

Radioactive equilibrium

Nuclide1

Often the daughter is also radioactive: Nuclide1 $(t_{1/2})_1$, $\lambda_1 \rightarrow$ Nuclide2 $(t_{1/2})_2$, $\lambda_2 \rightarrow$ Nuclide3

 $t_{\!\scriptscriptstyle{1\!/\!_{2},1}}$

$$dN_2 = dN_1 + N_2 + N_3 + N_4$$

Nuclide2

$$\frac{dN_2}{dt} = -\frac{dN_1}{dt} - \lambda_2 N_2 = \lambda_1 N_1 - \lambda_2 N_2$$

t_{1/2,2}

$$N_{\scriptscriptstyle 1} = N_{\scriptscriptstyle 1(0)} \, e^{-\lambda_{\scriptscriptstyle 1} t}$$

$$\frac{dN_2}{dt} + \lambda_2 N_2 - \lambda_1 N_{1(0)} e^{-\lambda_1 t} = 0$$

$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{10}$$

$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1(0)} \Big(e^{-\lambda_1 t} - e^{-\lambda_2 t} \Big) + N_{2(0)} \, e^{-\lambda_2 t}$$

Radioactive equilibrium

Nuclide1 $(t_{1/2})_1$, $\lambda_1 \rightarrow$ Nuclide2 $(t_{1/2})_2$, $\lambda_2 \rightarrow$ Nuclide3

$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1(0)} \Big(e^{-\lambda_1 t} - e^{-\lambda_2 t} \Big) + N_{2(0)} e^{-\lambda_2 t}$$

Assuming that at t=0 a quantitative separation between Nuclide 1 and 2 has been achieved, then $N_{2(0)}$ =0 and

$$N_{\scriptscriptstyle 2} = \! \frac{\lambda_{\scriptscriptstyle 1}}{\lambda_{\scriptscriptstyle 2} \! - \! \lambda_{\scriptscriptstyle 1}} N_{\scriptscriptstyle 1(0)} \! \left(\! e^{-\lambda_{\scriptscriptstyle 1} t} - \! e^{-\lambda_{\scriptscriptstyle 2} t} \right) \label{eq:N2}$$

Expressed as radioactivity, this is

$$\boldsymbol{A}_2 = \frac{\boldsymbol{\lambda}_2}{\boldsymbol{\lambda}_2 - \boldsymbol{\lambda}_1} \, \boldsymbol{A}_{1(0)} \left(e^{-\boldsymbol{\lambda}_1 t} - e^{-\boldsymbol{\lambda}_2 t} \right)$$

(since
$$A_i = N_i \lambda_i$$
)

Radioactive equilibrium $(t_{1/2})_1 >> (t_{1/2})_2$

$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1(0)} \Big(e^{-\lambda_1 t} - e^{-\lambda_2 t} \Big) + N_{2(0)} e^{-\lambda_2 t}$$

If $(t_{1/2})_1 >> (t_{1/2})_2$ then $\lambda_2 >> \lambda_1$ and the equilibrium can be simplified to

$$N_2 = \frac{\lambda_1}{\lambda_2} N_{1(0)} \Big(I - e^{-\lambda_2 t} \Big) \qquad \qquad A_2 = A_{1(0)} \Big(I - e^{-\lambda_2 t} \Big)$$

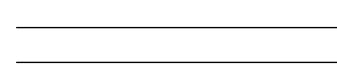
At equilibrium

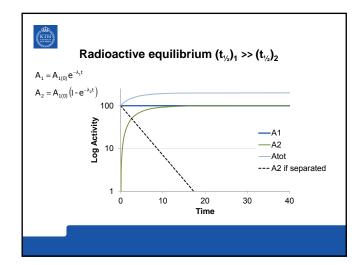
$$A_1 = A_2 = N_1 \lambda_1 = N_2 \lambda_2 (= N_3 \lambda_3 ...)$$

Example:

$$\begin{array}{ccc}
\alpha + 2p & & \\
238 \text{U} & \rightarrow & & 23 \\
\hline
4.5 \times 10^9 \text{y} & & & \\
\end{array}$$

$$4\alpha + 2\beta$$
 \rightarrow
 211





Radioactive equilibrium $(t_{1/2})_1 > (t_{1/2})_2$

"The whole expression" without simplifications must be used:

