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PREFACE

This compendium describes how Monte Carlo methods can be applied to simulate technical systems.
The description covers background on probability theory and random number generation as well as the
thoery and practice of efficient Monte Carlo simulations. The core of the compendium is based on lec-
tures that have been given at KTH for several years; however, the presentation here also includes more
explanatory texts and exercises with solutions.

I would like to give a warm thank you to colleagues and students who have helped improve the con-
tents of this compendium by asking questions, pointing out errors and suggesting additional topics.

Stockholm
September 2013 Mikael Amelin
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Chapter 1

INTRODUCTION

Monte Carlo methods refers to a class of methods to solve mathematical problems using random sam-
ples. A straightforward example is the computation of the expectation value of a random variable;
instead of computing the expectation value according to the definition (which may involve solving com-
plex integrals) we observe the behaviour of the random variable, i.e., we collect samples, and estimate
its expactation value based on these samples. However, Monte Carlo methods may also be used for solv-
ing deterministic problems. This might seem odd at a first glance, but the idea is simply to find a ran-
dom variable, the statistic properties of which is depending on the solution to the deterministic prob-
lem. An example of this would be an opinion poll. Assume that there is going to be an election. If we
ignore that people may change their preferences over time and consider just one specific point of time
then the share of voters who are planning to vote for a certain candidate is deterministic. However, in
order to compute the true value of this share, we would have to ask all voters which candidate they
favour. An alternative would be to ask a limited number of randomly chosen voters and use these sam-
ples to estimate the share of votes the candidate will obtain.

This compendium will describe how Monte Carlo methods can be used for simulation of various tech-
nical systems. The compendium includes many mathematical definitions and formulae, but it should be
emphasised that this is not a mathematical textbook. The focus of the presentation will be how Monte
Carlo methods can be applied to solve engineering problems; hence, the mathematics should be seen as
atool and not a topic in itself. This means that for example mathematical proofs will only be provided in
order to improve the understanding of the described methods, and some mathematical details might be
ignored.

1.1 Brief History

The phrase “Monte Carlo methods” was coined in the beginning of the 20th century, and refers to the
famous casino in Monacol—a place where random samples indeed play an important role. However,
the origin of Monte Carlo methods is older than the casino.

To be added: History of probability theory...

To be added: Bernouille, Poisson and the law of large numbers...

To be added: Buffon’s needle

To be added: Modern development...

1.2 Problem Definition

This entire compendium is focusing on methods for simulation of systems on one specific format. (This
might seem as a large limitation, but the reader will soon see that a wide range of systems fit into this
format.) An overview of this format is given in figur 1. The studied systems are modelled by a set of ran-

1. It has been said that if Monte Carlo methods had been first explored today, they would have been
referred to as “Las Vegas methods”.

1.1 Brief History 1



Chapter 1 Introduction

To be added: Figure...

Figure 1 Overview of the simulation problem studied in this compendium.

dom input variables, which we at this point simply collect into a vector, Y. The probability distribution
of these inputs must be known. We also have and a set of output variables, which we also collect into a
vector, X. As these outputs are depending on the random inputs, they must be random variables as well;
however, the probability distribution of the outputs is not known—in fact, the objective of simulating
the system is to determine the behaviour of the outputs. Finally, we have a mathematical model of the
system, which determines how the values of the outputs are calculated given the values of the input var-
iables. We denote the mathematical model as a function g, such that X = g(Y). The function g does not
have to be expressed explicitly, can for example be derived from the solution to one—or even sev-
eral—optimisation problems, as illustrated in the second of the following two examples:

Example 1.1. To be added: Example of a model expressed explicitly...

Example 1.2. To be added: Example of a model derived from the solution to an optimisa-
tion problem (multi-area economic dispatch problem)...

It is important to notice that the model g is deterministic! Hence, if we have two sets of input values,
y, and y,, producing two sets of output values, x; = g(y;) and x, = g(y,) then if y, =y, we will get that
X, = X,. If this property is not fulfilled, the model is missing inputs and should be reformulated, as in the
following example:

Example 1.3. To be added: Example of a model which is missing an input value (power
grid, where the reliability is depending on the sucess of reclosing breakers after a failure)

1.3 Notation

Before we start investigating the application of Monte Carlo methods to solve the simulation problem
described above, it might be useful to introduce a general notation, which will be used throughout this
compendium. Once the reader is familiar with this notation, it will be more straightforward to interpret
the mathematical expression appearing in the following chapters.

