DD2423 Image Analysis and Computer Vision DIGITAL GEOMETRY

Mårten Björkman

Computational Vision and Active Perception School of Computer Science and Communication

November 11, 2013

Digital geometry

- Image histogram and image enhancement
- Binary images, thresholding
- Neighborhood concept
- Connectivity, connected components
- Distance measures
- Distance transforms
- Histogram equalization

Image enhancement by gray-level transformations

- Contrast enhancement
- Histogram equalization

Image histogram:

- Provides information about the contrast and overall intensity distribution.
- Simply a bar graph of pixel intensities.

Binary images

- Images with two colours, black and white.
- Gray-level is either 0 or 1 (255)
 - Commonly referred to as 'background' and 'foreground'.
- Typically obtained from thresholding or image segmentation.

Segmentation

Simplest Image Segmentation is done by thresholding. This requires that an object has an homogenous intensity and a background with a different intensity level. Such an image can be segmented into two regions by simple thresholding:

$$g(x, y) = \begin{cases} 1 & \text{if } f(x, y) > T \\ 0 & \text{otherwise} \end{cases}$$

Example:

Digital geometry

Many image processing operations are based on local neighborhood operations.

Pixels are 4-neighbours if their distance is $D_4 = 1$

Pixels are 8-neighbours if their distance is D₈ = 1

all 4-neighbours of center pixel

all 8-neighbours of center pixel

Connectivity

- Path: A path from p to q is a set of points $p_0 \dots p_n$, such that each point p_i is a neighbor of p_{i-1} .
- Connectivity: *p* is connected to *q* in S, if there is a path from *p* to *q* completely in S.

Connected components

• For every *p*, the set of all points *q* connected to *p* is said to be its connected component.

Recursive procedure that scans entire image:

- 1. for each unlabeled foreground pixel, assign it a new label L
- 2. assign label L to all neighboring foreground pixels
- 3. stop if there is no unlabeled foreground pixels

1	1	1		1	1	1		
1	1	1	1	1				
1	1	1				2		
1	1	1		1				
1	1	1	1	1				
	3	3				4	4	
3	3							

Connected component labeling

Regions (connected components) are often denoted by labels.

- statistics of regions (size, shape, gray-level statistics)
- size filtering (suppress objects of size < threshold)

Outer boundary: set of background points with a neighbor on the object.

(left) based on 8-connectivity

(right) based on 4-connectivity

- Jordan curve theorem (continuous case): Each closed curve divides plane into one region inside and one region outside.
- Note: Many region based methods, only store the boundary.

*

Figure 2.1: 4-connected neighbors.

Figure 2.2: Paradox of 4-connected neighbors.

If you separate two 4-connected regions, the boundary between them needs to be 8-connected, and if you separate two 8-connected regions, the boundary between them needs to be 4-connected.

But, what if the black pixels are (to be considered as) the background, while the white are the foreground?

Figure 2.3: 8-connected neighbors.

The usual solution is to use 4-connectivity for the foreground with 8-connectivity for the background or to use 8-connectivity for the foreground with 4-connectivity for the background.

- If 4(8)-connectivity used for foreground
 - \Rightarrow 8(4)-connectivity used for background
- Hexagonal grid same connectivity concept for foreground and background

Distance measures

How to define distance between two points p and q?

Common distance measures:

- Euclidean distance $d(p,q) = \sqrt{(x-u)^2 + (y-v)^2}$
- City block distance d(p,q) = |x-u| + |y-v|
- Chessboard distance $d(p,q) = \max(|x-u|, |y-v|)$

All three measure satisfy metric axioms

- $\bullet \ d(p,q) \geq 0$
- $\bullet \ d(p,q) = d(q,p)$
- $\bullet \ d(p,r) \leq d(p,q) + d(q,r)$

Distance measures

Euclidean distance

City	block	distance
------	-------	----------

4	3	2	3	2
3	2	1	2	3
2	1	0	1	2
3	2	1	2	3
4	3	2	3	4

Chessboard distance

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Distance transform

- The result is an image that shows the distance to the closest boundary from each point
- Useful for shape description, matching, skeletonization, etc

Distance transform for matching shapes

- Create distance transform from model shape *S*_{model} represented by edges.
- Extract new shape *S*_{*image*} from an image.
- Sum values in distance transform over edge points from S_{image}.
- Iteratively transform *S*_{image} until sum is mimimized.

