DD2423 Image Analysis and Computer Vision DIGITAL GEOMETRY

Mårten Björkman
Computational Vision and Active Perception
School of Computer Science and Communication

November 11, 2013

Digital geometry

- Image histogram and image enhancement
- Binary images, thresholding
- Neighborhood concept
- Connectivity, connected components
- Distance measures
- Distance transforms
- Histogram equalization

Image enhancement by gray-level transformations

- Contrast enhancement
- Histogram equalization

Image histogram:

- Provides information about the contrast and overall intensity distribution.
- Simply a bar graph of pixel intensities.

Binary images

- Images with two colors, black and white.
- Gray-level is either 0 or 1 (255)
- Commonly referred to as 'background' and 'foreground'.
- Typically obtained from thresholding or image segmentation.

Segmentation

Simplest Image Segmentation is done by thresholding. This requires that an object has an homogenous intensity and a background with a different intensity level. Such an image can be segmented into two regions by simple thresholding:

$$
g(x, y)=\left\{\begin{array}{lc}
1 & \text { if } f(x, y)>T \\
0 & \text { otherwise }
\end{array}\right.
$$

Example:

Digital geometry

Many image processing operations are based on local neighborhood operations.

Pixels are 4-neighbours if their distance is $D_{4}=1$

Pixels are 8-neighbours if their distance is $D_{8}=1$

all 4-neighbours of center pixel
all 8-neighbours of center pixel

Connectivity

- Path: A path from p to q is a set of points $p_{0} \ldots p_{n}$, such that each point p_{i} is a neighbor of p_{i-1}.
- Connectivity: p is connected to q in S , if there is a path from p to q completely in S.

Connected components

- For every p, the set of all points q connected to p is said to be its connected component.

Recursive procedure that scans entire image:

1. for each unlabeled foreground pixel, assign it a new label L
2. assign label L to all neighboring foreground pixels
3. stop if there is no unlabeled foreground pixels

	1	1	1		1	1	1		
	1	1	1	1	1				
	1	1	1				2		
	1	1	1		1				
	1	1	1	1	1				
		3	3				4	4	
	3	3							

Connected component labeling

Regions (connected components) are often denoted by labels.

- statistics of regions (size, shape, gray-level statistics)
- size filtering (suppress objects of size $<$ threshold)

Duality of 4-connectivity and 8-connectivity

Outer boundary: set of background points with a neighbor on the object.

(left) based on 8-connectivity

(right) based on 4-connectivity

- Jordan curve theorem (continuous case):

Each closed curve divides plane into one region inside and one region outside.

- Note: Many region based methods, only store the boundary.

Duality of 4-connectivity and 8-connectivity

Figure 2.1: 4-connected neighbors.

Figure 2.2: Paradox of 4-connected neighbors.

If you separate two 4 -connected regions, the boundary between them needs to be 8 -connected, and if you separate two 8-connected regions, the boundary between them needs to be 4-connected.
But, what if the black pixels are (to be considered as) the background, while the white are the foreground?

Duality of 4-connectivity and 8-connectivity

Figure 2.3: 8-connected neighbors.
The usual solution is to use 4-connectivity for the foreground with 8 -connectivity for the background or to use 8 -connectivity for the foreground with 4 -connectivity for the background.

Duality of 4-connectivity and 8-connectivity

- If 4(8)-connectivity used for foreground
$\Rightarrow 8(4)$-connectivity used for background
- Hexagonal grid - same connectivity concept for foreground and background

Distance measures

How to define distance between two points p and q ?
Common distance measures:

- Euclidean distance $d(p, q)=\sqrt{(x-u)^{2}+(y-v)^{2}}$
- City block distance $d(p, q)=|x-u|+|y-v|$
- Chessboard distance $d(p, q)=\max (|x-u|,|y-v|)$

All three measure satisfy metric axioms

- $d(p, q) \geq 0$
- $d(p, q)=d(q, p)$
- $d(p, r) \leq d(p, q)+d(q, r)$

Distance measures

Euclidean distance

$$
\begin{array}{ccccc}
\sqrt{8} & \sqrt{5} & 2 & \sqrt{5} & \sqrt{8} \\
\sqrt{5} & \sqrt{2} & 1 & \sqrt{2} & \sqrt{5} \\
2 & 1 & 0 & 1 & 2 \\
\sqrt{5} & 1 & \sqrt{2} & 1 & \sqrt{2} \\
\sqrt{5} \\
\sqrt{8} & \sqrt{5} & 2 & \sqrt{5} & \sqrt{8}
\end{array}
$$