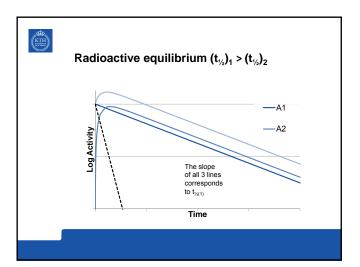
$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1(0)} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) \qquad \text{or} \qquad$$

$$A_2 = \frac{\lambda_2}{\lambda - \lambda} A_{1(0)} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

Transient equilibrium is reached when

 $e^{-(\lambda_2-\lambda_1)t}$ approaches 0. i.e. when $\lambda_2 t$ can be neglected compared with $\lambda_1 t$

$$\frac{N_2}{N_1} = \frac{\lambda_1}{\lambda_2 - \lambda_1} = \frac{\left(t_{_{V_2}}\right)_2}{\left(t_{_{V_2}}\right)_1 - \left(t_{_{V_2}}\right)_2}$$



ath
To Asset of
KTH
E strongs B
"Water and Party

Radioactive equilibrium $(t_{1/2})_1 < (t_{1/2})_2$

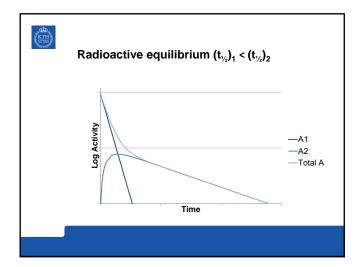
"The whole expression" without simplifications must be used:

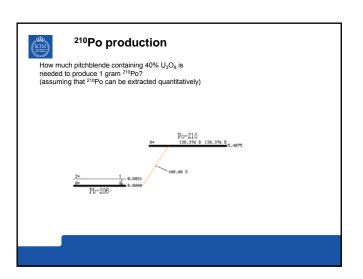
$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1(0)} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) \qquad \text{or} \qquad \qquad A_2 = \frac{\lambda_2}{\lambda_2 - \lambda_1} A_{1(0)} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

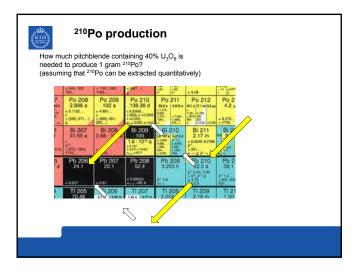
Equilibrium is never reached,

but when $e^{-(\lambda 1-\lambda 2)t} <<1$,

only the decay of the daughter is seen







²¹⁰Po production

Secular equilibrium: A_1 = A_2 = $N_1\lambda_1$ = $N_2\lambda_2$ (= $N_3\lambda_3$...) $N_{P_0-210}\lambda_{P_0-210}$ = $N_{U-238}\lambda_{U-238}$

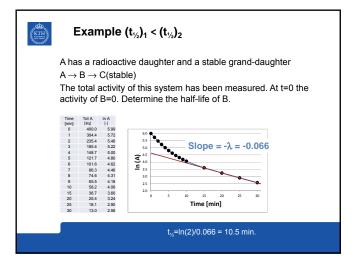
$$N_{p_{0-210}} = \frac{1}{210} \times 6.022 \times 10^{23} = 2.87 \times 10^{21} \text{ atoms}$$

$$\begin{split} t_{\%,Po\cdot 210} &= 138.38 \; d \Rightarrow \lambda_{Po\cdot 210} = In2/138.38 \; = 5.01\times 10^{-3} \; d^{-1} \\ \lambda_{U\cdot 238} &= In2/(4.5\times 10^{9*}365) \; = 4.25\times 10^{-13} \; d^{-1} \end{split}$$

$$N_{_{U-238}} = \frac{2.87 \times 10^{21} \times 5.01 \times 10^{-3}}{4.25 \times 10^{-13}} = 3.38 \times 10^{31} \text{ atoms}$$

