∣∣∣
Find (ū, p) ∈W ×M such that:

a(ū,v) + b(v, p) = L(v) ,∀ v ∈ V

b(ū, q) = 0 ,∀ q ∈M

defining a( · , · ) as the continuous bilinear form:

a : W × V → R

(ū,v) 7→
∫

Ω

τ : ∇v dx

b( · , · ) as the continuous bilinear form:

b : V ×M → R

(v, p) 7→ −
∫

Ω

p∇·v dx

and L( · ) as the continuous linear form:

L : V → R

v 7→
∫

Ω

%g ·v dx +

∫
∂ΩN

σN ·n ds

Choice of the functional spaces: — Regularity: as in Section 1 we chose the test
and solution space so that the integrals make sense. Owing to these requirements,
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W and V should be subspaces of H1(Ω)d and M should be a subspace of L2(Ω),
— Boundary conditions: the boundary condition on ∂ΩN appears in the weak
formulation as a linear form so that the solution will satisfy the constraint σ ·n =
σN , while the boundary condition is included in the definition of the functional
space W :

W =
{
v ∈ H1(Ω)d : ū = uD , on ∂ΩD

}
By homogenizing the Dirichlet boundary condition, we can lift the solution ū so
that the problem is rewritten to seek a velocity u in V .

The generalized Stokes problem reads then:∣∣∣∣∣∣∣∣∣
Find (u, p) ∈ V ×M such that:

a(u,v) + b(v, p) = L(v) ,∀ v ∈ V

b(u, q) = 〈 Ψ , p 〉M ′,M ,∀ q ∈M

(30)

with (V ,M) a pair of Hilbert spaces to be determined, a( · , · ) bilinear form con-
tinuous on V × V , L( · ) linear form continuous on V and Ψ a given continuity
constraint in M ′.

9.1.3 Well-posedness in the continuous setting

Let us change the space in which test functions are chosen to the space of divergence-
free functions of V to satisfy the continuity constraint:

V 0 = {v ∈ V : b(v, q) = 0 ,∀ q ∈M}

The bilinear form b is continuous on V 0×M , i.e. b(v, q) ≤ ‖v‖V 0
‖q‖M , thus Im(b)

is closed and V = V 0⊕V ⊥0 . The first relation of the Stokes problem becomes then:

a(u,v) + b(v, p)︸ ︷︷ ︸
0

= L(v) ,∀ v ∈ V 0

Therefore, the new abstract problem with solenoidal test functions reads:∣∣∣∣∣∣∣∣∣
Find (u, p) ∈ V ×M such that:

a(u,v) = L(v) ,∀ v ∈ V 0

b(u, q) = 〈 Ψ , p 〉M ′,M ,∀ q ∈M

Theorem 9.1 (Well-posedness of constrained problem). Let us define the space

V Ψ =
{
v ∈ V : b(v, q) = 〈 Ψ , p 〉M ′,M ,∀ q ∈M

}
supposed non-empty and consider a( · , · ) a bilinear form coercive on V . The prob-
lem ∣∣∣∣∣ Find (u, p) ∈ V Ψ ×M such that:

a(u,v) = L(v) ,∀ v ∈ V 0

admits a unique solution.

Proof. The given problem satisfies the assumptions of the Lax–Milgram Theorem.
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We denote by L(V ×W;R), the space of bilinear form continuous on V ×W
which is a Banach space for the operator norm

‖a‖V,W = sup
v∈V
w∈W

a(v, w)

‖v‖V ‖w‖W

Proposition 9.2 (Babuska–Necas–Brezzi condition). The bilinear form a ∈ L(V ×
W;R) satisfies the (BNB) condition if there exists β > 0 such that

inf
w∈W

sup
v∈V

a(v, w)

‖v‖V ‖w‖W
≥ β

Theorem 9.3 (Existence). If V Ψ is non-empty, a( · , · ) is a bilinear form coercive
on V with coercivity constant α, and the bilinear form b( · , · ) satisfies Proposition
(9.2), i.e.

