Nuclear Fuel Cycle 2013

Lecture 2: Basic Nuclear Chemistry, Part 1

Home page of the course: KTH Social

\qquad
\qquad
\qquad
https://www.kth.se/social/course/KD2430/
\qquad
\qquad
\qquad
\qquad

What is Nuclear Chemistry?

- Chemistry related to nuclear technology
- Chemistry of radionuclides
- Studies of chemical processes by using radionuclides as tracers: Radiochemistry
- Radiation induced chemical reactions:

Radiation Chemistry

The Nucleus

- Building blocks: Protons and neutrons
- Forces: Electromagnetic forces and the Strong Nuclear Force

Property	Proton	Neutron
Mass	$1.673 \times 10^{-24} \mathrm{~g}$	$1.675 \times 10^{-24} \mathrm{~g}$
Charge	+1	0
Spin	$\mathrm{s}=1 / 2$	$\mathrm{~s}=1 / 2$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The (Strong) Nuclear Force
Exchange of mesons keep the nucleons together \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nuclear density and radius

Radial distance, $10^{-15} \mathrm{~m}$
Measured charge and nuclear density for ${ }^{40} \mathrm{Ca}$ and ${ }^{209} \mathrm{Bi}$
as a function of nuclear radius

Number of Nucleons on the Stability of the Nuclei

Magic numbers of protons or neutrons: 2, 8, 20, 50, 82 and 126
${ }_{54}^{135} \mathrm{Xe} \quad\left(\sigma_{\mathrm{n}}=2.6 \times 10^{6}\right.$ barns $) \mathrm{N}=81$
${ }_{54}^{136} \mathrm{Xe}\left(\sigma_{\mathrm{n}}=0.28\right.$ barns $) \quad \mathrm{N}=82$
Nuclear Stability: Nucleon Orbitals
UNSTABLE
\qquad

Mass Defect (ΔM) and Mass Excess $\left(\delta_{A}\right)$
$\Delta M_{A}=M_{A}-Z M_{p}-N M_{n}$
$M_{A}=$ Mass of atom
$M_{H}=$ Mass of Proton (hydrogen)
$M_{n}=$ Mass of Neutron
Deuterium,
$M_{p}+M_{n}=1.007825+1.008665$
${ }_{1}^{2} \mathrm{H}=2.016490 \mathrm{u}$
$M_{A}=2.014102 u$
$\Rightarrow \Delta M_{A}=-0.002388 u$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

All stable isotopes have negative mass defect, $\Delta \mathrm{M}_{\mathrm{A}}$

Mass excess: $\delta_{A}=M_{A}-A$
(sometimes used in tables, no practical use)
$\mathrm{M}=$ atomic mass unit, measured in u

Binding energy

$\Delta E=\Delta \mathrm{mc}^{2} \quad$ "Nuclear Heat of formation"

$\Delta m=M_{A}-\left(\mathrm{Z} \mathrm{m}_{\mathrm{p}}+N \mathrm{~m}_{n}\right)$
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Nucleus: $5-10 \mathrm{MeV} /$ nucleon $\left(5-10 \times 10^{11} \mathrm{~J} / \mathrm{mol}\right)$
Covalent bond: $4.4 \times 10^{5} \mathrm{~J} / \mathrm{mol}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Isotope effects

Due to the difference in nucleons there are very small differences between two isotope's

- Freezing point
- Boiling point
- Density
- Heat of vaporization
- Viscosity
- Surface tension
- Optical emission spectra

Isotope effects

Replacing ${ }^{1} \mathrm{H}$ with D (deuterium, ${ }^{2} \mathrm{H}$) increases the mass 100%
Replacing ${ }^{12} \mathrm{C}$ with ${ }^{13} \mathrm{C}$ increases the mass 8% \qquad
\qquad
A reaction involving C-H bond is typically 6-10 times faster than that for a C-D bond
$>$ A reaction involving ${ }^{12} \mathrm{C}-\mathrm{H}$ bond is 1.04 times faster than \qquad that for a ${ }^{13} \mathrm{C}-\mathrm{H}$ bond

Isotope separation

i. Equilibrium processes (light elements)
ii. Rate processes

Multi-stage processes (for instance distillation)
Chemical exchange
Electrolysis
Gaseous diffusion
Electromagnetic separation
Gas centrifugation

Gaseous diffusion

Lighter isotopes diffuse faster than heavy isotopes
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Other methods of isotope separation