 $N_{U\text{-}238} = \frac{3.38 \times 10^{31}}{6.023 \times 10^{23}} = 5.61 \times 10^7 \text{mol} \\ \Rightarrow N_{U\text{_2}Q_0} = \frac{5.61 \times 10^7}{3} = 1.87 \times 10^7 \text{ mol}$

= 15 750 tonnes U₃O₈ and 39 400 tonnes pitchblende



Dual (triple)	decay
Some radionuclides	can decay in several ways. Examples:
40 K $\stackrel{89\%}{\overbrace{69\%}}$ 40 Ca $\stackrel{89\%}{\overbrace{17\%}}$ 40 Ar	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} \text{d} \\ \text{3.2\%} \end{array} $ $ \begin{array}{c} \text{248Cf} \\ \text{3.2\%} \end{array} $	$ \begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & &$

(KTH)

Dual (triple, etc.) decay

For a dual decay, the decay law is written:

The formation of B and C can be expressed as

$$\frac{dN_{_{B}}}{dt}\!=\!\lambda_{_{B}}\!N_{_{A}} \ \ \text{and} \ \ \frac{dN_{_{C}}}{dt}\!=\!\lambda_{_{C}}\!N_{_{A}}$$

The decay constant can be written $\lambda = \lambda_1 + \lambda_2 + \dots \lambda_i = \sum_{i=1}^{i} \lambda_i$

The partial half-lives are related $\frac{1}{(t_{\nu_k})} = \frac{1}{(t_{\nu_k})_1} + \frac{1}{(t_{\nu_k})_2} + \dots \\ \frac{1}{(t_{\nu_k})_2} = \sum_{1}^{i} \frac{1}{(t_{\nu_k})}$

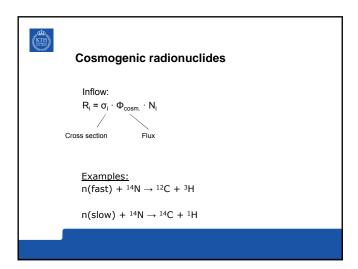
Radionuclides in nature

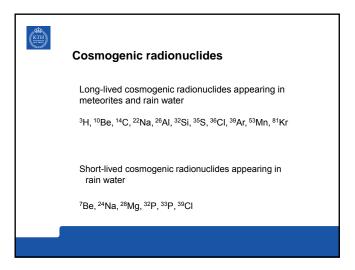
 $\frac{\text{Primordial ("original"):}}{t_{1/2} > 10^8 \text{ years}}$

* Cosmogenic Cosmic radiation: $\gamma\text{-photons, mesons, neutrons, protons, }\alpha\text{-particles, heavier particles}$

 Anthropogenic Fission products

Nuclide	Isotpoic abundance %	Decay mode	t _{1/2} , years
⁴⁰ K	0.0117	β-, EC	1.26×10 ⁹
50 V	0.25	β-, EC	>1.4×10 ¹
⁸⁷ Rb	27.83	β-	4.88×10 ¹
¹¹⁵ In	95.72	β-	4.4×10 ¹⁴
¹²³ Te	0.905	EC	1.3×10 ¹³
¹³⁸ La	0.092	β-, EC	1.05×10 ¹
¹⁴⁴ Nd	23.8	α	2.1×10 ¹⁵
¹⁴⁷ Sm	15	α	1.06×10 ¹
¹⁴⁸ Sm	11.3	α	7×10 ¹⁵
¹⁷⁶ Lu	2.59	β-	3.8×10 ¹⁰
¹⁷⁴ Hf	0.162	α	2×10 ¹⁵
¹⁸⁷ Re	62.6	β-	4.2×10 ¹⁰
¹⁹⁰ Pt	0.012	α	6.5×10 ¹¹





Radiometric dating -Accumulation

Determine age of geologic samples Decay of mother nuclide: $A = A_0e^{-\lambda t}$ Build up of daughter: $B = A_0(1-e^{-\lambda t})$

$$\Rightarrow t = \frac{\ln(1 + B/A)}{\lambda}$$

- \bullet t and $t_{\!\scriptscriptstyle 1\!\!/_{\!\!2}}$ should be in same order of magnitude
- · Mother and daughter must be stuck in matrix

