School of Computer Science and Communication

DD2423 IMAGE ANALYSIS AND COMPUTER VISION:

LAB 2:
FILTERING OPERATIONS

The goal of this lab is to help you to

e become familiar with the two-dimensional Fourier transform, get an understanding of its
properties and test these properties in practice,

e get an understanding of how to use Fourier transform on image data, expressed spatially or
in the Fourier domain,

e test how different smoothing operations are influenced by various kinds of noise and how
contrast sharpening can be performed in practice,

e get an understanding of how multiple linear operations can be combined into a composite
linear operation,

e learn the relation between the continuous and discrete Fourier transform and test how con-
tinuous filters can be discretized spatially as well as in the Fourier domain,

e get practical experience of differences between synthetic and real data.

The purpose of exercise 1 is for you to become familiar with the characteristics of the Fourier
transform. The purpose of exercise 2 is for you reflect on what you have learned.

Remaining exercises are more problem-oriented and experimental in nature and formulations are
thus more concise. If you happen to have difficulties with MATLAB or the environment in general
contact the lab assistants during the scheduled lab hours.

Reporting: For you to efficiently report your labs, you ought to create script files that reproduce the
experimental results. If some results take too much time to compute, printouts are recommended.
You should also summarize results and conclusions from your experiments, writing down answers
to explicitly stated questions.

For most exercises it is recommended that you create illustrations with multiple images simultane-
ously shown on screen. For this purpose use the embedded MATLAB command subplot (see “help
subplot”).

As prerequisites to this lab exercise, you should have studied the course material regarding spatial
filtering and image restoration. You should also have finished and reported the results of Lab 1.



2 DD2423 Image Analysis and Computer Vision

1 Properties of the discrete Fourier transform

1.1 The continuous and discrete Fourier transform

From the definitions used during the lectures the continuous Fourier transform f : R? — C of a two-
dimensional signal f: R? — R is

fo) = Fe(ne) = [ sa)e " )
and the Fourier inversion theorem states that
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Correspondingly, in the discrete case the Fourier transform E': [0..N — 1]2 — C of a quadratic image
F:[0..N —1]2 - R of N? image elements is defined as
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with the corresponding inversion theorem
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There expressions are symmetric with respect to the factor 1/N in the Fourier transform and inverse
respectively.

Note that in MATLAB the fast Fourier transform (FFT) is implemented using a factor
1 in the FFT-routine, and factor 1/N? in the inverse.

1.2 Definition domains

In the continuous case the spatial variable x = (x1,x2) and the frequency variable w = (w1, ws) are
defined in the whole two-dimensional plane, i.e.

T,w GRQ,

while the corresponding discrete variables © = (z1,x2) and w = (uy,u2) are defined in the interval
[0.N —1]2, i.e.
xr1,To, U, U2 € [ON — 1] = {O, 1,...,N — 1}

From the periodicity of the basis functions in the discrete case, thus follows that the discrete Fourier
transform will become periodic with a period of N. To maintain the consistency with the inversion
theorem we similarly have to consider the original signal as periodic with the same period.

By comparing equations (1) and (3) we can relate the continuous angular frequency variable w to

the discrete frequency variable u:
U

wp = 27TN. (5)
Since u € [0..N — 1]?> we may from this relation treat the frequency variable wp as being defined in
the interval [0, 27]2.
Furthermore, the discrete Fourier transform may similarly be treated as periodic with a period
of 27, and we may change the definition domain to the interval [—, 7]? without losing in generality.
This corresponds to a centering operation in the discrete Fourier transform.
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1.3 Basis functions

The Fourier transform can be regarded as a change of basis functions, from compact (discrete) delta
functions defined on the Cartesian image domain to complex exponential function with maximum
spatial extension. In the discrete case this is even more obvious noting that the discrete Fourier
transform can be found by pre- and post-multiplying the image with orthogonal matrices.

