
Supplementary exercises

C1 Monte Carlo study of the law of large numbers and the central limit
theorem.

Using, e.g. M = 1000, realizations, plot the sample mean of a sequence
{v(t)}Nt=1 of random variables as a function of the sample size N . The
diagram should contain the mean (over the Monte Carlo simulations)
of the sample means as well as the spread (over the Monte Carlo sim-
ulations) in the form of 3 times the standard deviation of the sample
means of the M different realizations.

Use the following random variables v(t):

a) Gaussian white noise with zero mean and variance 1

b) Uniformly distributed white noise and variance 1

c) Binary distributed white noise and variance 1

d) Filtered white noise according to

v(t) = e(t) + ae(t− 1) (1)

where a = 0.95 and a = −0.95, and where e(t) has the distribu-
tions in a)–c).

e) Plot the histogram for the sample mean, normalized by
√
N , of

{v(t)}Nt=1, i.e.

1√
N

N∑
t=1

v(t)

for the different Monte Carlo realizations and for different values
of N . Use the different cases in a)–d). For which sample size does
the distribution start to look normal? Does this depend on the
distribution of the noise sequence? You can also use kstest to
make a hypothesis test when the distribution start to look normal.

f) (12 credit course only) Derive an expression for the covariance
of

1√
N

N∑
t=1

v(t)
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as N →∞ when {v} is a stationary sequence. Use this expression
to explain why the results for (1) are so different for a = 0.95 and
a = −0.95.

2



C2 Optimal filtering

Consider a system where, for −∞ < t <∞,

y(t) = e(t) + ce(t− 1)

where {e(t)} is zero mean white noise with variance �e.

a) Suppose that ∣c∣ < 1. Determine the optimal one-step ahead
predictor ŷ(t+ 1∣t) of y(t+ 1) given y(t), y(t− 1), . . ..

What is the corresponding mean-square estimation error E[(y(t+
1)− ŷ(t+ 1∣t))2]?

Can the same predictor be used when ∣c∣ = 1 or ∣c∣ > 1?

b) Determine the optimal linear predictor of y(t+1) given y(t), y(t−
1), . . . , y(0) and the corresponding mean-square estimation error.

Hint: The system can be written on state-space form

x(t+ 1) = e(t)

y(t) = cx(t) + e(t)

Observe that the optimal estimate of y(t+ 1) is cx̂(t+ 1∣t) where
x̂(t+1∣t) is the optimal state-estimate given y(t), y(t−1), . . . , y(0).
Compute x̂(t + 1∣t) from the Kalman filter equations which, for
the system

x(t+ 1) = Fx(t) +Gw(t)

y(t) = HTx(t) + v(t)

where E[x(0)] = xo, E[x(0)xT (o)] = Po and where E

[[
wk

vk

]]
= 0,
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E

[[
wk

vk

] [
wk

vk

]T]
=

[
Q S
ST R

]
�k,l, are given by

x̂(0∣ − 1) = xo

x̂(t+ 1∣t) = Fx̂(t∣t− 1) +K(t)(y(t)−HT x̂(t∣t− 1))

K(t) = (FΣ(t∣t− 1)H +GS)(HTΣ(t∣t− 1)H +R)−1

Σ(t+ 1∣t) = (F −K(t)HT )Σ(t∣t− 1)(F −K(t)HT )T +GQGT

+K(t)RKT (t)−GSKT (t)−K(t)STGT

Σ(0∣ − 1) = Po

What is the Kalman filter if it is assumed that y(0) = e(0) and

y(t) = e(t) + ce(t− 1)

for t = 1, 2, . . .. Also, derive the Kalman filter in this case by
simple hand calculations.

c) Suppose that {e(t)} is a Gaussian sequence. What is the optimal
predictor of y(t+ 1) given y(t), y(t− 1), . . . , y(0)?

d) Suppose that ∣c∣ < 1. Show that the Kalman filter converges to
the time-invariant filter in a) as t→∞.

e) Suppose that ∣c∣ > 1. Show that the Kalman filter still converges.
What is the corresponding time-invariant filter? What is the cor-
responding mean-square estimation error?

f) Suppose that ∣c∣ = 1. How does the Kalman filter behave then?

What is the conclusion from a) and f) regarding systems having
zeros on the unit circle?

g) Suppose that e(t) takes on the values ±5 with equal probability
and suppose that c = 0.5.

Determine the MMSE estimator of y(1) given y(0). Is it linear
in the observations? Compare its performance with the Kalman
filter. Also, derive the Kalman filter estimator for this problem
directly.
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C3 Covariance matching

Consider the system

y(t) = e(t) + ce(t− 1)

where e(t) is zero mean white noise with E[e2(t)] = �e and E[e4(t)] = �e,
and where c is unknown.

a) What is E[y(t)y(t− 1)]?

b) Suppose that the noise variance �e is known. Use the result in a)
to construct a simple unbiased estimator ĉN of c.

c) Determine the variance of the estimator in b).

d) Implement your estimator in MATLAB and check your calcula-
tions in c) using Monte Carlo simulations.

e) Use the prediction error method (PEM) to estimate c (use the
command armax in MATLAB. Compare the sample covariances
of the estimator in b) and the PEM. Which one is better?

The result shows that there are more information regarding c in
{y(t)}Nt=1 than in the sample covariance for lag 1.
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C4 Sufficient statistics

a) Consider an AR-1 system where, for −∞ < t <∞,

y(t) + ay(t− 1) = e(t)

where e(t) is a zero mean Gaussian white noise with variance �e.

Show that there exists a sufficient statistic S(yN) ∈ ℝ3 for yN :=
{y(t)}Nt=0, i.e. the N + 1 measurements can be condensed into a
three dimensional statistic without information loss.

Hint: Derive the probability density function of yN by repeated
use of Bayes’ formula

p(yt) = p(yt∣yt−1)p(yt−1)

b) Consider an MA-1 system

y(t) = e(t) + ce(t− 1), t = 1, 2, . . .

y(0) = e(0)

where e(t) is a zero mean Gaussian white noise with variance �e.
Derive the probability density function of yN := {y(t)}Nt=0. Does
it seem possible to find a low dimensional sufficient statistic as in
a)?
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C5 Nonparametric identification

Determine a non-parametric model for the data set dataset1.

How many resonance peaks does the system have?

Notice that the frequency response can be plotted with confidence in-
tervals using bode(model,’SD’,3).

C6 Parametric identification

Determine a parametric model for the data set dataset1 using predic-
tion error identification.

How many resonance peaks does the system have?

Notice that the frequency response can be plotted with confidence in-
tervals using bode(model,’SD’,3).

Compare your result with what you obtained in C5.
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