< Random variables. All random variables are denoted by upper-case Latin letters; usually just
one single letter, for example Y or X, but sometimes several letters, such as TOC in example 1.2.

e« Samples. An observation of a random variable (i.e., a sample) is denoted by the lower-case of
the symbol used for the random variable itself, for example y or x. In most cases, we also need
an index in order to separate different samples from each other, i.e., y; or x;.

« Populations. A population is denoted by the same upper-case Latin letter as the corresponding
random variable, but using a script font, for example Yor X. The value of the i:th unitin a popu-
lation is denoted by the lower-case symbol used for population itself, indexed by i, for example
% OF %

e Probability distributions. Probability distributions are denoted by Latin f in upper or lower
case (depending on interpretation?) and an index showing to which random variable the distri-

bution is associated, for example f, or Fy. The idea of the index is to tell different probability
distributions apart from each other.

- Statistical properties. Key statistical properties of a probability distribution are denoted by
lower-case Greek letters and an index showing to which random variable the statistical proper-
ty is associated, for example , or oy. The idea of the index is to tell different probability distri-
butions apart from each other.

2. Cf. section 2.1.

2 1.3 Notation



Chapter 1 Introduction

Estimates. Estimates of key statistical properties for a probability distribution are denoted by
upper or lower case (depending on interpretation3) Latin counterpart of the symbol used for
the statistical property itself and an index showing to which random variable the statistical
property is associated, for example My or sy. The idea of the index is to tell different probability
distributions apart from each other.

3. Cf. section 4.1.

1.3 Notation 3
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Chapter 2

RANDOM VARIABLES

As the idea of Monte Carlo simulation is to estimate values using random observations, it is natural that
a basic understanding of probability theory is necessary. This chapter summarises the probability the-
ory that will be used in the remainder of the compendium. The focus of the presentation will be on ran-
dom variables.

2.1 Probability Distributions

Intuitively, we may understand a random variable exactly as the name suggests, i.e., a variable, the
value of which is varying according to some random pattern. This pattern, which characterises the
behaviour of the random variable is referred to as its probability distribution. There is an infinite num-
ber of possible probability distributions; however, some common classes of distributions have been
identified and named. A brief overview can be found in appendix A.

2.1.1 Populations

The formal mathematical definition of a random variable is however slightly more complex, and will
therefore not be discussed here.

For a discussion of sampling and Monte Carlo simulation, a useful interpretation of random variables
is to consider a random variable to be associated with a certain population, which we define as follows:

Definition 2.1. The random variable X corresponds to a population, x; which is a set with N
members (which are referred to as “units”). Each unit has a value, x, which may be multi-
dimensional. The values of the units in xdo not have to be unique, but they should include
all possible outcomes of the random variable X and the relative occurrence of a certain
value should be proportional to the probability of the corresponding outcome.

Example 2.1. State the population corresponding to the following random variables:
a) D, which represents the result of throwing a normal six-sided dice.

b) To be added...

Solution:

a) 0={1,2,3,4,5,6}

b) To be added...

Based on this definition we can distinguish between some main categories of populations (and conse-
quently between different categories of random variables). First we can differentiate between variables
where the outcome can only belong to specific, discrete values or if the outcome can be found in contin-
uous intervals:

Definition 2.2. If the population is finite or countable infinite, the random variable is dis-

2.1 Probability Distributions 5



Chapter 2 Random Variables

crete; otherwise, it is continuous.

To be added: Examples...

As pointed out in definition 2.1, the units in a population may have more than one value. If each unit
has one value, the population directly corresponds to one random variable. However, if the units have
more than one value, we may consider each value to represent a separate random variable, which then
have a joint probability distribution.

Definition 2.3. If each unit in the population is associated to a single value, the probability
distribution is univariate; otherwise it is multi-variate.