\qquad

Distillation
Extraction
\qquad
\qquad
lon-exchange
Photoionization
Photoexcitation \qquad
\qquad
\qquad

Radioactive decay
α-decay (He-nucleus)
\qquad
β-decay (electron/positron) \qquad
γ-decay
Unusual modes of decay (proton, neutron, heavy particles)
Spontaneous fission

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Decay chain of ${ }^{238} \mathrm{U}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Decay chain of ${ }^{238} \mathrm{U}$

${ }^{238} \mathrm{U} \rightarrow{ }^{234} \mathrm{Th}+\alpha$
${ }^{234} \mathrm{Th} \rightarrow{ }^{234} \mathrm{~Pa}+\beta$
${ }^{234} \mathrm{~Pa} \rightarrow{ }^{234} \mathrm{U}+\beta^{-}$
${ }^{234} \mathrm{U} \rightarrow{ }^{230} \mathrm{Th}+\alpha$
${ }^{230} \mathrm{Th} \rightarrow{ }^{226} \mathrm{Ra}+\alpha$
Or simplified
$\left.{ }^{238} \mathrm{U}(\alpha)\right)^{234} \mathrm{Th}\left(\beta^{-}\right)^{234} \mathrm{~Pa}\left(\beta^{-}\right){ }^{234} \mathrm{U}(\alpha){ }^{230} \mathrm{Th}(\alpha){ }^{226} \mathrm{Ra} .$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Decay of ${ }^{81 \mathrm{~m}}$ Se

Devay of a neutron

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Decay of ${ }^{7} \mathrm{Be}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{240} \mathrm{Pu} \rightarrow{ }^{236} \mathrm{U}$

Conservation laws

Nuclear Reaction: $X_{1}+X_{2} \rightarrow X_{3}+X_{4}$

Energy (mass): $\mathrm{E}_{1}+\mathrm{E}_{2}=\mathrm{E}_{3}+\mathrm{E}_{4}$

Linear momentum: $\mathrm{p}=\mathrm{mv}$
$p_{1}+p_{2}=p_{3}+p_{4}$
Charge: $Z_{1}+Z_{2}=Z_{3}+Z_{4}$
Mass number: $\mathrm{A}_{1}+\mathrm{A}_{2}=\mathrm{A}_{3}+\mathrm{A}_{4}$

α-decay

$$
{ }_{z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y+{ }_{2}^{4} \mathrm{He}
$$

${ }^{238} \mathrm{U} \rightarrow{ }^{234} \mathrm{Th}+{ }^{4} \mathrm{He}$
${ }^{238} \mathrm{U} \rightarrow{ }^{234} \mathrm{Th}+\alpha$

Decay energy (Q-value)

E=mc ${ }^{2}$

$1 \mathrm{u}=1 / 6.022 \times 10^{23}=1.66 \times 10^{-24} \mathrm{~g}$
$\mathrm{c}^{2}=8.99 \times 10^{16} \mathrm{~m}^{2} / \mathrm{s}^{2}$
$1 \mathrm{~J}=6.24 \times 10^{12} \mathrm{MeV}$
$\mathrm{E}=1.66 \times 10^{-24} * 8.99 \times 10^{16} * 6.24 \times 10^{12}=931.5 \mathrm{MeV} / \mathrm{u}$ \qquad
$Q(\mathrm{MeV})=-931.5 \Delta \mathrm{M}(\mathrm{u})$
$Q_{\alpha}=-931.5\left(M_{\mathrm{Z}-2}+\mathrm{M}_{\mathrm{He}}-\mathrm{M}_{\mathrm{Z}}\right)$
$Q_{\alpha}>0$ if $\left(M_{Z-2}+M_{H e}-M_{z}\right)<0$
$\mathrm{Q}_{\alpha}>0=>$ Spontaneous decay
For α-particles the Q-value is $2-10 \mathrm{MeV}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

β-decay: Two types of β-decay

\qquad
\qquad
${ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+\beta^{-} \quad \begin{aligned} & \text { A negatron (electron) is emitted } \\ & \text { A nevurtron in the nucleus is } \\ & \text { conered to a p roton }\end{aligned}$

A positron (anti-particle to the

\qquad
\qquad
\qquad

β-decay

$$
{ }^{137} \mathrm{Cs} \rightarrow{ }^{137 \mathrm{mBa}+\beta^{-}}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

