
Train Shunting

Christian Schulte

October 25, 2013

Problem Description

You are in charge of shunting (Swedish: växla) wagons of a train. In the
following we assume that each wagon is self driving and that the train has
no explicit engine.

The description for your shunting task is given by two sequences of wag-
ons: the given train and the desired train. Your task is to rearrange the
given train with help of your shunting station such that the desired train
is obtained. You are not only supposed to rearrange the train but also to
compute a sequence of shunting moves (which are called just “moves” from
now on).

The shunting station is shown in Figure 1. It has a “main” track and
two shunting tracks “one” and “two”. A situation in the shunting station is
called state. A move describes how wagons move from one track to another.

main

one

two

Figure 1: Train shunting station.

Goal. Our ultimate goal in this lab is to find a short sequence of moves
that turn a train on the track “main” into another configuration of the train
on “main”.

Before we attempt this goal we will fix the modeling of our problem and
develop some list processing support.

Lab Purpose. This lab exercises several important issues. How are prob-
lems modeled by data structures such as lists and tuples. How are lists
processed. This ranges from simple to more complicated patterns of recur-
sion over lists. This lab is of course also geared at getting you started with
Erlang and functional programming in general.

And last, but not least, we hope that you have some fun solving this
little puzzle.

1



Modeling

Trains, Wagons, and States. Wagons are modeled as atoms and trains
on tracks as lists of atoms. A train has no duplicate wagons (that is, [a,b]
is a train, whereas [a,a] is not).

A complete description of the state of a shunting station consists of three
lists: a list describing the train on track “main”, and two lists describing
tracks “one” and “two”. An entire state is represented as a tuple with three
elements, where the first element represents the train on track “main”, the
second the train on “one”, and the third on track “two”.

a b

c

d

Figure 2: Example state displayed.

The state {[a,b],[c],[d]} is visualized in Figure 2.

Moves. A move is a binary tuple. The first element of a move is either one
or two. The second element of a move is an integer. For example, {one,2},
{two,2}, and {one,-3} are all moves.

Applying a Move to a State. Moves describe how one state is trans-
formed into another:

• If the move is {one,N} and N is greater than zero, then the N right-most
wagons are moved from track “main” to track “one”.

If there are more than N wagons on track “main”, the other wagons
remain.

• If the move is {one,N} and N is less than zero, then the N left-most
wagons are moved from track “one” to track “main”.

If there are more than N wagons on track “one”, the other wagons
remain.

• The move {one,0} has no effect.

The same holds true for moves with first element two concerning track
“two”.

Example. Figure 3 shows examples of moves applied to states, where
(a) is the initial state, (b) after application of {one,1}, (c) after application
of {two,1}, and finally (d) after application of {one,-2}.

2



a b

c

d

a

b c

d

(a) (b)

a

b c

d

b c

a d

(c) (d)

Figure 3: Moves applied to states.

1 Some List Processing

Before we actually start, we will develop some list-processing routines that
you will need later.

1. take(Xs,N) returns the list containing the first N elements of Xs.

2. drop(Xs,N) returns the list Xs without its first N elements.

3. append(Xs,Ys) returns the list Xs with the elements of Ys appended.

4. member(Xs,Y) tests whether Y is an element of Xs.

5. position(Xs,Y) returns the first position of Y in the list Xs. You can
assume that Y is an element of Xs.

For example, position([a,b,c],b) returns 2.

Please put all together in one file list.erl and add an appropriate
module declaration into that file: add a module declaration and export the
functions listed above.

2 Applying a Single Move

The first task is writing a binary function single that takes a move and an
input state. It returns a new state computed from the state with the move
applied.

For example, single({one,1},{[a,b],[],[]}) returns {[a],[b],[]}.
single should be used later in this assignment whenever a move is to

be performed on a state.

3



Structure. Now we are in position to develop single. Approach the task
as follows:

• Your program should decide by pattern-matching which track is in-
volved and what the different elements of a state are.

• For a track, you have to decide whether wagons are moved on or from
the track (that is, is N positive or negative).

• Taking wagons from the end of a train can be done by using length

and drop; taking wagons from the beginning of a train can be done by
using take; adding wagons to a track can be done by append.

• Take into account that moves are allowed where no wagons are moved
at all!

Please store your function in a module called moves.

3 Applying Several Moves

The next task is writing a function move that takes an input state and a list
of moves. It results in a list of states. If the list of moves has n elements,
the resulting list of states has n+ 1 elements. Its first element is the initial
state and its last element is the final resulting state.

For example,

move([{one,1},{two,1},{one,-1}],

{[a,b],[],[]}).

returns the list of states

[{[a,b],[],[]}, {[a],[b],[]},

{[],[b],[a]}, {[b],[],[a]}]

Structure. Now we are in a position to develop move. Approach the task
as follows:

• Recursively apply each move in turn.

• When no moves are to be applied, our specification says that the initial
state is to be returned (base-case).

• For each move, use single.

Please put the function move also in the module moves (and hence in a
file moves.erl). Do not forget to convince yourself that your solution works!