To be added: Examples...
Finally, we can also study how the values of the units in a population is varying:

Definition 2.4. If all units in univariate population have the same or almost the same
value, the population is said to be homogeneous.

Definition 2.5. If most units in univariate population have the different values, the popu-
lation is said to be heterogeneous.

Definition 2.6. If the majority of the units in a univariate population have the same value
(these units are referred to as the conformist units), the population is said to be duogene-
ous. The remainder of the population (which is referred to as the diverging units) may
either be homogeneous (i.e, all diverging units have the same value) or heterogeneous (i.e.,
the diverging units have different values).

To be added: Examples...

It may be noted that the difference between a homogeneous and a heterogeneous population may
depend on the situation.

To be added: Example where the population is homogeneous for a rough estimate, whereas it can be
considered heterogeneous if a precise estimate is required.

2.1.2 Other Common Definitions of Probability Distributions

To be added: Definitions of density function, frequency function, distribution function and duration
curve...

2.2  Statistical Properties

The probability distribution of a random variable is a complete description of its behaviour. However,
in many cases we do not need such detailed information, but would prefer some key values that
describe the main characteristics of the random variable. Therefore, different statistical measures have
been introduced. The most important statistical measures are defined below.

Expectation Value
The expectation value of random variable is a the mean of all possible outcomes weighted by probabil-
ity:

Definition 2.7. The expectation value of a random variable X is given by

N

% > x; (population),
i=1

E[X]

E[X] =3 fx(x)x (discrete random variable),

X ey

E[X]

j fy(x)xdx (continuous random variable).
X ey

As seen above, the definition varies slightly depending on whether the probability distribution is
expressed as a population or using a density function. We may notice that it is the expression corre-

6 2.2 Statistical Properties



Chapter 2 Random Variables

sponding to the weighting according to probability that varies; hence, the following parts in the defini-
tions above fulfil the same purpose:

N

ﬁz o 3 0 o [ f)...dx.

i=1 X ey X ey

As we will see below, this pattern will appear also in the other definitions of statistical properties.

The practical interpretation of the expectation value is that if we have a set of samples of a random
variable, and this set is distributed exactly according to the probability distribution, then the expecta-
tion value is the mean of those samples. We can intuitively understand that if we have a large number of
samples, it is quite likely that the samples will be distributed almost according to the probability distri-
bution of the variable; hence, the mean of a large number of samples should be approximately equal to
the expectation value. (In fact, this is the very foundation of simple sampling, as we will see in
chapter 4).

Although most random variables have a well-defined expectation value, one should be aware that
there is no guarantee that this is the case. This might seem strange, and is best understood by an exam-

ple:

Example 2.2 (The S:t Petersburg paradox). Consider a game where a player pays a fixed
fee to participate. The player then tosses a coin until a head appears. If a head appears in
the j:th trial, the payout of the game is 2J.

To be added: Expected payout of the game...

Variance and Standard Deviation

The variance of a random variable describes how much a random variable is varying around the expec-
tation value.
To be added: Figure

Definition 2.8. The variance of a random variable X is given by
Var[X] = E[(X - E[X])?] = E[X?] - (E[X])? (general definition),

N
Var[X] = % 3 (x-E[X])? (population),
i=1

Var[X] = 3 fy(x)(x—E[X])? (discrete random variable),
X ey

Var[X] = j fy () (X = E[X])2dx (continuous random variable).
X e Ly

A disadvantage with variance is that the unit of Var[X] is the square of the unit of X. For example, if X
is the unserved load expressed in MWh/h then the variance of X is expressed in (MWh/h)2. In many
cases, it is more convenient to have a measure of the variation that is directly comparable to the variable
itself and the expectation value. Therefore, the notion of standard deviation has been introduced:

Definition 2.9. The standard deviation of a random variable X is given by

oy = JVar[X].

Covariance and Correlation Coefficient

The covariance described how different random variables in a multivariate distribution are interacting
with each other:

Definition 2.10. The covariance of two random variables X and Y is given by
Cov[X,Y] = E[(X=E[X](Y-E[YD] = E[XY]-E[X]E[Y].

Lemma 2.11.

2.2 Statistical Properties 7
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Cov[X, Y] = Cov[Y, X]
Cov[X, X] = Var[X].

