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Distributed transactions

e Problem:

— Several independent transaction servers
should be coordinated in one transaction.

- How do we coordinate operations to
guarantee serial equivalence?
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ohne-phase commit

e Client sends closeTransaction to
coordinator.

e Coordinator tells participants to commit
the transaction.

e Problems:

— what if a participant can not commit and has
to abort

— a client could have crashed and have
forgotten about the transaction




two-phase commit

e phase one: ask participants to vote for
commit or abort

— if voting for commit one has to be able to
commit even after a node crash

e collect replies:
— if anyone aborts all must abort

e phase two: inform all participants of the
result

— optionally participants acknowledge decision




consensus

e Two-phase commit is a consensus
protocol but:

— all clients must vote

— if any client votes for abort we must abort




What if we crash?
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What if we crash?
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What if coordinator crashes
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two-phase commit

e The protocol survives if nodes crash and
later restart.

- ...if they have written their state to persistent
memory

e The protocol can be delayed waiting for
any participant or the coordinator to reply.

o If successful:
— all participants will commit or abort




Distributed concurrency control

e Each server is responsible for concurrency
control of its own objects.
o All participants must agree on order to

guarantee serial equivalence.

— If the operations of transaction T is before U in
one server then all servers should have T before

U.
e We can use: locks, optimistic control or time

stamps.




Distributed locks

e Strict two-phase locking: locks are held
until commit or abort.

e Can we prevent deadlock
— harder to order all locks in the system
- how do we synchronize taking of locks

e If each server maintain its own locks we
will have distributed dead-locks.
— detect and resolve rather than avoid
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Distributed dead-lock
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Wait for graphs
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Centralized detection

e One server acts as a deadlock detector.
Collects wait graphs from servers and
tries to detect cycles.

- what about messages in transit
— how often should we collect sets
e What to do when cycle detected?
— abort one transaction
— which one?

e Can we falsely detect deadlocks?




Phantom deadlock
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Probe the graph

e A different approach is to send a
probe along the path of a wait graph.

e Probes must only be sent if the
transaction is waiting for a lock held
by a transaction that is also waiting
for a lock.

e The probe consist of the wait graph
detected so far
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Probe the graph

e In general deadlock cycles are small
and do not generate long paths.

e We could have a situation where two
probes are sent and the cycle is
detected at two different points in the
graph.

— Could be resolved if transactions are

ordered and both decide to abort the
same transaction.




Optimistic concurrency control

e Commit only allowed after validation.

e Validation is a easier to implement as a
sequential process and quite efficient if
only one server is involved.

e Approaches:

— Perform local validation and then check if we
have global serial equivalence.

— Assign a global transaction sequence number
that all servers must use.




Time stamp control

e Assign a global time stamp at the
start of the transaction.

— Can clients be synchronized?

e Locally, the time stamp protocol acts
as normal.




Summary

e Two-phase commit is used to provide
distributed atomicity.

e Distributed deadlock is a problem.
— How do we detect it?

— How do we resolve it?
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