Radiometric dating

Th-serie: 232 Th ($t_{\frac{1}{2}}$ =1.41×10 10 y) $\xrightarrow{6\alpha,4\beta^{-}}$ 208 Pb

Np-serie: 237 Np (t_{y_2} =2.1×10⁶y) $\xrightarrow{7\alpha,4\beta^-}$ 209 Bi

U-series: 238 U ($t_{\frac{1}{2}}$ =4.5×10 9 y) $\xrightarrow{8\alpha,6\beta^{-}}$ 206 Pb

235
U ($t_{_{1\!/_{\!2}}}$ =7.08×10 8 y) $\stackrel{^{7lpha,4eta^-}}{-}$ 207 Pb

 $^{206}\mbox{Pb}$, $^{207}\mbox{Pb}$ and $^{208}\mbox{Pb}$ are of radiogenic origin while $^{204}\mbox{Pb}$ is not.

 $\mbox{\bf U}$ and $\mbox{\bf Th}$ containing minerals can be dated by measuring the ratio of Pb and mother nuclide.

Another way is to measure the Pb-ratio: $\frac{^{207}\text{Pb}}{^{206}\text{Pb}} = \frac{1}{138} \frac{e^{\lambda_{238}t} - 1}{e^{\lambda_{238}t} - 1}$

Radiometric dating

 $^{87}\text{Rb} \ (t_{1/2}\text{=}1.41\times10^{10}\text{y}) \rightarrow ^{87}\text{Sr}$

 $^{40}\text{K (t}_{\mbox{\tiny 2}}\text{=-}1.27\times10^9\text{y}) \rightarrow ^{40}\text{Ar (most of the argon in the atmosphere has been created this way)}$

 187 Re $(t_{\frac{1}{2}}$ =5×10 10 y $) \rightarrow ^{187}$ Os

⁸⁷Rb/⁸⁷Sr is the most reliable method of dating old minerals

The oldest material found in the Earth's crust are 3.5×10⁹years Meteoritic stones have been dated 4.5×10⁹years

An approximate age of our solar system (5.9×10 9 years) can be calculated assuming that the ratio 235 U/ 238 U was 1

U-238/U-235 = 1

$$N_{238} = N_{238}^0 e^{-\lambda_{238} t} \quad \Longrightarrow \quad N_{238}^0 = \frac{N_{238}}{e^{-\lambda_{238} t}}$$

$$N_{238}^0 = N_{235}^0 \qquad \qquad \Longrightarrow \qquad \frac{N_{238}}{e^{-\lambda_{238}t}} = \frac{N_{235}}{e^{-\lambda_{235}t}}$$

$$\frac{N_{238}}{N_{235}} = \frac{e^{-\lambda_{238}t}}{e^{-\lambda_{235}t}}$$

$$In\left(\frac{N_{238}}{N_{235}}\right) = (\lambda_{235} - \lambda_{238}) t$$

$$t = \frac{In\left(\frac{N_{238}}{N_{235}}\right)}{\lambda_{235} - \lambda_{238}} = 5.9 \times 10^9 \text{ y}$$

Radiocarbon dating

The $^{14}\text{C-method}$ (t $_{\!\scriptscriptstyle 1\!\!/2}\!\!=\!\!5$ 736y) is by far the most used for determining the age of biologic material.

n(slow) +
$$^{14}N \rightarrow ^{14}C + ^{1}H$$

- It is assumed that the neutron flux has been constant.
- => the production of ¹⁴C has been constant
- => equilibrium between production and decay of ¹⁴C => constant ¹⁴CO₂ in atmosphere
- When organism dies it ceases to take in new ¹⁴C-isotopes

Example

Before 1952 (when atmospheric nuclear bomb tests started) the specific activity of ^{14}C was \approx 15 decays/min,g (today it's closer to 20 dpm/g).

In a sample containing 250 mg carbon, 2480 C-14 decays occurred during 20 hours. How old is the sample? [$t_{1/2}$,C-14= 5 736y]

Specific activity = 2480/(20*60*0.25)= 8.267 dpm/g

$$A = A_0 e^{-\lambda t} \Rightarrow t = \frac{\ln(A_0/A)}{\lambda} = \frac{\ln(15/8.267)}{\ln(2/5736)} = 4930$$