To be added: Definition of correlation coefficient and discussion...

2.3 Arithmetics of Random Variables

To be added: Basic rules for arithmetic operations on random variables...

Exercises
To be added...

8 2.3 Arithmetics of Random Variables



Chapter 3

RANDOM NUMBERS

The idea of a Monte Carlo simulation is to estimate the behaviour of the simulated system using ran-
dom samples. When sampling a physical system, the randomness of the samples will be generated by
the system itself. However, when simulating a system using a mathematical model, it will be necessary
to generate random input values. This chapter will present methods how to do this. The presentation
will start with a description how to generate U(0, 1)-distributed random numbers and then it is
explained how random numbers of any other distribution can be obtained by transformation of random
numbers from a U(0, 1)-distribution.

3.1 Pseudo-random Numbers

One possibility to provide random numbers in a computer simulation would be to use some kind of
hardware device. Such a device could be designed to generate truly random values, but there would also
be an important disadvantage, namely that we would lack control of the produced random numbers. As
a consequence, running the same simulation twice would generally not produce the same set of sam-
ples, which can be a problem especially when testing a simulation method or model. For example,
assume that we run a simulation and we detect a few scenarios where the mathematical model produces
erroneous output models. Once the errors have been corrected, it would be practical to be able to run
the same scenarios again in order to verify that the problem has been solved.

Therefore, random number generation in computers are based on special mathematical functions or
algorithms, which given one or more initial values (referred to as seeds) produces a sequence of num-
bers between 0 and 1. This sequence is in reality deterministic, which means that if the same seed is
used, it will produce the same sequence (which makes simulations repeatable). Since these functions
are not truly random, they are called pseudo-random number generators. However, a properly
designed function will generate a sequence that has properties as close as possible to that of a true
sequence of independent U(0, 1)-distributed random numbers.

In practice, we do not need to worry about designing good pseudo-random number generators, as
such functions are readily available in almost all high-level programming languages. In fact, it is prefer-
able to use built-in pseudo-random number generators rather than programming one of your own, as
the built-in functions should have been carefully designed to provide appropriate statistical properties.

Nevertheless, it can be of interest to get an idea of the principles for generation of pseudo-random
numbers. As an example, we will study the widely used linear congruential generator. The sequence of
numbers for this pseudo-random number generator is computed using the following formulae:

X; +1 = (aX; +c) mod m, (3.1a8)
X;
U= =, (3.1b)
where
X, = the seed,

3.1 Pseudo-random Numbers 9



Chapter 3 Random Numbers

X; = internal state i,

an integer multiplier (0 <a<m),
an integer increment (0 <c <m),
an integer divisor (0 <m),

U; = pseudo-random number i.

a
c
m

The modulo operator in (3.1a) returns the remainder of when dividing (aX; + c) by m. The result of this
operation is an integer in the interval O, ..., m — 1. This means that the linear congruential generator can
at most produce m possible values before the sequence starts repeating itself. In order to make the
sequence as similar to a uniform distribution as possible, we would like the sequence to be as long as
possible. This can be achieved if the following rules are considered when choosing the constants a, ¢ and
m:

e The greatest common divisor of c and m should be 1.
e a-1should be divisable by all prime factors of m.
e a-1should be a multiple of 4 if m is a multiple of 4.
The application of linear congruential generators are demonstrated in the following two examples:

Example 3.1. What sequence of numbers is generated by a linear congruential generator
where a =5, ¢ =3 and m = 8 for the seed X, =1?

Solution: We can notice that the constants are fulfil the requirements above. The compu-
tations when starting with X, = 1 and applying (3.1a) are shown in table 3.1 below. We can
see that the sequence will repeat itself after eight values, which is the maximal length of
the sequence when m = 8.

Table 3.1 Computation of the random number sequence in example 3.1.

i 1 2 | 3| 4|5 |6 | 7|38
X: 1| 0 | 3 2 5 | 4 | 7 | 6

Y; 0.125 | 0.000 | 0.375 | 0.250 | 0.625 | 0.500 | 0.875 | 0.750

SX;+3 8 3 18 13 28 15 38 33

Example 3.2. What sequence of numbers is generated by a linear congruential generator
where a =5, ¢ =6 and m = 8 for the seed X; =1?