Doing so we may consider the complex pixel values in the Fourier transform F , as components of
the discrete image F', with respect to the new basis. Specifically, the basis element corresponding to
an image point at coordinates (p, ¢) in Fis proportional to
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These basis vectors are the discrete counterparts to the complex exponential functions

ew(x) = g’

You may convince yourself that this is true by calculating the inverse discrete Fourier transform of an
image F', that is zero everywhere except for a single point (p,q) at which the value is one. For such
an image the expansion of F' only contains one term, i.e. the basis vector given by the index (p, ¢q). To
visualize this, define a 128 x 128 pixel image, with elements defined as

Fhat = zeros(128, 128);
Fhat(p, ¢q) = 1;

with (p,q) = (5,9). Display this image on screen using showgrey. Thereafter, compute its inverse
discrete Fourier transform with

F = ifft2(Fhat);
and look at its real and imaginary parts, as well as its magnitude and phase, by writing

Fabsmax = max(abs(F(:)));
showgrey(real(F), 64, -Fabsmax, Fabsmax)
showgrey(imag(F), 64, -Fabsmax, Fabsmax)
showgrey(abs(F), 64, -Fabsmax, Fabsmax)
showgrey(angle(F), 64, -pi, pi)

Question 1: Repeat this exercise with the coordinates p and ¢ set to (9,5), (17,9), (17,121),
(5,1) and (125,1) respectively. What do you see? Explain?

A clever way of organizing the experiment is by writing a small procedure fftwave, that assembles
the resulting images into a single figure in MATLAB, with the help of the command subplot and
illustrative headings. ' Please use this procedure as of prototype example of how the experimentation
in later exercises can be arranged.

LA template of such a procedure can be found in fftwavetemplate.m in the course library.
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function fftwave(u, v, sz)

if (nargin < 2)
error (’Requires at least two input arguments.’)

end

if (nargin == 2)
sz = 128;

end

Fhat = zeros(sz);
Fhat(u, v) = 1;

F = ifft2(Fhat);
Fabsmax = max(abs(F(:)));

subplot(3, 2, 1);
showgrey (Fhat) ;
title(sprintf (’Fhat: (u, v) = (%d, %d)’, u, v))

% What is done by these instructions?
if (u <= sz/2)

uc = u - 1;
else

uc = u - 1 - sz;
end
if (v <= sz/2)

ve = v - 1;
else

vc = v - 1 - sz;
end

wavelength = 0.0; % Replace by correct expression
amplitude = 0.0; % Replace by correct expression

subplot (3, 2, 2);
showgrey (fftshift (Fhat));
title(sprintf (’centered Fhat: (uc, vc) = (4d, %d)’, uc, vc))

subplot(3, 2, 3);
showgrey(real(F), 64, -Fabsmax, Fabsmax);
title(Preal(F)’)

subplot (3, 2, 4);
showgrey(imag(F), 64, -Fabsmax, Fabsmax);
title(’imag(F)’)

subplot (3, 2, 5);
showgrey(abs(F), 64, -Fabsmax, Fabsmax);
title(sprintf (’abs(F) (amplitude %f)’, amplitude))

subplot (3, 2, 6);
showgrey(angle(F), 64, -pi, pi);
title(sprintf (’angle(F) (wavelength %f)’, wavelength))
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e Question 2: Explain and illustrate with a Matlab figure how a position (p,q) in the
Fourier domain will be projected as a sine wave in the spatial domain.

o Question 3: How large is the amplitude? Write down the expression derived from
Equation (4) in these notes. Complement the code (variable amplitude) accordingly.

e Question 4: How does the direction and length of the sine wave depend on p and ¢?
Draw an illustrative figure on paper. Write down the explicit expression that can be
found in the lecture notes. Complement the code (variable wavelength) accordingly.

o Question 5 What happens when we pass the point in the center and either p or ¢
exceeds half the image size? Explain and illustrate graphically with Matlab!
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e Question 6: What is the purpose of the instructions following the question What is
done by these instructions? in the code?

1.4 Linearity

Define some rectangular shaped 128 x 128 pixel test images by

F = [ zeros(56, 128); ones(16, 128); zeros(56, 128)];
G=F;
H=F+2 * G;

and display them with showgrey. Then compute the discrete Fourier transform of the images by

writing
Fhat = fft2(F);
Ghat = fft2(G);
Hhat = fft2(H);

and show their Fourier spectra with

showgrey(log(l + abs(Fhat)));
showgrey (log(l + abs(Ghat)));
showgrey(log(1l + abs(Hhat)));

Also try to run the following
showgrey (log(1l + abs(fftshift(Hhat))));

and explain why the fftshift command is needed here. Another way of achieving the same effect is
using the MATLAB function showfs located in the course library.

