








|   | <u></u>   |
|---|-----------|
| j | KTH 8     |
| ٩ | STORIGE P |
|   | Vancally. |

#### Absorption of ionizing radiation

- Interactions with the  $\underline{\text{electrons}}$  of the absorber
- (Neutrons): Interactions with <u>nuclei</u> resulting in radioactive decay and

High energy  $\gamma$ , resulting in pair production



#### **Linear Energy Transfer (LET)**

The energy lost per length unit

LET = -dE/dx

LET depends on the electron density of the absorber (usually proportional to the physical density)

| Radiation (3 MeV)                                   | LET (keV/μm) | cm in air |
|-----------------------------------------------------|--------------|-----------|
| Electron (e-)                                       | 0.20         | 1400      |
| Proton ( <sup>1</sup> <sub>1</sub> H <sup>+</sup> ) | 21           | 14        |
| Deuteron ( ${}^2_1H^+$ )                            | 34           | 8.8       |
| $\alpha\left( {}^{4}_{2}He^{2+}\right)$             | 180          | 1.7       |
|                                                     |              |           |

2



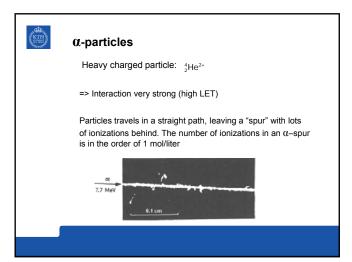
#### Protons and heavy ions

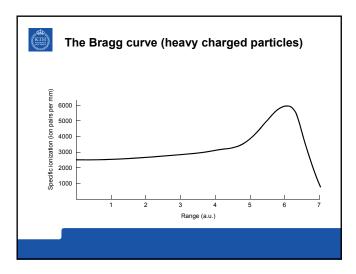
The LET of protons and heavy ions follow the Bethe equation:

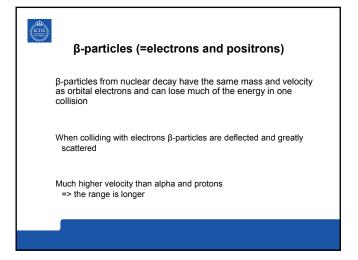
$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{m_e v^2} NZ \cdot In \left[ \frac{2mv^2}{I} \right] \ \Rightarrow \ -\frac{dE}{dx} \approx \frac{z^2 e^4}{v^2}$$