∃β > 0 : inf
q∈M̃

sup
v∈V

b(v, q)

‖v‖V ‖q‖M
≥ β

then Problem (9.1.3) admits solution pairs (u, p) ∈ V ×M such that u is unique,
satisfying

‖u‖V ≤
1

α
‖L‖V ′ +

1

α

(
1 + ‖a‖V ,V

)
‖Ψ‖M ′

and any p ∈M can be written as p = p̃+M0, p̃ ∈M⊥0

‖p̃‖M ≤
(

1 +
‖a‖V ,V

α

)(
1

β
‖L‖V ′ +

1

β2
‖a‖V ,V ‖Ψ‖M ′

)
Indeed, p playing the role of a potential, it is defined up to a constant. Then we

can interpret the spaceM0 as the space of functions on which gradients are vanishing
which is the space of constants on Ω, so that we seek p̃ ∈ M̃, with M̃ = M⊥0 defined
as the equivalent class: ∀ p, q ∈M , p ≡ q ⇔ p = q + C : C ∈ R.

Consequently, we add the constraint that the pressure has a zero average on
Ω and as a by-product we consider (u, p̃) ∈ V h × M̃ the unique solution pair to
Problem (9.1.3).

Historically, the (BNB) condition relates to a well-known result characterizing
the surjectivity of the divergence operator which can be generalized as:

Theorem 9.4 (De Rham – [4] page 492). The continuous bilinear forms on W1,p(Ω)

which are zero on ker(∇· ) are gradients of functions in Lp
′∫
=0

(Ω).

9.2 The discrete Inf-Sup condition
9.2.1 Results

Let us consider an approximation of Problem 30 by a Galerkin method:∣∣∣∣∣∣∣∣∣
Find (uh, ph) ∈ V h × M̃h such that:

a(uh,vh) + b(vh, ph) = L(vh) ,∀ vh ∈ V h

b(uh, qh) = 〈 Ψ , ph 〉M ′,M ,∀ qh ∈Mh

with (V h, M̃h) a pair of approximation spaces to be chosen and the discrete diver-
gence operator Bh,

b(uh, qh) = ( Bhu , qh )
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Theorem 9.5 (Well-posedness). If Ψh ∈ Im(Bh) then Problem (9.2.1) admits
solutions (uh, ph) ∈ V h×M̃h such that uh is unique and the pressure can be written
as ph = p̃h + ker(Bt

h) with p̃h ∈ ker(Bt
h)⊥ unique.

Theorem 9.6 (Convergence – [7] page 21). Let (u, p) ∈ V × M̃ be the solution of
Problem (29) and (uh, ph) ∈ V h × M̃h the solution of discrete Problem (9.2.1) and
we denote by αh the coercivity constant of a( · , · ) on V 0,h and by βh the constant of
the discrete Inf-Sup condition. If Ψh ∈ Im(Bh) then the following two consistency
estimates hold:

‖u− uh‖V h
≤ C1 inf

vh∈V h

‖u− vh‖V + C2 inf
qh∈Mh

‖p− qh‖M

‖ph − ph‖M̃h
≤ C3 inf

vh∈V h

‖u− vh‖V + C4 inf
vh∈Mh

‖p− qh‖M

with constants

C1 =

(
1 +
‖a‖V ,V
αh

)(
1 +
‖b‖V ,M
βh

)

C2 =
‖b‖V ,M
αh

C3 =
‖a‖V ,M
βh

C1

C4 = 1 +
‖b‖V ,M
βh

+
‖a‖V ,M
βh

C2

The previous result shows then that satisfying the discrete Inf-Sup condition is
crucial to ensure optimal convergence of the numerical scheme, i.e. the discretiza-
tion error decreases with the mesh size hT . Indeed, if the parameter βh is not
bounded from below then it is clear that values tending to zero will degrade the
consistency estimates.

9.2.2 Commonly used pairs of approximation spaces

Velocity space V h Pressure space Mh Inf-Sup stable Comment
P1 P1 No

P1 P0 No “Locking effect”

Pk+1 Pk Yes k ≥ 1, “Taylor–Hood”

9.3 Exercises
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A Definitions

A.1 Mapping
Definition A.1 (Mapping). Let E and F be two sets, a mapping

f : E → F
x 7→ f(x)

is a relation which, to any element x ∈ E, associates an element y = f(x) ∈ F .

Definition A.2 (Linear mapping). Let E and F be two K-vector spaces, the map-
ping f : E → F is linear if:

1. ∀ x, y ∈ E, f(x+ y) = f(x) + f(y)

2. ∀ λ ∈ K, y ∈ E, f(λx) = λf(x)

A.2 Spaces
Definition A.3 (Vector space (on the left)). Let (K,+,×) be defined such that
(K,+) is an Abelian additive group and (K,×) is an Abelian multiplicative group,
K = R or K = C.

