
1
Distributed Systems ID220U

Distributed Systems
ID2201

distributed transactions
Johan Montelius

2
Distributed Systems ID220U

Distributed transactions

• Problem:
– Several independent transaction servers

should be coordinated in one transaction.
– How do we coordinate operations to

guarantee serial equivalence?

3
Distributed Systems ID220U

Coordination

openTransaction()

coordinator

a.withdraw(T,10)
T = openTransaction()
 a.withdraw(10)
 b.withdraw(20)
 c.deposit(30)
 closeTransaction(T)

join(T)

client

a

4
Distributed Systems ID220U

Coordination

closeTransaction(T)

coordinator

T = openTransaction()
 a.withdraw(10)
 b.withdraw(20)
 c.deposit(30)
 closeTransaction(T)

client

a

b

c

5
Distributed Systems ID220U

one-phase commit

• Client sends closeTransaction to
coordinator.

• Coordinator tells participants to commit
the transaction.

• Problems:
– what if a participant can not commit and has

to abort
– a client could have crashed and have

forgotten about the transaction

6
Distributed Systems ID220U

two-phase commit

• phase one: ask participants to vote for
commit or abort
– if voting for commit one has to be able to

commit even after a node crash

• collect replies:
– if anyone aborts all must abort

• phase two: inform all participants of the
result
– optionally participants acknowledge decision

7
Distributed Systems ID220U

Consensus

• Two-phase commit is a consensus
protocol but:
– all clients must vote
– if any client votes for abort we must abort

8
Distributed Systems ID220U

What if we crash?
coordinator participant

canCommit?

yes

doCommit

???

9
Distributed Systems ID220U

What if we crash?
coordinator participant

canCommit?

yes

doCommit

write to
persistent
storage

read from
persistent
storage

haveCommitted

10
Distributed Systems ID220U

What if coordinator crashes
openTransaction

client
coordinator

participant

doOperationjoin

???

11
Distributed Systems ID220U

two-phase commit

• The protocol survives if nodes crash and
later restart.
– ...if they have written their state to persistent

memory

• The protocol can be delayed waiting for
any participant or the coordinator to reply.

• If successful:
– all participants will commit or abort

12
Distributed Systems ID220U

Distributed concurrency control
• Each server is responsible for concurrency

control of its own objects.
• All participants must agree on order to

guarantee serial equivalence.
– If the operations of transaction T is before U in

one server then all servers should have T before
U.

• We can use: locks, optimistic control or time
stamps.

13
Distributed Systems ID220U

Distributed locks

• Strict two-phase locking: locks are held
until commit or abort.

• Can we prevent deadlock
– harder to order all locks in the system
– how do we synchronize taking of locks

• If each server maintain its own locks we
will have distributed dead-locks.
– detect and resolve rather than avoid

14
Distributed Systems ID220U

Deadlock

withdraw(a,100);

deposit(b,100);

withdraw(b,20)

deposit(a, 20)

server for b server for a

lock lock

waiting

waiting

15
Distributed Systems ID220U

Distributed dead-lock

How do we know the
state of the system?

Is dead-lock a stable
property?

T

U

V

16
Distributed Systems ID220U

Wait for graphs

V > T

T > U

U > V

17
Distributed Systems ID220U

Centralized detection

• One server acts as a deadlock detector.
Collects wait graphs from servers and
tries to detect cycles.
– what about messages in transit
– how often should we collect sets

• What to do when cycle detected?
– abort one transaction
– which one?

• Can we falsely detect deadlocks?

18
Distributed Systems ID220U

Phantom deadlock

V > T T > U

V > T T

V > T
U > V T

19
Distributed Systems ID220U

Probe the graph

• A different approach is to send a
probe along the path of a wait graph.

• Probes must only be sent if the
transaction is waiting for a lock held
by a transaction that is also waiting
for a lock.

• The probe consist of the wait graph
detected so far

20
Distributed Systems ID220U

Probe the graph

T > U

U > V

V >T

V-T

V-T-U

V-T-U-V

21
Distributed Systems ID220U

Probe the graph

• In general deadlock cycles are small
and do not generate long paths.

• We could have a situation where two
probes are sent and the cycle is
detected at two different points in the
graph.
– Could be resolved if transactions are

ordered and both decide to abort the
same transaction.

22
Distributed Systems ID220U

Optimistic concurrency control

• Commit only allowed after validation.
• Validation is a easier to implement as a

sequential process and quite efficient if
only one server is involved.

• Approaches:
– Perform local validation and then check if we

have global serial equivalence.
– Assign a global transaction sequence number

that all servers must use.

23
Distributed Systems ID220U

Time stamp control

• Assign a global time stamp at the
start of the transaction.
– Can clients be synchronized?

• Locally, the time stamp protocol acts
as normal.

24
Distributed Systems ID220U

Summary

• Two-phase commit is used to provide
distributed atomicity.

• Distributed deadlock is a problem.
– How do we detect it?
– How do we resolve it?

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