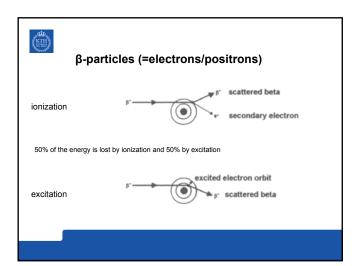
Z = absorber's atomic number

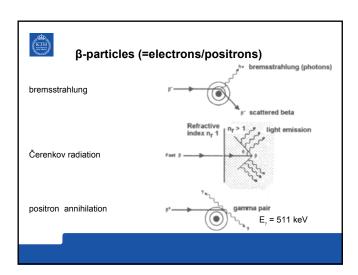
z = particle's atomic number

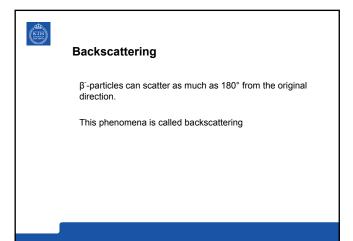

N = number of absorbing atoms per unit volume

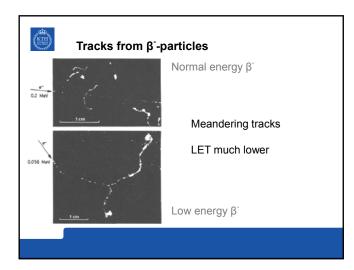

v = Velocity

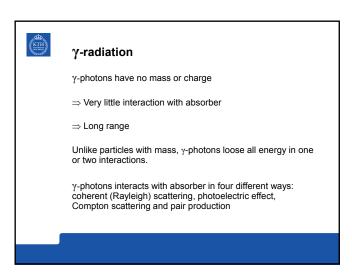

I = Ionization potential

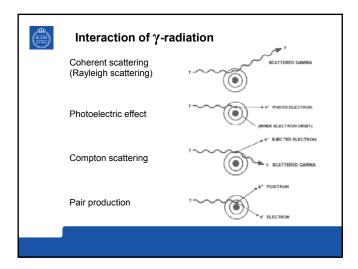

m<sub>e</sub> = electron mass

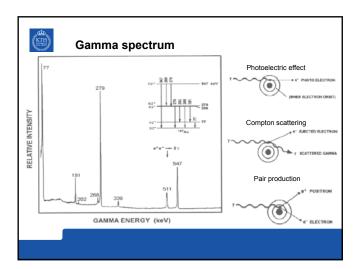

e = particle charge

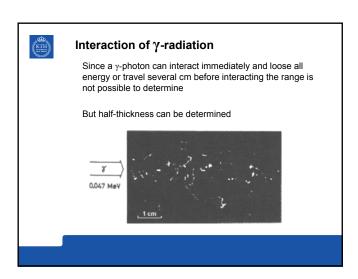


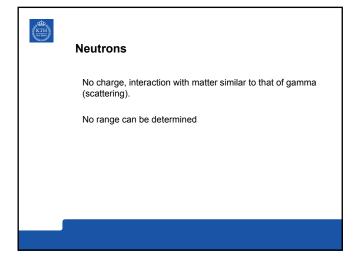



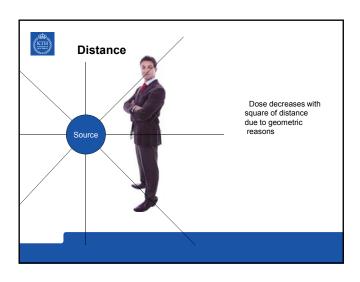












# Radiation shielding

| Radiation | Relative<br>penetration<br>depth | Shielding         | Range in water |
|-----------|----------------------------------|-------------------|----------------|
| α         | 1                                | Paper, skin       | 30-40 μm       |
| β         | 100                              | 3 mm Al           | 3-6 mm         |
| γ         | 10 000                           | Concrete,<br>Lead | -              |

Remember: The ability of a material to interact (=absorb energy) of a material is proportional to its (electron) density.





#### Absorbed dose

Unit: Gray. 1 Gy = 1 J/kg

Older unit: 1 Gy = 100 rad

$$D = \frac{dE_{abs}}{dm}$$

$$E_{abs} = E_{in} - E_{out}$$

• Dose rate: Gray/s. (absorbed dose/s)



#### **Equivalent dose**

Weights in the damage  $\underline{\text{different radiation}}$  will do to tissue and organs (i.e. biologically significant)

Units: 1 J/kg = 1 Sv (Sievert)

Old unit: 1 Sv = 100 rem



#### **Equivalent dose**

The equivalent dose  $(H_T)$  to an organ or tissue is the sum of mean absorbed dose  $D_{T,R}$  in T, multiplied by a weighing factor  $w_R$  for each type of radiation R.

$$H_{T} = \sum_{R} w_{R} D_{T,R}$$

| Radiation type & energy           | W <sub>R</sub> |
|-----------------------------------|----------------|
| Photons, all energies             | 1              |
| Electrons and muons, all energies | 1              |
| Neutrons of Energy E (MeV)        | 5+17e 6        |
| Protons, energy > 2MeV            | 5              |
| α, heavy nuclei                   | 20             |

| § K1H § |
|---------|
|         |
|         |
|         |

## Effective Dose (Effective Equivalent Dose)

Weights in the damage different radiation will do to <u>specific tissues and organs</u> (radiation does different damage to different organs)

Units: 1 J/kg = 1 Sv (Sievert)

