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Distributed transactions

• Problem:
– Several independent transaction servers 

should be coordinated in one transaction.
– How do we coordinate operations to 

guarantee serial equivalence?
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Coordination

openTransaction()

coordinator

a.withdraw(T,10)
T = openTransaction()
  a.withdraw(10)
  b.withdraw(20)
  c.deposit(30)
  closeTransaction(T)

join(T)

client

a
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Coordination

closeTransaction(T)

coordinator

T = openTransaction()
  a.withdraw(10)
  b.withdraw(20)
  c.deposit(30)
  closeTransaction(T)

client

a

b

c



5
Distributed Systems ID220U

one-phase commit

• Client sends closeTransaction to 
coordinator.

• Coordinator tells participants to commit 
the transaction.

• Problems:
– what if a participant can not commit and has 

to abort
– a client could have crashed and have 

forgotten about the transaction
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two-phase commit

• phase one: ask participants to vote for 
commit or abort
– if voting for commit one has to be able to 

commit even after a node crash

• collect replies: 
– if anyone aborts all must abort

• phase two: inform all participants of the 
result
– optionally participants acknowledge decision 



7
Distributed Systems ID220U

Consensus

• Two-phase commit is a consensus 
protocol but:
– all clients must vote
– if any client votes for abort we must abort
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What if we crash?
coordinator participant

canCommit?

yes

doCommit

???
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What if we crash?
coordinator participant

canCommit?

yes

doCommit

write to 
persistent
storage

read from 
persistent
storage

haveCommitted
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What if coordinator crashes
openTransaction

client
coordinator

participant

doOperationjoin

???
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two-phase commit

• The protocol survives if nodes crash and 
later restart.
– ...if they have written their state to persistent 

memory

• The protocol can be delayed waiting for 
any participant or the coordinator to reply.

• If successful:
– all participants will commit or abort 
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Distributed concurrency control
• Each server is responsible for concurrency 

control of its own objects.
• All participants must agree on order to 

guarantee serial equivalence.
– If the operations of transaction T is before U in 

one server then all servers should have T before 
U.

• We can use: locks, optimistic control or time 
stamps. 
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Distributed locks

• Strict two-phase locking: locks are held 
until commit or abort.

• Can we prevent deadlock
– harder to order all locks in the system
– how do we synchronize taking of locks

• If each server maintain its own locks we 
will have distributed dead-locks.
– detect and resolve rather than avoid
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Deadlock

withdraw(a,100);

deposit(b,100);

withdraw(b,20)

deposit(a, 20)

server for b server for a 

lock lock

waiting

waiting
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Distributed dead-lock

How do we know the 
state of the system? 

Is dead-lock a stable 
property? 

T 

U 

V 
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Wait for graphs

V > T 

T > U 

U > V 
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Centralized detection

• One server acts as a deadlock detector. 
Collects wait graphs from servers and 
tries to detect cycles.
– what about messages in transit
– how often should we collect sets

• What to do when cycle detected?
– abort one transaction
– which one?

• Can we falsely detect deadlocks?
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Phantom deadlock

V > T T > U 

V > T T  

V > T
U > V T  
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Probe the graph

• A different approach is to send a 
probe along the path of a wait graph.

• Probes must only be sent if the 
transaction is waiting for a lock held 
by a transaction that is also waiting 
for a lock.

• The probe consist of the wait graph 
detected so far 
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Probe the graph

T > U 

U > V 

V >T 

V-T 

V-T-U 

V-T-U-V



21
Distributed Systems ID220U

Probe the graph

• In general deadlock cycles are small 
and do not generate long paths.

• We could have a situation where two 
probes are sent and the cycle is 
detected at two different points in the 
graph.
– Could be resolved if transactions are 

ordered and both decide to abort the 
same transaction.
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Optimistic concurrency control

• Commit only allowed after validation. 
• Validation is a easier to implement as a 

sequential process and quite efficient if 
only one server is involved.

• Approaches:
– Perform local validation and then check if we 

have global serial equivalence.
– Assign a global transaction sequence number 

that all servers must use. 
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Time stamp control

• Assign a global time stamp at the 
start of the transaction.
– Can clients be synchronized?

• Locally, the time stamp protocol acts 
as normal.
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Summary

• Two-phase commit is used to provide 
distributed atomicity.

• Distributed deadlock is a problem.
– How do we detect it?
– How do we resolve it?
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