Solution: This time we do not fulfil the first requirement, as both ¢ and m can be divided
by 2. The computations when starting with X, = 1 and applying (3.1a) are shown in
table 3.2 below. This time we only get four values before the sequence starts repeating
itself, and for the remainder of the sequence we will only see the internal states 3, 5and 7..

Table 3.2 Computation of the random number sequence in example 3.2.

i 1 2 3 4
X; 1 3 5 7

U; 0.125 | 0.375 | 0.625 | 0.750

5X;+6 | 11 | 21 | 31 | 41

3.2 Transformation of Random Numbers

As described in the previous section, random inputs for Monte Carlo simulations can be created by
standard pseudorandom number generators available in almost all programming languages. However,
these generators produce U(0, 1)-distributed random numbers and unfortunately it is rarely so that all
inputs of the system to be simulated have that probability distribution. Hence, we need to be able to
convert U(0, 1)-distributed random numbers to the actual probability distributions of the inputs. There

10 3.2 Transformation of Random Numbers
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are several methods that can be applied to perform this transformation. In this section, some methods
that are particularly efficient for Monte Carlo simulations are described.

3.2.1 Independent Random Numbers
To be added: Introduction...

The Inverse Transform Method
To be added: Introduction...
Theorem 3.1. (Inverse Transform Method) If U is a U(0, 1)-distributed random number

then Y is a distributed according to the distribution function F(x) if Y is calculated accord-
ingtoY = Fyl(U).

To be added: Comments and examples...

Random Numbers from Finite Populations

To be added: Introduction...

To be added: Search algortihm...

To be added: Comments... (Notice that the states must be sorted if complementary random numbers
will be applied to an input!)

To be added: Examples...

Normally Distributed Random Numbers
To be added: Introduction...

Theorem 3.2. (Approximate Inverse Transform Method) If U is a U(0, 1)-distributed
random number then Y is a N(0, 1)-distributed random number, if Y is calculated according

to
0= U if 0<U<O0.5,
1-U if 0.s<U<1,
t=.-2InQ,
Co = 2.515517, ¢, = 0.802853, ¢, = 0.010328,
d; =1.432788,  d,=0.189269, d; = 0.001308,
Co+ Gyt +Cyt?
C LHdyt+dt2 4+ d,td
and finally
-2z if 0<U<O0.5,
Y=450 if U = 0.5,
z if0.s<U<1.

To be added: Comments and exampels...

3.2.2 Correlated Random Numbers

A Monte Carlo simulation can have inputs that are correlated. It should however be noted that genera-
tion of correlated random numbers is not as straightforward as generation of independent random
numbers.

3.2 Transformation of Random Numbers 11
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General Method
To be added...

Random Numbers from Finite Populations
To be added...

Normally Distributed Random Numbers
To be added...

Approximative Method
To be added...

Exercises
To be added...

12 Exercises



Chapter 4

SIMPLE SAMPLING

To be added: Introduction...

4.1 Principle

The idea of a Monte Carlo simulation is to collect random samples and based on these observations try
to compute one or more values, for example a statistical property of a random variable or a determinis-
tic value such as the mathematical constant r in Buffon’s needle experiment. However, as the result is
depending on random observations, it is inevitable that we introduce a random error—the result of a
Monte Carlo simulation will most likely not be exactly equal to the true value. In that sense, the result of
a Monte Carlo simulation is just an estimate, which we would like to be as close as possible to the true
value.

It is important to notice that since the result of a Monte Carlo simulation is a function of several ran-
dom samples, the result must also be a random variable. This is reflected in the notation for estimates
that will be used in this compendium. If we are discussing general properties of an estimate calculated
using one or another simulation method, we will denote the estimate by an upper-case Latin letter cor-
responding to the statistical property that we are trying to estimate. For example, the expectation value
of the random variable X is denoted s, which means that we choose the symbol M, for the random var-
iable representing the estimate of .. However, if we are actually computing an estimate then we are in
fact studying an outcome of My, and we will then use the symbol my, i.e., the lower-case Latin counter-
part of zy.

