

Why are radionuclides used?

- > The exact same element is used, it has the same chemical and physical properties
- > Radionuclides are independent of pressure, temperature, chemical and physical state
- Radionuclides are easy to detect and are measured with high precision

With radionuclides low amounts can be detected

$$A = N\lambda$$
 \longleftarrow $m = A \frac{M}{\ln 2 N} t_{M}$

Assume that 1 Bq can be measured with sufficient accuracy:

t _{1/2}	Number of atoms	mol	
1 h	5 200	8.64 × 10 ⁻²¹	
1 d	125 000	2.08×10^{-19}	
1 y	4.55×10^{7}	7.55×10^{-17}	
10 ⁵ y	4.55×10^{12}	7.55×10^{-12}	
10 ⁹ y	4.55 × 10 ¹⁶	7.55 × 10 ⁻⁸	

Why are radionuclides used?

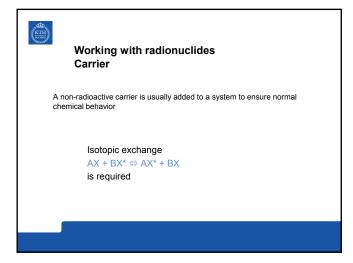
- > The exact same element is used, it has the same chemical and physical properties
- > Radionuclides are independent of pressure, temperature, chemical and physical state
- > Radionuclides are easy to detect and are measured with high precision
- Does not affect the system (if activity is not too high)
- > No interference of other elements
- > Cheap (compared with for instance ICP-MS)

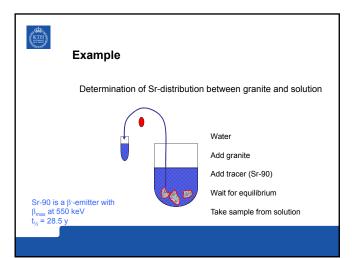
Issues to keep in mind when working with very low concentrations

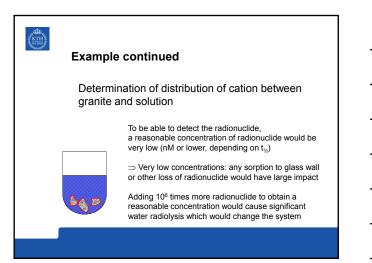
- Adsorption to walls of vessel
- Formation of radiocolloids
- Equilibrium reactions $\begin{array}{l} \textit{mUO}_2^{2^+} + \textit{p} \; H_2 O \leftrightarrows (UO_2)_m (OH)_p^{2m-p} + \textit{p} \; H^+ s \\ \textit{at mM U-conc.} \; 50\% \; \text{is} \; (UO_2)_m (OH)_p^{2m-p} \\ \textit{at } \textit{\mu} M \; \text{U-conc.} \; (UO_2)_m (OH)_p^{2m-p} \; \text{is negligible} \end{array}$
- Precipitation $La(OH)_3(s) \leftrightarrows La^{3+} + 3 OH^- \qquad K_{s0}=10^{-19} M^4$

At [OH-]= 1 mM does 100 MBq/I 130 La $^{3+}$ not exceed solubility product

Working with radionuclides ALARA


As


Low


As

Reasonable

Achievable

Example continued

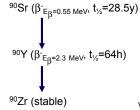
Carrier

We need to add a carrier to our radioactive solution to ensure normal chemical behaviour and obtain reasonable concentrations.

Isotopic exchange

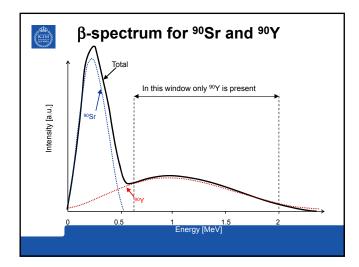
 $AX + BX^* \Leftrightarrow AX^* + BX$

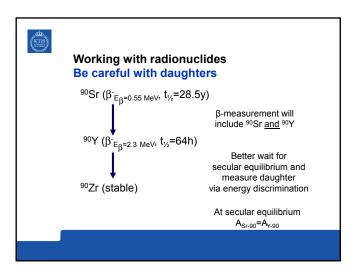
Granite-Sr + 90 Sr(aq) \Leftrightarrow Granite- 90 Sr + Sr(aq)

