Distributed Systems
ID2201

distributed transactions
Johan Montelius




Distributed transactions

e Problem:

— Several independent transaction servers
should be coordinated in one transaction.

- How do we coordinate operations to
guarantee serial equivalence?




Coordination
coordinator .
openTransaction() . \,Q
a

. a.withdraw(T,10)

client

T = openTransaction()
a.withdraw(10)
b.withdraw(20)
c.deposit(30)
closeTransaction(T)




Coordination

coordinator
. —

closeTransaction(T)
g verewse :
T = openTransaction()
a.withdraw(10)

b.withdraw(20) C"e”t C

c.deposit(30)
closeTransaction(T)




ohne-phase commit

e Client sends closeTransaction to
coordinator.

e Coordinator tells participants to commit
the transaction.

e Problems:

— what if a participant can not commit and has
to abort

— a client could have crashed and have
forgotten about the transaction




two-phase commit

e phase one: ask participants to vote for
commit or abort

— if voting for commit one has to be able to
commit even after a node crash

e collect replies:
— if anyone aborts all must abort

e phase two: inform all participants of the
result

— optionally participants acknowledge decision




consensus

e Two-phase commit is a consensus
protocol but:

— all clients must vote

— if any client votes for abort we must abort




What if we crash?

coordinator participant
canCommit?

yes

><

doCommit

?227?




What if we crash?

coordinator participant
canCommit? write to
persistent
yes . storage
read from
_ @ bersistent
oo detommt 7 storage
/I1/ '
' aveCommitted




What if coordinator crashes

coordinator

client
openTransaction

-

\J

><

-

join

participant

-
doOperation

227




two-phase commit

e The protocol survives if nodes crash and
later restart.

- ...if they have written their state to persistent
memory

e The protocol can be delayed waiting for
any participant or the coordinator to reply.

o If successful:
— all participants will commit or abort




Distributed concurrency control

e Each server is responsible for concurrency
control of its own objects.
o All participants must agree on order to

guarantee serial equivalence.

— If the operations of transaction T is before U in
one server then all servers should have T before

U.
e We can use: locks, optimistic control or time

stamps.




Distributed locks

e Strict two-phase locking: locks are held
until commit or abort.

e Can we prevent deadlock
— harder to order all locks in the system
- how do we synchronize taking of locks

e If each server maintain its own locks we
will have distributed dead-locks.
— detect and resolve rather than avoid




Deadlock
server for a server for b
L L

withdraw(a,100) ; ‘Wa'“”g withdraw (b, 20)

deposit (b,100); = = — p deposit(a, 20)
| ~ waiting




Distributed dead-lock

L Is dead-lock a stable
property?
] ? How do we know the
r U 4 o state of the system?
A S
J -7 \ L
o N b
R B




Wait for graphs

T>U

Uu>yV




Centralized detection

e One server acts as a deadlock detector.
Collects wait graphs from servers and
tries to detect cycles.

- what about messages in transit
— how often should we collect sets
e What to do when cycle detected?
— abort one transaction
— which one?

e Can we falsely detect deadlocks?




Phantom deadlock

T>uy V>T

b T V>T




Probe the graph

e A different approach is to send a
probe along the path of a wait graph.

e Probes must only be sent if the
transaction is waiting for a lock held
by a transaction that is also waiting
for a lock.

e The probe consist of the wait graph
detected so far




Probe the graph

Uu>yV

. B Vv-T-U-v
| V-T-U

T>U

V-T

V >T




Probe the graph

e In general deadlock cycles are small
and do not generate long paths.

e We could have a situation where two
probes are sent and the cycle is
detected at two different points in the
graph.

— Could be resolved if transactions are

ordered and both decide to abort the
same transaction.




Optimistic concurrency control

e Commit only allowed after validation.

e Validation is a easier to implement as a
sequential process and quite efficient if
only one server is involved.

e Approaches:

— Perform local validation and then check if we
have global serial equivalence.

— Assign a global transaction sequence number
that all servers must use.




Time stamp control

e Assign a global time stamp at the
start of the transaction.

— Can clients be synchronized?

e Locally, the time stamp protocol acts
as normal.




Summary

e Two-phase commit is used to provide
distributed atomicity.

e Distributed deadlock is a problem.
— How do we detect it?

— How do we resolve it?




	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