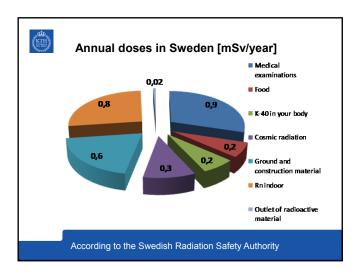
Old unit: 1 Sv = 100 rem

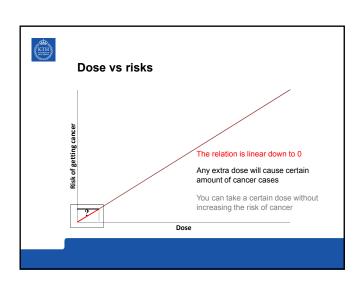


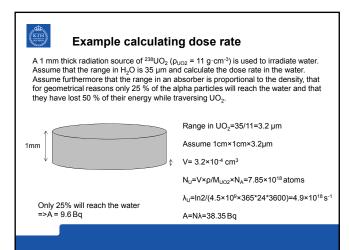
#### **Effective Dose**

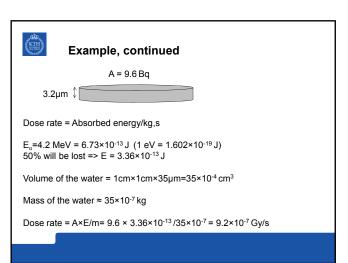
The equivalent dose is multiplied by a factor depending for each tissue/organ that is exposed to radiation

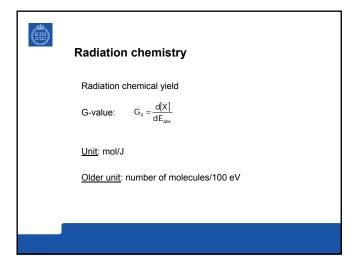
$$E = \sum_{T} w_{T} \sum_{R} D_{T,R}$$

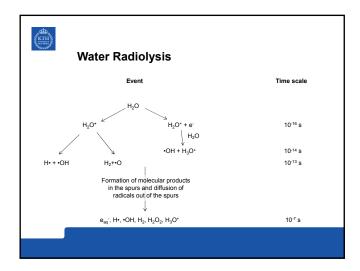

| Organ or tissue   | W <sub>T</sub> | Organ or tissue       | w <sub>T</sub> |
|-------------------|----------------|-----------------------|----------------|
| Gonads            | 0.20           | Liver                 | 0.05           |
| Bone marrow (red) | 0.12           | Esophagus (matstrupe) | 0.05           |
| Colon             | 0.12           | Thyroid (Sköldkörtel) | 0.05           |
| Lung              | 0.12           | Skin                  | 0.01           |
| Stomach           | 0.12           | Bone surface          | 0.01           |
| Bladder           | 0.05           | Remainder             | 0.05           |
| Breast            | 0.05           |                       |                |
|                   |                |                       |                |

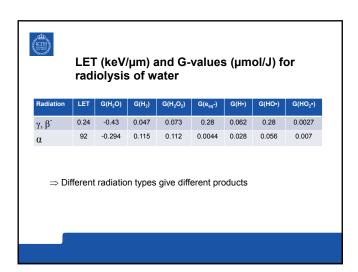


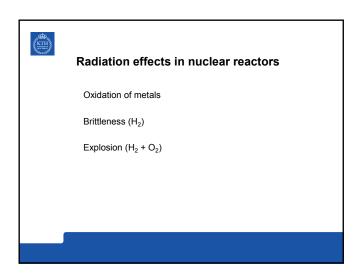


### **Recommended dose limits**


| Dose limits for persons working with ionizing radiation |  |  |
|---------------------------------------------------------|--|--|
| Limits of effective dose (mSv)                          |  |  |
| 50                                                      |  |  |
| 150                                                     |  |  |
| 500                                                     |  |  |
|                                                         |  |  |
| 500                                                     |  |  |
|                                                         |  |  |
| 100                                                     |  |  |
|                                                         |  |  |
| ď                                                       |  |  |


| Dose from different activities                                       | 3          |
|----------------------------------------------------------------------|------------|
| Activity                                                             | Dose [mSv] |
| Dental X-ray                                                         | 0.005      |
| Chest X-ray                                                          | 0.02       |
| Transatlantic flight                                                 | 0.07       |
| Nuclear power station worker average annual                          | 0.18       |
| CAT scan of head                                                     | 1.4        |
| Annual dose Sweden                                                   | 3.0        |
| CAT scan chest                                                       | 6.6        |
| Whole body CAT scan                                                  | 10         |
| Level at which changes in blood cells can readily be observed        | 100        |
| Acute radiation effects                                              | 1000       |
| Dose which within a month would kill 50% of those receiving the dose | 5000       |














| Workshop                                                              |  |
|-----------------------------------------------------------------------|--|
| Calculate tasks 3, 5, 8, 11, 13, 16                                   |  |
| And be prepared to calculate on the whiteboard in front of the class. |  |
|                                                                       |  |
|                                                                       |  |
|                                                                       |  |