Question 7:  Why are these Fourier spectra concentrated to the borders of the images?

Question 8:  Why is the logarithm function applied?
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Question 9:  What conclusions can be drawn regarding linearity?

1.5 Multiplication

Try the following commands

showgrey(F .* G);
showfs (fft2(F .*x G));

and explain the results. (The notation F .* G in MATLAB refers to point-wise multiplication of cor-
responding matrix elements.)

Question 10: Are there any other ways to compute the last image? Remember what
multiplication in Fourier domain equals to in the spatial domain !!

Perform these alternative computations in practice!

1.6 Scaling

Define a test image

F = [zeros(60, 128); ones(8, 128); zeros(60, 128)] .*x ...
[zeros (128, 48) ones(128, 32) zeros(128, 48)];

and display it with showgrey. Determine the discrete Fourier transform and look at the magnitude
with showfs.

Question 11: What conclusions can be drawn from comparing the results with those in
the previous exercise?

1.7 Rotation

Activate a new figure with figure, but keep the Fourier spectrum of F in the first figure. Rotate F by
for example vinkel = 30° and show the results with
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G = rot(F, wvinkel);
showgrey (G)
axis on
Then calculate the discrete Fourier transform of the rotated image with

Ghat = fft2(G);

and display the results with showfs. To you recognize it? Finally, rotate the spectrum back by the
same angle with

Hhat = rot(fftshift(Ghat), -vinkel);
and show the results by writing
showgrey (log(1l + abs(Hhat)))

Assemble the original images and their Fourier spectra into the same figure with the subplot
command.

Question 12: What can be said about possible similarities and differences?

1.8 Rotational symmetry

Create a rotationally symmetric test image F with

[G H] = meshgrid(-64: 63, -64: 63);
F=G.”2+H .~ 2 <= 128;

and display it with showgrey. The meshgrid command is often useful in MATLAB. If you are not
familiar with the command, you ought to take a look at the G and H matrices with showgrey. Then

show the Fourier transform with

showfs (fft2(F))

Question 13: How does the rotational symmetry affect the Fourier spectrum and why?
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1.9 Translation

Activate another figure window, such that the Fourier spectrum of F can be kept on screen. Then
translate the test image with

G = [F(:, 21:128) F(:, 1:20)]
and show the result
showgrey(G); axis on
Show also the Fourier spectrum of G with
showfs (££t2(G))
and the phase spectrum of G and F with
showgrey (angle (f£t2(G)), 64, -pi, pi);

showgrey (angle (fft2(F)), 64, -pi, pi);

Question 14: What similarities and differences can you observe?
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2 Information in Fourier phase and magnitude

Above we have primarily used the magnitude of the Fourier transform when we have visualized the
transform as an image. This visualization technique is also what dominates in literature. As an illus-
tration of the limitations of this way of visualizing, we will in this section devote ourselves to a bit of
image manipulation, where we simply replace the power spectrum for a given image f with a power

spectrum of the form 2
A 1
2
6
|f(w)| a ’CU|2 ( )

In the course library there is a function pow2image that performs this (nonlinear) function. (Take a
look at the code by typing “type pow2image”.)

Apply this function on for example the following images phonecalc128, few128, nallo128 and
study the results on screen (for very small values of a ~ 1071Y). Conclusions? As a comparison you

should apply the function randphaseimage that keeps the magnitude of the Fourier transform, but
replaces the phase information with a random distribution.

Question 15: What information is contained in the phase and in the magnitude of the
Fourier transform?

3 Gaussian convolution implemented via FFT

3.1 Continuous Gaussian convolution

Gaussian convolution means that we convolve a given image f;, with a Gaussian kernel. In the con-
tinuous case the output image f,; is given by

(e.) o0
fue)= [ [ fale- - maen dsdn (7)
{=—00 Jn=—00
where
g(;p Y; t) = Le_(x2+y2)/(2t)' (8)
T 2t
Correspondingly, in the Fourier domain
fut(wi,w2) = g(wi,wa; t) fin(wi,ws) 9)
where fut and fm are the Fourier transforms of f,; and f;, respectively, and §(-,-; t) denotes the
Fourier transform of the Gaussian function, that is
o oo
donen = [ [T gl e dpay — D, (10)
w1=—00 Jwa=—00

3.2 Discretization

To discretize the Gaussian convolution, we may either choose to discretize the convolution operation
(7) in the spatial domain, or proceed by discretizing the Fourier transform of the Gaussian function
(10). In this exercise we will try both these methods.