Accuracy and Precision

Given that an estimate is a random variable, we may study the probability distribution of the estimate
and discuss what properties a good estimate should have.

To be added: Figure showing the difference between low and high accuracy as well as low and high
precision.

To be added: Systematical errors, definitions of accuracy, E[My] = E[X].

To be added: Random errors, definition of precision, Var[My].

Replacement

4.2 Application

To be added: Introduction...

4.1 Principle 13



Chapter 4 Simple Sampling

4.2.1 Estimating the Properties of Random Variables

Estimating Expectation Values and Variance
To be added: Introduction...

Theorem 4.1. (Law of Large Numbers): If x;, ..., X, are independent observations of the
random variable X then E[X] can be estimated by

n
_1
i=1
Proof: Let t; denote the number of times that unit i appears in the samples; hence, t; is an
integer between 0 and n. The estimate of the expectation value can then be expressed as

N
_1
My = 5 2 tiXi:
i=1
The number of successful trials when n trials are performed and the probability of success
is p in each trial is Bernouille-distributed, i.e, t. is B(n, 1/N)-distributed.

N N
1 1 . o
E[My] = E{ﬁ > tixi} =y HE[ti])(i = {the expectation value of a B(n, p)-distribution is

i=1 i=1
N

nph= ¥ Rx; = EXI.
i=1

Notice the similarity between the definition of expectation value (definition 2.7) and the formula for the
estimate of the expectation value (theorem 4.1 above):

N

n
1 1
Hx =N 2% my = 0 X
i=1 i=1

When calculating the expectation value analytically, we enumerate all units in the population and com-
pute the mean value, whereas in simple sampling we enumerate all selected samples and compute the
mean value. We will see that the same principle is applied when estimating other statistical properties.

Theorem 4.2. If x;, ..., X, are independent observations of the random variable X then
Var[X] can be estimated by

n
1
s§ = oY (X; —My)?.
i=1

Proof: To be added?

To be added: Show how S>2( can be computed using sums of x; and xiz.

Estimating Probability Distributions
To be added...

4.2.2 Precision of Estimates
To be added: Introduction...

Theorem 4.3. In simple sampling, the variance of the estimated expectation value is

Var[X] N-n
Var[My] = -I:IUT

14 4.2 Application



Chapter 4 Simple Sampling

The factor (N — n)/N is called fpc (finite population correction). For infinite populations we get

Var[My] = Var[X] (4.1)

n

To be added: Interpretation of the theorem & examples...
To be added: Confidence intervals...

4.2.3 Stopping Rules
To be added: Discussion of how many samples should be analysed in a Monte Carlo simulation...

4.2 Application 15



Chapter 4 Simple Sampling

16 4.2 Application



Chapter 5

VARIANCE REDUCTION
ECHNIQUES

It was shown in the previous chapter that the variance of an estimated expectation value, Var[M,], is
related to the precision of the simulation; a low variance means that it is more likely that the result will
be accurate, whereas a high variance means that there is a larger risk that the result will be inaccurate.
We also learned that Var[M,] is depending on the probability distribution of the samples variable
(which we cannot affect) and the number of samples (which we do control). However, until now we
have studied simple sampling, where the samples are selected completely at random (i.e., each unit in
the population has the same probability of being selected). Interestingly, if we manipulate the selection
of samples, the variance of the estimate can be lower than for simple sampling. Such methods to
improve the precision of a Monte Carlo simulation is referred to as variance reduction techniques. This
chapter will describe six variance reduction techniques.

5.1 Complementary Random Numbers

The idea behind complementary random numbers is to reduce the influence of random fluctuations,
which always appear in sampling, by creating a negative correlation between samples. In practice, this
means that the generation of random numbers is manipulated in such a way that the probability of an
even spread over the whole population increases.