(K,+) (K,×)

“+” commutative and associative “×” commutative and associative
0K neutral for ‘+” 11K neutral for ‘×”

“+” admits an opposite “×” admits an inverse
“×” is distributive with respect to “+”

(E,+, · ) is a vector space on (K,×) if:

1. (E,+) is an additive Abelian group (same properties as (K,+)).

2. The operation · : K× E → E satisfies:

distributive w.r.t “+E” on the left λ · (u+ v) = λ ·u+ λ · v
distributive w.r.t “+K” on the right (λ+ µ) ·u = λ ·u+ µ ·u

associative w.r.t “×” (λ× µ) ·u = λ · (µ ·u)
11K neutral element on the left 11K ·u = u

In short the vector space structure allows writing any u ∈ E as linear combina-
tions of elements {vi} of E called vectors with elements {λi} of K called scalars as
coefficients,

u =
∑
i

λivi

and both the multiplications for vectors and scalars are distributive with respect to
the additions. In this document we only consider real vector spaces, K = R.

Definition A.4 (Norm). Let E be a K-vector space, the application

‖ · ‖ : E → R+

is a norm if the following properties are satisfied:

1. Separation: ∀ x ∈ E, ( ‖x‖E = 0 )⇒ ( x = 0E )

2. Homogeneity: ∀ λ ∈ K, ∀ x ∈ E, ‖λx‖E = |λ| ‖x‖E

38



3. Subadditivity: ∀ x, y ∈ E, ‖x+ y‖E ≤ ‖x‖E + ‖y‖E
Note A.5. The third property is usually called triangle inequality.

Definition A.6 (Equivalent norms). Let E be a K-vector space, norm ‖ · ‖EE is
said equivalent to ‖ · ‖E if there exist C1, C2 > 0 such that:

C1 ‖u‖E ≤ ‖u‖EE ≤ C2 ‖u‖E , ∀ u ∈ E

Definition A.7 (Seminorm). Let E be a K-vector space, the application

‖ · ‖ : E → R+

is a seminorm if it satisfies properties (A.4).2 and (A.4).3.

Definition A.8 (Scalar product). Let E be a R-vector space, the bilinear mapping

( · , · ) : E × E → R

is a scalar (or inner) product of E if it satisfies the following three properties:

1. Symmetry: ∀ x, y ∈ E, ( x , y ) = ( y , x )

2. Positivity: ∀ x ∈ E, ( x , x ) ≥ 0

3. Definiteness: ( ( x , x ) = 0 )⇒ ( x = 0 )

B Duality in finite dimension
Definition B.1 (Dual space). Let E be a finite dimensional real vector space, its
dual E? is the space of linear forms on E, denoted by L(E;R).

Definition B.2 (Dual basis). Let E be a finite dimensional real vector space,
dim(E) = N and B = (e1, · · · , eN ) a basis of E. Let us denote, for any i, j ∈ [[1, N ]],
by:

e?i : E → R
ej 7→ δij

the i-th coordinate. The dual family of B, B? = (e?1, · · · , e?N ) is a basis of E?.

Thus we can write any element u ∈ E as:

u =

N∑
i=1

e?i (u)ei

Proving that B? is a basis of E? requires that {ei} generates E? and that its elements
are linearly independent. The corollary of the first condition is that dim(B?) = N .

C Functional spaces

C.1 Banach and Hilbert spaces
Definition C.1 (Cauchy criterion). Let (E, ‖ · ‖E) be a normed vector space and
(vn)n∈N be a sequence of element of E which satisfies:

∀ ε > 0, ∃N such that ∀ p, q ≥ N , ‖vp − vq‖E ≤ ε

then (vn)n∈N is a Cauchy sequence in E.
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Definition C.2 (Banach space). A Banach space (E, ‖ · ‖E) is a normed vector
space with is complete with respect to the norm ‖ · ‖E , i.e. Cauchy sequences
converge in E.

Definition C.3 (Hilbert space). Let E be a K-vector space and ( · , · ) be a
sesquilinear form on the left (or bilinear form if K = R),

( x1 + x2 , y ) = ( x1 , y ) + ( x2 , y )

( x , y1 + y2 ) = ( x , y1 ) + ( x , y2 )

( λx , y ) = λ( x , y )

( x , λy ) = λ̄( x , y )

which is also positive definite on E,

∀ x 6= 0E , ( · , · ) > 0

then (E, ( · , · )) is a pre-Hilbertian space. Moreover, if E is complete with respect
to the norm defined by ( · , · ), it is a Hilbert space.