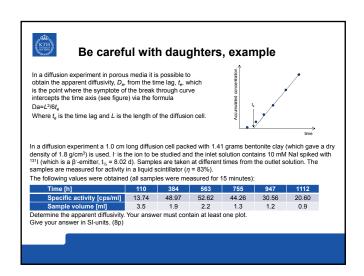


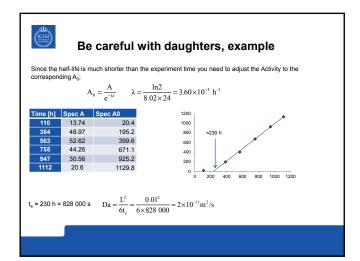
Working with radionuclides **Selecting radionuclide**

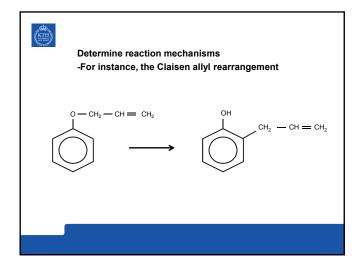
- \bullet Has sufficient $t_{\!\scriptscriptstyle 1\!\!/_{\!\!2}}$ for the process to be studied to take place
- Same oxidation state as carrier (isotopic exchange)
- When very low activities are used the background has to be carefully attended
- Examine the nature of any radioactive daughters

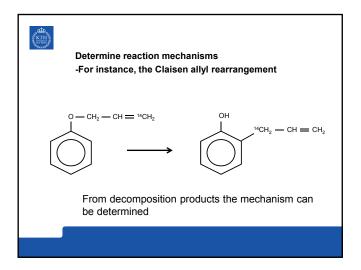


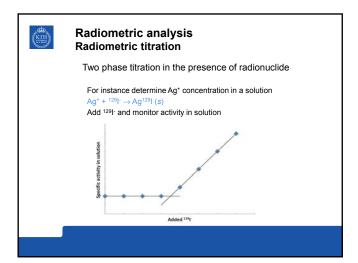

Working with radionuclides Be careful with daughters

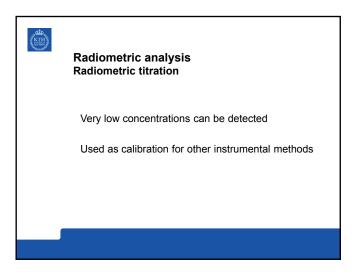



β-measurement will include ⁹⁰Sr <u>and</u> ⁹⁰Y


Better wait for secular equilibrium and measure daughter via energy discrimination







KIH	Using isotope exchange rates to determine characteristics of a compound
	H ³⁵ Cl + Cl
	The rate of exchanging the CI at the orto and para positions differs

Isotope dilution

Used when quantitative separation of one compound is not possible Qualitative separation is needed, though

System with element of unknown mass w_u

 $\begin{array}{l} \text{Add known weight } (w_0) \ \text{RN} \\ \text{(same element)} \end{array}$

Selectively separate element for instance via extraction

Take sample and measure activity and mass (Specific activity, S_m)

Isotope dilution

The specific activity is the same in the whole system.

$$S_m = S_{system} = \frac{\text{Total activity}}{\text{Total weight}} = \frac{w_0 S_0}{w_u + w_0}$$

And the unknown weight can be calculated from

$$w_u = \left(\frac{S_0}{S_m} - 1\right) w_0$$

Isotope dilution

Applications

Determine

- The naphtalene concentration in tar
- Fatty acids in mixtures of natural fat
- Amino acids in biological material

Activation Analysis

By irradiating a sample with neutrons, a small amount of the atoms in the sample will take up a neutron and become radioactive.

The sample has been "activated"

Neutron Activation Analysis Equation

Consider a general nuclear reaction: A + x \rightarrow B + y A, B are elements, x and y are elementary particles.

The production rate of N_{B} can be expressed as

$$\frac{dN_B}{dt} = \Phi_x \sigma N_A$$

- o, Cross-section for accepting particles [barn]
 (1 barn=10⁻²⁴ cm²/neutron)
 N_A, Number of atoms A

Neutron Activation Analysis Equation

 $A + x \rightarrow B + y$

$$\frac{dN_{\text{B}}}{dt} = \Phi_{\text{x}} \ \sigma \ N_{\text{A}}$$

When the nuclide produced is radioactive, its decay has to be taken into account.

$$\frac{dN_{_B}}{dt} = \left(\Phi_{_X} \ \sigma \ N_{_A}\right) - \lambda N_{_B}$$