5.1.1 Principle

Assume that the expectation value E[X] = x, has been estimated in two separate simulations, i.e., we
have two estimates My, and My, such that

E[Myq] = E[Myo] = 11y (5.1)

Itis not surprising that the mean of the two estimates is also an estimate of 4, and we can easily verify
that this is the case, because

My, +M 1 1
E[ X1 5 XZJ - E(E[MXl] +E[My,]) = 5(#Xﬁuﬂx) =y, 5.2)

As the expectation value of the mean estimate is equal to s, the mean estimate is in itself an unbiased
estimate of x in accordance to the discussion in section 4.1. The interesting question is now how pre-
cise this mean estimate is compared to simple sampling with the same total number of samples. From
(4.1) we have that simple sampling with in total n samples results in

o2
var[M,] = Vi;ll] =X (5.3)

Now assume that the two estimates My, and My, each include n/2 samples (which means that the total
number of samples is still n) then variance of the mean estimate is given by

5.1 Complementary Random Numbers 17
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My, + My,

Var[ >

1 1 1
] = ZVar[My, ]+ ZVar[My,] + 7 - 2Cov(Myy, My,). (5.4)
If My, and My, both are independent estimates obtained with simple sampling then we get Var[My,] =
Var[My,] = o5 and Cov[My,, My,] = 0. Hence, (5.4) yields

My, + sz] 1 _ Var[My,] ﬁ (5.5)
Tt = .

Var[ . = Z(Var[My,] + Var[My, ]) = ——2% =
By comparing (5.3) and (5.5) we see that the precision is the same, which is also what we should
expect—running one simulation of n independent samples should be the same thing as combining the
results of two independent simulations of n/2 independent samples each.

However, the interesting part is that if the two estimates are not independent but negatively corre-
lated then (5.4) will result in a variance that is lower than the variance for simple sampling with the
same amount of samples. The questions is then how we should proceed in order to find estimates that
are negatively correlated. A straightforward method is to use complementary random numbers when
we generate scenarios for a Monte Carlo simulation.

e We start with a random number from a random number generator, which we have seen in
section 3.1, corresponds to a U(0, 1)-distributed random variable. If U is a value from the ran-
dom number generator then we define U* = 1 — U as the complementary random number of U.
It is easy to verify that U and U* are negatively correlated with Py ux=-1L

e Then we transform both the original random number and the complementary random number
into the probability distribution of the input. If this is done using a the inverse transform
method then we get that Y = F;l(U) and Y* = F;l(U*). These values will also be negatively
correlated, but the transformation may weaken the correlation, i.e., we get Py yx=-1. This also
holds for the other transformation methods presented in section 3.2.

* Next we compute the value of the output for both original and the complementary input value,
i.e, X=g(Y) and X* = g(Y*). If the simulated system is such that there is a correlation between
the input and output values then the original and complementary output values will also be
negatively correlated, but again the correlation might be weakened, i.e., we get Px, X+ 2 Py, v

= Finally, we let My, be an estimate based on n samples of X, whereas My, is obtained from sam-
pling the corresponding values of X*. Obviously, we will now have two estimates that are nega-
tively correlated.

5.1.2 Application
To be added: Introduction...

Multiple Inputs
To be added: Discussion on how to manage systems with multiple inputs...

Auxiliary Inputs
To be added: Explanation...

Simulation Procedure
To be added: Overview, equations, block diagram and example...

5.2 Dagger Sampling

This variance reduction technique is based on a similar principle as complementary random numbers.
Dagger sampling is however limited to two-state probability distributions.
To be added: Further comments?
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5.2.1 Principle
Consider a two-state random variable Y with the frequency function

1-p ifx = a,
fX)=1 p ifx = b, (5.6)
0 otherwise,

where p < 0.5. This probability distribution is clearly fulfilling the criteria of a duogeneous population
(cf. definition 2.6), with the value a being the conformist units and b the diverging units.

In dagger sampling, random values of Y are not generated by the inverse transform method, but using
a dagger transform:

Theorem 5.1. (Dagger Transform) If U is a U(0, 1)-distributed random number then Y isa
distributed according to the frequency function (5.6) if Y is calculated according to

a if (j—-1p<x<jp, forj=1

Fé(x) = S,
) {b otherwise,

where S is the largest integer such that S < 1/p.

The value S in theorem 5.1 is referred to as the dagger cycle length. It should be noted that one random
number from the pseudorandom number generator is used to generate S values of Y.

Example 5.1. To be added...