β-decay continued

\qquad
\Rightarrow Another particle is emitted: a neutrino (v) \qquad
The neutrino has no charge and very small or no mass and does not interact readily with matter

$$
{ }^{137} \mathrm{Cs} \rightarrow{ }^{137 \mathrm{mBa}+\beta^{-}+\bar{v}}
$$

v is an anti-neutrino, emitted in a β^{-}-decay
\qquad
\bar{v} is a neutrino, emitted in a β^{+}-decay \qquad
\qquad

Energy of β^{-}decay

${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{Z}+1}^{\mathrm{A}} \mathrm{Y}+\beta^{-}+\bar{v}$
The formed Y has Z orbit electrons and must capture one electron from the surroundings.
=> The mass of the β^{-}-particle shall thus not to be included when calculating the energy of the decay.
$Q_{\beta^{-}}=-931.513\left(M_{Z+1}-M_{z}\right)$
Example: $\boldsymbol{n} \rightarrow \mathrm{H}+\boldsymbol{\beta}^{-}$
$Q_{\beta^{-}}=-931.513(1.007825-1.008665)=0,782 \mathrm{MeV}$

Energy of $\boldsymbol{\beta}^{+}$decay

${ }_{\mathrm{z}}^{\mathrm{A}} \mathrm{X} \rightarrow{ }_{\mathrm{z}-1}^{\mathrm{A}} \mathrm{Y}^{-}+\beta^{+}+v \rightarrow{ }_{\mathrm{z-1}}{ }^{\mathrm{A}} \mathrm{Y}+\mathrm{e}^{-}+\beta^{+}+v$ \qquad

The formed Y has now one extra orbit electron which it must loose.
=> Both emitting a β^{+}-particle and loosing an electron must be included when calculating the energy of the decay.
$Q_{\beta^{-}}=-931.513\left(M_{z-1}+2 M_{e}-M_{z}\right)$
Example: ${ }_{7}^{13} \mathrm{~N} \rightarrow{ }_{6}^{13} \mathrm{C}+\beta^{+}$
$\left.Q_{\beta^{-}}=-931.513(13.003355-13.005739)+2^{\star} 0.511\right)=1,2 \mathrm{MeV}$
\qquad
\qquad
\qquad
\qquad
\qquad

Electron capture

${ }_{Z}^{A} \mathrm{X} \xrightarrow{\mathrm{EC}}{ }_{Z-1}^{\mathrm{A}} \mathrm{Y}+V$
An inner shell electron is captured by the nucleus.
Energy similar to β - decay.
$Q_{\beta}=-.931 .513\left(M_{21}-M_{2}\right)$

γ-emisson

Most α and β-decays do not go all the way to the \qquad
daughter's ground state.
The remaining energy is released as γ-rays. \qquad

Isomeric transition

\qquad
When the meta-stable state is more long-lived \qquad
\qquad
\qquad

Spontaneous fission

Some heavy radionuclides are so unstable that they
\qquad undergo spontaneous fission

Rare modes of decay

\qquad

Proton emission
Neutron emission
Emission of heavy particles

Gamma spectrum

\qquad

GAMMA ENERGY (keV)

Rate of a radioactive decay

\qquad

$$
\mathrm{N} \rightarrow \text { Daughter + particle }
$$

\qquad
First order rate reaction: $\quad A=-\frac{d N}{d t}=\lambda N$
$-\frac{d c}{d t}=k c$ \qquad
$-\frac{d N}{N}=\lambda d t$

$$
\begin{gathered}
-\int_{N_{0}}^{N} \frac{1}{N} d N=\int_{0}^{t} \lambda d t \Rightarrow \ln N-\ln N_{0}=-\lambda t \\
N=N_{0} e^{-\lambda t}
\end{gathered}
$$

Half-life

$-\int_{N_{0}}^{N} \frac{1}{N} d N=\int_{0}^{t_{1 / 2}} \lambda d t \Rightarrow \ln N-\ln N_{0}=-\lambda t_{1 / 2}$

$$
\begin{gathered}
N=\frac{N_{0}}{2} \\
t_{1 / 2}=\frac{\ln N_{0}-\ln \left(\frac{N_{0}}{2}\right)}{\lambda}=\frac{\ln 2}{\lambda}
\end{gathered}
$$

Units

SI unit:
1 Becquerel $(\mathrm{Bq})=1$ decay $/ \mathrm{s}$
Older unit:
1 Curie $(\mathrm{Ci})=3.7 \times 10^{10} \mathrm{~Bq}$
(1 Ci is approximately the actvity of 1 gram ${ }^{226} \mathrm{Ra}$)