City block distance

$$
\begin{array}{lllll}
4 & 3 & 2 & 3 & 2 \\
3 & 2 & 1 & 2 & 3 \\
2 & 1 & 0 & 1 & 2 \\
3 & 2 & 1 & 2 & 3 \\
4 & 3 & 2 & 3 & 4
\end{array}
$$

Chessboard distance

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Distance transform

- The result is an image that shows the distance to the closest boundary from each point
- Useful for shape description, matching, skeletonization, etc

Distance transform for matching shapes

- Create distance transform from model shape $S_{\text {model }}$ represented by edges.
- Extract new shape $S_{\text {image }}$ from an image.
- Sum values in distance transform over edge points from $S_{\text {image }}$.
- Iteratively transform $S_{\text {image }}$ until sum is mimimized.

Image enhancement

- Goal: Improve the subjective quality of the image.
- Examples:
- Contrast enhancement
- Noise suppression - smoothing
- Sharpening
- Feature enhancement
- Assumption:
- no degradation model, otherwise its called restoration.

Histogram

Modification of gray-levels

- Gray-level correction (position dependent): Compensate for spatially varying illumination or exposure.

$$
f^{\prime}(x, y)=h(x, y) f(x, y)
$$

- Temporal smoothing: average multiple exposures of static scene.
- Gray-level transformations (position independent):

$$
s=T(r)
$$

where s and r and intensities after and before, and T may be

- piecewise linear, negative, logarithm or power-law transformations.

Pixel Processing

Eg: take 1 pixel case
$s=\mathrm{T}(r)$
s - output gray level, r-input gray level

a b
FIGURE 3.2 Graylevel transformation functions for contrast enhancement.

These are point to point intensity transforms

Look-Up Tables (LUT)

Often implemented with LUTs (256 entries), at least for complex functions.

Image Negative

Image Negatives

(b) is simply the negative of (a), ie

Log transformations

Useful for compressing large dynamic range and make details visible.

$$
s=c \log (1+r)
$$

Example: Fourier spectrum

$$
0 \rightarrow 1.5 \times 10^{6} \quad \text { to } \quad 0 \rightarrow 6.2
$$

Power-law transformations

A variety of devices used for image capture, printing, and display respond according to a power law.

$$
s=c r^{\gamma} \text { or } \quad s=c(r+\varepsilon)^{\gamma}
$$

Histogram Stretching

Increase contrast by letting the interval $[c, d]$ cover the entire gray-level range. Note: Information loss in $[a, c]$ and $[d, b]$.

Gray-level transformations

Common requirements on transformation function $s=T(r)$:
$T\left(r_{\text {min }}\right)=r_{\text {min }}$ (or opposite) - fills up entire range of gray-levels
$T\left(r_{\text {max }}\right)=r_{\text {max }}$
T monotonic $\Rightarrow \mathrm{T}$ invertible (no loss of information)

contrast reversal

hard stretching

stepwise linear

Common special cases

Gray-level slicing

Four images and their histograms

Histogram equalization

- Idea: Redistribute gray-levels as evenly as possible - this would correspond to a brightness distribution where all values are equally probable.
- Assume gray levels are continuous (not quantized) and have been normalized to lie between 0 and 1.
- Find transformation T that maps gray values r in the input image to gray values $s=T(r)$ in the transformed image.

Histogram equalization (continuous case)

We are looking for a transformation $s=T(r)$ such that the distribution $p_{S}(s)$ of pixel values is uniform, given a distribution from an image $p_{R}(r)$.

Known from probability theory:

$$
p_{S}(s)=\left[p_{R}(r) \frac{d r}{d s}\right]_{r=T^{-1}(s)}
$$

Let us define $T(r)$ as

$$
s=T(r)=\int_{0}^{r} p_{R}(w) d w \Rightarrow \frac{d s}{d r}=p_{R}(r)
$$

Then it follows that

$$
p_{S}(s)=\left[p_{R}(r) \frac{d r}{d s}\right]_{r=T^{-1}(s)}=\left[p_{R}(r) \frac{1}{p_{R}(r)}\right]_{r=T^{-1}(s)}=1
$$

Exercise

Assume you have an image with a histogram of grey-level values given by the distribution $p_{R}(r)=\frac{3}{5}\left(4 r-4 r^{2}+1\right), r \in[0,1]$. Find a transformation $s=T(r)$, such that the histogram after the transformation becomes $p_{S}(s)=1, s \in[0,1]$.