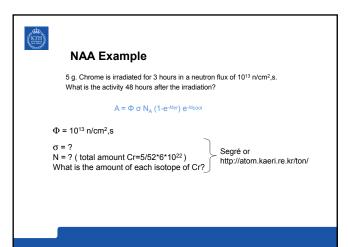
Integrate between t=0 (N_B =0) and t=t

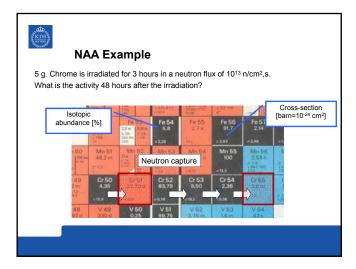
$$N_{_{\ell}} = \frac{\Phi_{_{X}} \sigma N_{_{A}}}{\lambda} \left(1 - e^{-\lambda t} \right)$$

or writing it as activity (A = N λ):

 $\mathsf{A}_\mathsf{t} = \Phi_\mathsf{x} \; \mathsf{s} \; \mathsf{N}_\mathsf{A} \; (1\text{-}\mathsf{e}^{-\lambda t})$

Neutron Activation Analysis Equation


 $A_{_{\it f}} = \Phi_{_{X}} \ \sigma \ N_{_{A}} \Big(1 - e^{-\lambda \lambda} \Big)$


The produced radionuclide will decay and we have to account for the activity loss:

 $A_{t,t'}$ = $A_t e^{-\lambda t'}$

We get

A = Φ σ N_A (1- $e^{-\lambda t_{irr}}$) $e^{-\lambda t_{cool}}$

NAA Example

5 g. Chrome is irradiated for 3 hours in a neutron flux of 10^{13} n/cm²,s. What is the activity 48 hours after the irradiation?

 $A = Φ σ N_A (1-e^{-λt_{irr}}) e^{-λt_{cool}}$

Stable Isotopes	Cr-50	Cr-52	Cr-53	Cr-54
Isotopic abundance [%]	4.35	83.79	9.5	2.36
t _{1/2} of neutron activated product	27.7 d	stable	stable	3.5 min
Cross section [barn]	15.9	0.76	18.2	0.36

Only Cr-51 will be radioactive after 48 hours

NAA Example

5 g. Chrome is irradiated for 3 hours in a neutron flux of 10^{13} n/cm²,s. What is the activity 48 hours after the irradiation?

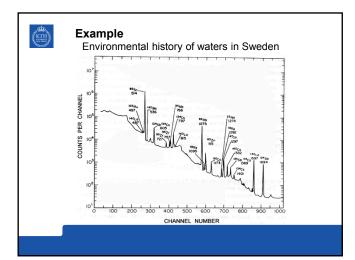
A = Φ σ N_A (1- $e^{-\lambda t_{irr}}$) $e^{-\lambda t_{cool}}$

$$\begin{split} &\Phi = 10^{13} \, n/cm^2, s \\ &\sigma = 15.9 \,^* \, 10^{-24} \, cm^2/n \\ &N = 5 \, / \, 52 \,^* \, 6^* 10^{23} \,^* \, 0.0435 = 2.5^* 10^{21} \\ &\lambda = \ln \, 2 \, / \, (27.7^* 24^* 3600) = 2.9^* 10^{-7} \, s^{-1} \\ &t_{irr} = 3^* 3600 = 10 \, 800 \, s \\ &t_{cool} = 48^* 3600 = 172 \, 800 \, s \end{split}$$

A = 1.19×10⁹ Bq

A = 1.2 GBq

Advantages with NAA


- ➤ Highly sensitive
- ➤ Nondestructive
- ${\red} \begin{tabular}{ll} \begin{tabular}{ll$
- Environmental samples
- Mineral samples
- Archeological samples

Example

Environmental history of waters in Sweden

- Mussels were collected from rivers and lakes in Sweden. Mussels build shell thicker each year; The composition of the shell reflects the water chemistry.
- Shells were sliced.
- 3. Sent to neutron irradiation source.
- Sample was measured directly at arrival from reactor (short lived nuclides dominate spectrum).
- Sample was measured 2 weeks after irradiation (short lived nuclides not present anymore).
- Evaluation of the spectra.

Workshop

Calculate tasks 3, 5, 8, 11, 13, 16

And be prepared to calculate on the whiteboard in front of the class.