Image enhancement

- Goal: Improve the subjective quality of the image.
- Examples:
 - Contrast enhancement
 - Noise suppression smoothing
 - Sharpening
 - Feature enhancement
- Assumption:
 - no degradation model, otherwise its called restoration.

Histogram

Modification of gray-levels

• Gray-level correction (position dependent): Compensate for spatially varying illumination or exposure.

$$f'(x,y) = h(x,y)f(x,y)$$

• Gray-level transformations (position independent):

s = T(r)

where s and r and intensities after and before, and T may be

- piecewise linear, negative, logarithm or power-law transformations.

Pixel Processing

Eg: take 1 pixel case

s = T(r)

s- output gray level, r-input gray level

These are point to point intensity transforms

Look-Up Tables (LUT)

Often implemented with LUTs (256 entries), at least for complex functions.

Image Negative

a b FIGURE 3.4 (a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Image Negatives

(b) is simply the negative of (a), ie

Log transformations

Useful for compressing large dynamic range and make details visible.

 $s = c \log(1+r)$

Example: Fourier spectrum

 $0 \rightarrow 1.5 x 10^6$ to $0 \rightarrow 6.2$

Power-law transformations

A variety of devices used for image capture, printing, and display respond according to a power law.

$$s = c r^{\gamma}$$
 or $s = c (r + \varepsilon)^{\gamma}$

Histogram Stretching

Increase contrast by letting the interval [c,d] cover the entire gray-level range. Note: Information loss in [a,c] and [d,b].

Gray-level transformations

Common requirements on transformation function s = T(r):

 $T(r_{min}) = r_{min}$ (or opposite) - fills up entire range of gray-levels

 $T(r_{max}) = r_{max}$

T monotonic \Rightarrow T invertible (no loss of information)

Gray-level slicing

a b c d FIGURE 3.11 (a) This transformation highlights range [A, B] of gray levels and reduces all others to a constant level. (b) This transformation highlights range [*A*, *B*] but preserves all other levels. (c) An image. (d) Result of using the transformation in (a).

Eg: Satellite imagery, X-ray imaging

Four images and their histograms

Histogram equalization

- Idea: Redistribute gray-levels as evenly as possible this would correspond to a brightness distribution where all values are equally probable.
- Assume gray levels are continuous (not quantized) and have been normalized to lie between 0 and 1.
- Find transformation T that maps gray values r in the input image to gray values s = T(r) in the transformed image.

Histogram equalization (continuous case)

We are looking for a transformation s = T(r) such that the distribution $p_S(s)$ of pixel values is uniform, given a distribution from an image $p_R(r)$.

Known from probability theory:

$$p_S(s) = \left[p_R(r) \frac{dr}{ds} \right]_{r=T^{-1}(s)}$$

Let us define T(r) as

$$s = T(r) = \int_0^r p_R(w) dw \Rightarrow \frac{ds}{dr} = p_R(r)$$

Then it follows that

$$p_{S}(s) = \left[p_{R}(r) \frac{dr}{ds}\right]_{r=T^{-1}(s)} = \left[p_{R}(r) \frac{1}{p_{R}(r)}\right]_{r=T^{-1}(s)} = 1$$

Exercise

Assume you have an image with a histogram of grey-level values given by the distribution $p_R(r) = \frac{3}{5}(4r - 4r^2 + 1)$, $r \in [0,1]$. Find a transformation s = T(r), such that the histogram after the transformation becomes $p_S(s) = 1$, $s \in [0,1]$.