Exercise

Assume you have an image with a histogram of grey-level values given by the distribution $p_{R}(r)=\frac{3}{5}\left(4 r-4 r^{2}+1\right), r \in[0,1]$. Find a transformation $s=T(r)$, such that the histogram after the transformation becomes $p_{S}(s)=1, s \in[0,1]$. Answer: The transformation can be determined by computing the integral of $p_{R}(r)$, that is

$$
s=T(r)=\int_{0}^{r} p_{R}(x) d x=\frac{3}{5}\left[\frac{4}{2} x^{2}-\frac{4}{3} x^{3}+x\right]_{0}^{r}=\frac{6}{5} r^{2}-\frac{4}{5} r^{3}+\frac{3}{5} r .
$$

Since $T(1)=1$, which is a condition for $p_{R}(r)$ to be a distribution, we don't need to normalize the transformation. Its derivative, which is the same as $p_{R}(r)$, determines whether the new histogram is stretched or compressed.

Histogram equalization (discrete case)

1. Compute current histogram: count each distinct pixel value in the image.
2. Store cumulative sum of all the histogram values and normalize them by multiplying each element by (maximum-pixel-value/number of pixels)

$$
s_{k}=T\left(r_{k}\right)=\sum_{i=0}^{k} p_{r}\left(r_{i}\right)=\sum_{i=0}^{k} \frac{n_{i}}{N}, \quad 0 \leq r_{k}, s_{k} \leq 1, k=0,1,2, \ldots, 255
$$

3. Use LUT from step 2 to transform the input image.

Note! Values of s_{k} are scaled up by 255 and rounded to the nearest integer so that the output values of this transformation will range from 0 to 255 . The discretization and rounding to the nearest integer will mean that the transformed image will not have a perfectly uniform histogram.

Histogram equalization

A Worked Out Example

The table given below shows the grey level distribution of a hypothetical 32×32 image with 8 grey levels.

Table showing grey level distribution of input image

k	r_{k}	n_{k}	n_{k} / N	s_{k}
0	0.00	122	0.12	0.12
1	0.14	21	0.02	0.14
2	0.29	21	0.02	0.16
3	0.43	256	0.25	0.41
4	0.57	102	0.10	0.51
5	0.71	11	0.01	0.52
6	0.86	307	0.30	0.82
7	1.00	184	0.18	1.00
Total	-	$N=1024$	1.00	-

The following table shows the distribution of new grey levels obtained by the equalisation transformation from r_{k} to s_{k}.

Table showing grey level distribution of output image

k	s_{k}	n_{k}	n_{k} / N
0	0.00	0	0
1	0.14	164	0.16
2	0.29	0	0
3	0.43	256	0.25
4	0.57	113	0.11
5	0.71	0	0
6	0.86	307	0.30
7	1.00	184	0.18
Total	-	1024	1.00

Four images after histogram equalization

FIGURE 3.18
Transformation functions (1) through (4) were obtained from the histograms of the images in
Fig.3.17(a), using Eq. (3.3-8).

Transformation functions for previous image

Examples of transformation functions

What about colours?

- The colors we see is a combination of reflectance and illumination
- Simple model: Measured colour $(R, G, B)=\left(I_{r} R_{r}, I_{g} R_{g}, I_{b} R_{b}\right)$, where $\left(R_{r}, R_{g}, R_{b}\right)$ is reflectance and $\left(I_{r}, I_{g}, I_{b}\right)$ illumination.
- Thus is the illumination is coloured, the measured colour changes.

What about colours?

- Grey-scale image: $I=(R+G+B) / 3$ (left).
- Can be useful for image analysis.
- Color component: $\left(R_{n}, G_{n}, B_{n}\right)=(R, G, B) / I$ (right).
- Removes illumination, if illumination is assumed white, $I_{r}=I_{g}=I_{b}$.
- Very difficult to use directly due to high noise level.

Summary of good questions

- What is a 4-neighbour and how is related to connectiveness?
- What does the duality of 4 -connectivity and 8 -connectivity mean?
- What kind of distance measures exist?
- Why would you like to do image enhancement?
- Mention a typical grey-level transformation. When would you use it?
- What do histogram stretching and compression mean?
- What are the principles of histogram equalization?
- Why is most image analysis done using grey-level images?

Readings

- Gonzalez and Woods: Chapter 3.2-3.3
- Szeliski: Chapters 3.1, 3.3.3-3.3.4