4



4 Finding Moves

Develop a procedure find that takes two trains Xs and Ys as input and
returns a list of moves, such that the moves transform the state {Xs,[],[]}
into {Ys,[],[]}.

In the following, we require that Xs and Ys contain the same elements
(wagons) and that each wagon is unique (in other words, Xs and Ys are
permutations of each other).

Approach the problem as follows. The problem is solved recursively and
each recursive step will move one wagon in the position as required by Ys.

The base-case is simple. If there are no wagons, no moves are needed.
Otherwise, we take the first wagon Y from Ys (the desired train). Our

goal is to find a list of moves that takes the wagon Y in front position on the
main track. This is done by the following moves:

1. Split the train Xs into the wagons Hs (for head) and Ts (for tail), where
Hs are the wagons before Y in Xs, and Ts are the wagons after Y in Xs.

Write a procedure split that takes a list of wagons Xs and the wagon
Y and returns the pair {Hs,Ts}.

For example,

split([a,b,c],a) = {[],[b,c]}

split([a,b,c],b) = {[a],[c]}

Use the functions position, take, and drop.

2. Move Y and the following wagons (that is Ts) on track “one”.

3. Move the remaining wagons (that is, Hs) on track “two”.

4. Move all wagons on “one” to “main” (this includes Y, which goes as
needed to the front of “main”).

5. Move all wagons on “two” to “main”.

After having moved one wagon in the right position, we only need to
consider the remaining wagons of both Xs and Ys (of course in the new
order as they are now on the main track!).

Please store your functions in the module shunt (and file shunt.erl).

Example. Given the input train [a,b] and the output train [b,a], the
list of moves computed by find is:

[{one,1},{two,1},{one,-1},{two,-1}

{one,1},{two,0},{one,-1},{two,0}]

5



5 Finding Less Moves

Develop a function few that behaves as find but that takes for each recursive
application into account whether the next wagon is already in the right
position. If so, no moves are needed.

Proceed by modifying (only very few modifications are needed) your
program for find.

Please store few also in the module shunt.

Example. Given the input train [c,a,b] and the output train [c,b,a],
the list of moves computed by few is:

[{one,1},{two,1},{one,-1},{two,-1}]

6 Move Compression

The list of moves computed by few is still awkward and can be easily opti-
mized according to the following rules:

1. Replace {one,N} directly followed by {one,M} with {one,N+M}.

2. Replace {two,N} directly followed by {two,M} with {two,N+M}.

3. Remove {one,0}.

4. Remove {two,0}.

These optimizations are correct in the sense that the shorter list of moves
will compute the same final state.

This task is actually tricky: think for example of

[{two,-1},{one,1},{one,-1},{two,1}]

Repeatedly applying the rules from above actually results in no moves at
all. By application of Rule 1 we obtain [{two,-1},{one,0},{two,1}]; by
Rule 3 [{two,-1},{two,1}]; by Rule 2 [{two,0}]; and finally by Rule 4
[].

Develop a function compress that takes a list of moves and returns a
compressed list of moves. Compression must be complete, that is, none of
the above rules should be applicable to the returned list of moves.

Approach this task as follows. Develop a procedure rules that applies
rules recursively. Then repeat application of rules until the list of moves
does not change. Thus, compress is implemented as follows:

compress(Ms) ->

Ns = rules(Ms),

if Ns == Ms -> Ms;

true -> compress(Ns)

end.

6



Please store your program also in the module shunt.

7 Finding Really Few Moves

This assignment is voluntary. This means you don’t have to do it, however
we strongly encourage you to do it. And actually it is fun!

The problem with both find and few is that they always push back the
wagons from “one” and “two” to “main”, even though there might be some
opportunity to actively use track “two” to push wagons from track “one”
into position and vice versa. In the following, we are going to take advantage
of this.

Develop a procedure fewer, that takes four arguments: Ms as the wagons
on “main”, Os as the wagons on “one”, Ts as the wagons on “two”, and Ys

as the desired train.
fewer works recursively and as before, each recursive invocation will

bring the first wagon Y of Ys into the right position. What is new, is that
this wagon might be on either track:

• If Y is a member of Ms, bring it in the right position as done previously.
Leave the other wagons on track “one” and “two”.

• If Y is a member of Os (it is on track “one”), move the wagons in
front first to “main” and then to “two”. Then move Y into position.
Otherwise, leave the wagons on “one” and “two” unchanged.

This adds one more wagon in the right position on “main”.

• Do the same for “two”.

Each recursive application of fewer has of course to supply the wagons
on all three tracks correctly!

Initially, fewer is applied such that the tracks “one” and “two” are the
empty list. For example,

fewer([a,b],[],[],[b a])

returns

[{one,1},{two,1},{one,-1},{two,0},{one,0},{two,-1}]

Acknowledgments

The idea and the initial problem formulation is taken from an assignment at
the 8th Prolog Programming Competition organized by Bart Demoen and
Phuong-Lan Nguyen.

7


	Problem Description
	Modeling
	1 Some List Processing
	2 Applying a Single Move
	3 Applying Several Moves
	4 Finding Moves
	5 Finding Less Moves
	6 Move Compression
	7 Finding Really Few Moves
	Acknowledgments