*For continuous signals (and in the case a = 0) this form of Fourier spectrum can be derived as an idealized model of
images that contain different types of image structures distributed on all scales. (The purpose of parameter a is simply
to avoid division by zero.)
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3.2.1 In the spatial domain

If we discretize the integral in (7) with the trapezoidal rule and set the step length to one (corresponding
to a unit distance between neighboring image elements), we get

fut(z,y) = Z Z fin(x —m,y —m) g(m,n; t) (11)

m=—00 N=—00

which corresponds to a discrete convolution with a sampled version of the Gaussian function. To
perform this operation in practice, we may thus use either one of the methods below:

With spatial discretization and spatial convolution:
1. Generate a filter based on a sampled version of the Gaussian function.

2. Convolve the image with this filter using the embedded MATLAB-function conv2.

With spatial discretization and convolution via FFT:
1. Generate a filter based on a samples version of the Gaussian function.
2. Fourier transform the original image and the Gaussian filter.
3. Multiply the Fourier transforms.
4. Invert the resulting Fourier transform.

Of these methods the first method with filtering in the spatial domain is probably the most straight-
forward one. Such explicit convolution in the spatial domain generally works very well, if one exploits
the fact that the Gaussian function is separable (this is however not done with the MATLAB-function
conv2). This method is particularly suitable when the variance of the Gaussian kernel is small, and the
kernel is truncated to a small filter of compact support. Since the computational work grows linearly
with the number of non-zero elements in the filter, this method can be computationally expensive for
large values of t, in particular if the separability is not exploited.

The other method, with linear filtering in the frequency domain, has the characteristic that it is
essentially independent of the size of the Gaussian kernel. (In practice, you always generate a Gaussian
kernel of the same size as the original image to be filtered; we assume here that this is a power of
two and large enough for the shape of the Gaussian kernel to be kept within the given image size.)
Specifically, with the image processing system we use, the second method is facilitated by an efficient
implementation of FFT available in MATLAB.

For the above mentioned reasons the last method is in this case the preferable one, even if it
involves more steps.

3.2.2 In the Fourier domain

If the convolution operations still are performed via a Fourier transform we may merge steps 1 and 2
of the last method, by directly expressing the filter in the Fourier domain. The method will then have
the following structure:

Gaussian convolution in the Fourier domain:
1. Fourier transform the original image
2. Multiply the transformed image with the Fourier transform of the Gaussian kernel.

3. Invert the resulting Fourier transform.
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However, when we perform these operations in practice there are some technical difficulties to consider:

e Firstly, the continuous definition of the filter (expressed in the whole frequency plane) must be
translated to the limited part of the frequency plane that is covered by the discrete Fourier
transform. With reference to section 1.2 we know that the discrete frequency variables u are
projected to the continuous frequency variables wp according to

wp = 271'%. (12)

Furthermore, the unlimited frequency plane is restricted to a limited interval [—, ]2. In digital
signal processing non-linear transformations, known as frequency warpings, are often used for
this purpose. For simplicity we will instead just use truncation.

e Secondly, we need to place the origin in the discrete Fourier transform, so as to cover an origin
symmetric interval in the argument w = (w1, ws2) of the Fourier transformed Gaussian kernel.

Glwr, wa; t) = e~ (@IHeR) /2, a3

In MATLAB you may simply generate a coordinate system with the command meshgrid and
move the position of the origin with the command fftshift.

3.3 Filtering procedures

Write two functions that perform filtering in the Fourier domain!