We have already seen in section 5.1.1 that a negative correlation between input values can result in a
variance reduction compared to simple sampling. We can also easily see that there is a negative correla-
tion between the random values in a dagger cycle, because the diverging unit can never appear more
than once in a dagger cycle. This means that if we know that the j:th value was equal to the diverging
unit then we know that all the other S — 1 values are equal to the conformist unit; hence, the j:th value
and the other values are varying in opposite directions, which is characteristic for a negative correla-
tion.

We can also verify the negative correlation by going back to the mathematical definition. Let us start
by investigating the product of two values in a dagger cycle, i.e., Yij. There are only two possible values
of this product, aa or ab, since the diverging unit cannot appear more than once in the dagger cycle. We
can also bserve that for all dagger transforms there will only be two intervals there either the j:th or the
k:th value of dagger cycle are equal to the diverging unit b; hence, the probability for this result is 2p.
This means that the expectation value of the product is given by

E[Yij] =2pab + (1 - 2p)aa. (6.7
Moreover, we can compute the expectation value of each value as

E[Y;] = E[Y,] = (L -p)a + pb. (5.8)
The covariance between Y and Y, can now be computed according to definition 2.10:

Cov[Y;, Y,] = E[Y;Y,] - ELY|IE[Y,] = pab + (1 - 2p)aa - (L - p)a + pb)2 = —p2(a + b)2 < 0. (5.9)

To be added: Example with figure...

5.2.2 Application
To be added: Introduction...

Multiple Inputs
To be added: Discussion on how to manage inputs with different dagger cycle lengths...

Simulation Procedure
To be added: Overview, equations, block diagram and example...
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5.3 Control Variates

To be added: Introduction...

5.3.1 Principle

5.3.2 Application
To be added: Introduction...

Finding a Simplified Model
To be added: Discussion on how to create suitable simplified models...

Simulation Procedure

To be added: Impact on coefficient of variation depending on how the control variate method is imple-
mented...
To be added: Overview, equations, block diagram and example...

5.4 Correlated Sampling

To be added: Introduction...

5.4.1 Principle

5.4.2 Application

To be added: Introduction...
To be added: Overview, equations, block diagram and example...

5.5 Importance Sampling

To be added: Introduction...

5.5.1 Principle

5.5.2 Application
To be added: Introduction...

Multiple Inputs
To be added: Discussion on how to manage systems with multiple inputs...

Multiple Outputs
To be added: Discussion on how to manage systems with multiple outputs...

Finding an Importance Sampling Function
To be added: Discussion on how to choose the importance sampling function using a simplified model...
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Systematical Errors

To be added: Discussion on how inappropriate importance sampling functions can introduce a system-
atical error, and how this sometimes can be acceptable...

Simulation Procedure
To be added: Overview, equations, block diagram and example...

5.6 Stratified Sampling

To be added: Introduction...

5.6.1 Principle

5.6.2 Application
To be added: Introduction...

Sample Distribution
To be added: Discussion on how to distribute samples between strata...

The Cardinal Error

To be added: Discussion on how the practical application of the Neyman allocation may introduce a sys-
tematical error when sampling duogeneous populations...

The Cum Vf Rule
To be added: Discussion on how to design strata using a simplified model...

The Strata Tree
To be added: Discussion on how to design strata using classification of input scenarios...

Simulation Procedure
To be added: Overview, equations (including random number generation), block diagram and exam-
ple...
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Chapter 6

EFFICIENT MONTE CARLO
SIMULATIONS

The previous chapters have presented the mathematics of Monte Carlo simulation as well as some prac-
tical solutions to implement different methods when simulating a technical system. In this concluding
chapter, all those pieces are brought together in a discussion on how to design an efficient Monte Carlo
simulation.

6.1 Mathematical Model

To be added: Discussion on important steps when formulating the mathematical model...

6.2 Choice of Simulation Method

To be added: Summary of the information necessary to efficiently apply different variance reduction
technique.
To be added: Discussion on how variance reduction techniques can be combined.

6.3 Testing

To be added: Discussion on how to test and verify the results of a Monte Carlo simulation...
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Appendix A

PROBABILITY DISTRIBUTIONS

This appendix provides an overview of some important probability distributions.
To be added: Reference to other sources.
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