Definition C.4 (Hilbertian norm).

1

2

(
‖x‖2E + ‖y‖2E

)
=

∥∥∥∥x+ y

2

∥∥∥∥2

E

+

∥∥∥∥x− y2

∥∥∥∥2

E

Remark C.5. This is basically the parallelogram identity. This inequality is useful
to check that a norm is generated from a scalar product.

Theorem C.6 (Projection on a convex subset). Let H be a Hilbert space and K ⊂ H
be a convex closed non-empty subset, ∀ x ∈ H there exists a unique x0 ∈ K such
that

‖x− x0‖H = inf
y∈K
‖x− y‖H

with x0 the projection of x onto K and we denote it by x0 = PK x

C.2 Spaces of continuous functions
Ck(Ω) =

{
u ∈ C0(Ω) : u′ ∈ Ck−1(Ω)

}
C∞c (Ω) = {u ∈ C∞(Ω) with compact support in Ω}

C.3 Lebesgue spaces

Lp(Ω) =

{
u :

∫
Ω

|u(x)|p dx <∞
}

Remark C.7. Lebesgue spaces Lp, 1 ≥ p ≥ ∞ are Banach spaces for the norm

‖ · ‖Lp(Ω) =

(∫
Ω

|u(x)|p
)1/p

and L2 is a Hilbert space endowed with the scalar product

( u , v ) L2(Ω) =

∫
Ω

u v dx (31)
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C.4 Hilbert–Sobolev spaces
Hs(Ω) =

{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) , 1 ≤ α ≤ s

}
C.5 Sobolev spaces

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) , 1 ≤ α ≤ m}

Remark C.8. Hs spaces are Ws,2 spaces.

D Inequalities
Lemma D.1 (Cauchy–Schwarz). Let E be a K-vector space, any positive sesquilin-
ear form ( · , · ) on E satisfies the inequality:

( u , v ) ≤ ‖u‖E ‖v‖E

Remark D.2. In particular any scalar product satisfies the Cauchy–Schwarz in-
equality. For example:

( u , v ) L2(Ω) =

∫
Ω

u v dx ≤ ‖u‖L2(Ω) ‖v‖L2(Ω)

Lemma D.3 (Young). Let a, b > 0 be two real numbers:

ab ≤ 1

p

(a
γ

)p
+

1

q

(
bγ
)q

with
1

q
+

1

p
= 1 and γ > 0.

Remark D.4. In particular, the following inequality is commonly used for energy
estimates:

ab ≤ 1

2

(a
γ

)2

+
1

2
(bγ)2

Lemma D.5 (Generalized Hölder). Let u ∈ Lp(Ω), v ∈ Lq(Ω), with 1 ≤ p < ∞,
then:

‖u v‖Lr(Ω) ≤ ‖u‖Lq(Ω) ‖v‖Lq(Ω)

with
1

r
=

1

p
+

1

q

Lemma D.6 (Minkowski).

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω)

Remark D.7. The previous result is basically the triangle inequality for the Lp–
norm.

Lemma D.8 (Poincaré). Let Ω be an open bounded subset, for any 1 ≤ p < ∞
there exists a constant real number cP > 0 such that ∀ u ∈W1,p

0 (Ω):

cP ‖u‖Lp(Ω) ≤ ‖∇u‖Lp(Ω)
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Remark D.9. As a Corollary usefull for the Poisson problem that we address, we
get that ‖∇u‖L2(Ω) defines an equivalent norm to ‖u‖1 on H1

0(Ω).

Lemma D.10 (Clarkson). Let 1 < p < ∞, and u, v be two functions of Lp(Ω),
then:

1. for p ≥ 2 ∥∥∥∥u+ v

2

∥∥∥∥2

Lp(Ω)

+

∥∥∥∥u− v2

∥∥∥∥2

Lp(Ω)

≤ 1

2

(
‖u‖2Lp(Ω) + ‖v‖2Lp(Ω)

)
2. for p < 2∥∥∥∥u+ v

2

∥∥∥∥2

Lp′ (Ω)

+

∥∥∥∥u− v2

∥∥∥∥2

Lp′ (Ω)

≤
(

1

2
‖u‖2Lp(Ω) +

1

2
‖v‖2Lp(Ω)

)1/(p−1)

Remark D.11. These inequalities are basically parallelogram inequalities general-
ized to Lp spaces.
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