Write one Matlab-procedure

gaussffta(pic, t)
that, using the fast Fourier transform, convolves the image pic with a two-dimensional Gaus-
sian function of arbitrary variance ¢ via a discretization of the Gaussian function in the spatial domain.
And write a second Matlab-procedure

gaussfftb(pic, t)
that performs the same Gaussian smoothing based on a definition of the filter in the Fourier domain.
Proposed test procedure: When you perform this operation you might want to make sure that

your convolution procedure has an approximatively correct behavior by analyzing its impulse response.
Hence, generate the impulse response explicitly

psf = gaussfft(deltafcn(128, 128), 1);

for different values of ¢ (e.g. t = 0.1, 1.0, 10.0 and 100.0). Look at the result and compute also the
(spatial) covariance matrix of the Gaussian function with

variance (psf)

Question 16: How does the result correspond to the ideal continuous case, for which the
covariance matrix is ¢ multiplied by the identity matrix?
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Catitm=t( g 1) (1)

If you find it difficult to get this to properly work, a routine discgaussfft, that convolves an image
with the discrete version of the Gaussian kernel, is provided in the course library. This discrete kernel
has (among other things) the characteristic that its discrete variance is exactly equal to t.

Question 17: Show the impulse response and variance for the above mentioned t-values.
What are the variances of your discretized Gaussian kernel for ¢ = 0.1, 1.0, 10.0 and
100.07

Question 18: Can you note any differences between the results of gaussffta and gaussfftb?
Why are the results different from or similar to the estimated variance? Lead: First con-
sider the results for small ¢ values.

Question 19: Convolve a couple of images with Gaussian functions of different variances
(like t = 1.0, 4.0, 16.0, 64.0 and 256.0). What effects can you observe?

4 Smoothing
Load the image office256 from the image database of the course
office = office256;

and create two noisy images using the MATLAB-functions gaussnoise and sapnoise. (These functions
exist in the course function library):

add
sap

gaussnoise(office, 16);
sapnoise(office, 0.1, 255);

Show the images on screen with showgrey. What kind of noise do they represent? (Use the help
command, if you are unable to guess.)
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Ezxercise (#4.1): Try to reduce the noise in the images add and sap with

e Gaussian smoothing (using either function gaussffta or gaussfftb that you wrote in previous
exercise, alternatively the function discgaussfft available in the course library)

e Median filtering (using the function medfilt in the course library)
e Ideal low-pass filtering (using the function ideal in the course library)

Try suitable values of the parameters of each filter respectively (standard deviation for the Gaussian
filter, window size for the median filter, cut-off frequency for the ideal low-pass filter.

Question 20: What conclusions can you draw from comparing the results of the respective
method?

Question 21: What positive and negative effects does each filter type have?

Question 22: What respective similarities and differences can you observe between the
different filters?

Question 23: How do the results depend on the filter parameters?
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Compute impulse responses and Fourier transforms of the ideal low-pass filter, using suitable values
of cut-off frequency. Illustrate the results partly as grey-level images and partly as cross section graphs.

Question 24: What are the effects you observe based on these illustrations?

5 Contrast improvement (sharpening)

Create a 3 x 3 pixel filter mask laplace that approximates the Laplace operator. Compute and inspect
the result of this operator applied to the image.?

laplaceblocks = conv2(blocksl laplace, ’valid’);
showgrey(laplaceblocks);

showgrey(conv2(add, laplace, ’valid’));
showgrey(conv2(sap, laplace, ’valid’));

If the resulting image ’laplaceblocks’ is of low contrast, you will have to saturate some
of the high values in the histogram!

What can be said about the noise sensitivity of the Laplace operator? Try to sharpen image
blocks1 by subtracting a suitable constant multiplied by the Laplace operator. That is, let

stripblocks = conv2(blocksl, [0 0 0; 0 1 0; 0 O 0], ’valid’);
sharpblocks = stripblocks - koefficient * laplaceblocks;

for a suitable value of koefficient. (The convolution operation above has the effect that sharpblocks
gets the same size as laplaceblocks.)

Finally, generate a sharpening mask sharpmask so that the sharpening operation can be performed
in a single step, i.e. so that the operations above can be replaced by

sharpblocks = conv2(Blocks, sharpmask, ’valid’);

Question 25:  Why can you replace the whole operation above with a single filter?

e Try different values of koefficient.

e Verify that the contours really get sharper by selecting a suitable row or column in the im-
ages stripblocks and sharpblocks, and draw these with plot before and after sharpening.
(Naturally, you should assemble the results with subplot to facilitate interpretation.)

3The argument ’valid’ considers the size of the filter mask and reduces the image size with an enough number of
pixels for the results to depend only on values within the image. This procedure is suitable in this case, since the values
of the Laplace operator can be significant around the boarder of the image.
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Question 26: How is the Laplace operator affected by noise?
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