Exercise

Assume you have an image with a histogram of grey-level values given by the distribution $p_R(r) = \frac{3}{5}(4r - 4r^2 + 1)$, $r \in [0,1]$. Find a transformation s = T(r), such that the histogram after the transformation becomes $p_S(s) = 1$, $s \in [0,1]$. *Answer: The transformation can be determined by computing the integral of* $p_R(r)$, that is

$$s = T(r) = \int_0^r p_R(x) dx = \frac{3}{5} \left[\frac{4}{2}x^2 - \frac{4}{3}x^3 + x \right]_0^r = \frac{6}{5}r^2 - \frac{4}{5}r^3 + \frac{3}{5}r^3$$

Since T(1) = 1, which is a condition for $p_R(r)$ to be a distribution, we don't need to normalize the transformation. Its derivative, which is the same as $p_R(r)$, determines whether the new histogram is stretched or compressed.

Histogram equalization (discrete case)

- 1. Compute current histogram: count each distinct pixel value in the image.
- 2. Store cumulative sum of all the histogram values and normalize them by multiplying each element by (maximum-pixel-value/number of pixels)

$$s_k = T(r_k) = \sum_{i=0}^k p_r(r_i) = \sum_{i=0}^k \frac{n_i}{N}, \quad 0 \le r_k, s_k \le 1, \ k = 0, 1, 2, \dots, 255$$

3. Use LUT from step 2 to transform the input image.

Note! Values of s_k are scaled up by 255 and rounded to the nearest integer so that the output values of this transformation will range from 0 to 255. The discretization and rounding to the nearest integer will mean that the transformed image will not have a perfectly uniform histogram.

Histogram equalization

A Worked Out Example

The table given below shows the grey level distribution of a hypothetical 32×32 image with 8 grey levels.

Table showing grey level distribution of input image

The following table shows the distribution of new grey levels obtained by the equalisation transformation from r_k to s_k .

Table showing grey level distribution of output image

k	r_k	n_k	n_k/N	Sk
0	0.00	122	0.12	0.12
1	0.14	21	0.02	0.14
2	0.29	21	0.02	0.16
3	0.43	256	0.25	0.41
4	0.57	102	0.10	0.51
5	0.71	11	0.01	0.52
6	0.86	307	0.30	0.82
7	1.00	184	0.18	1.00
Total	-	N=1024	1.00	

k	Sk	n_k	n_k/N
0	0.00	0	0
1	0.14	164	0.16
2	0.29	0	0
3	0.43	256	0.25
4	0.57	113	0.11
5	0.71	0	0
6	0.86	307	0.30
7	1.00	184	0.18
Total	λ.	1024	1.00

Four images after histogram equalization

Transformation functions for previous image

Examples of transformation functions

What about colours?

- The colours we see is a combination of reflectance and illumination
- Simple model: Measured colour $(R, G, B) = (I_r R_r, I_g R_g, I_b R_b)$, where (R_r, R_g, R_b) is reflectance and (I_r, I_g, I_b) illumination.
- Thus is the illumination is coloured, the measured colour changes.

What about colours?

• Grey-scale image: I = (R + G + B)/3 (left).

- Can be useful for image analysis.

- Colour component: $(R_n, G_n, B_n) = (R, G, B)/I$ (right).
 - Removes illumination, if illumination is assumed white, $I_r = I_g = I_b$.
 - Very difficult to use directly due to high noise level.

Summary of good questions

- What is a 4-neighbour and how is related to connectiveness?
- What does the duality of 4-connectivity and 8-connectivity mean?
- What kind of distance measures exist?
- Why would you like to do image enhancement?
- Mention a typical grey-level transformation. When would you use it?
- What do histogram stretching and compression mean?
- What are the principles of histogram equalization?
- Why is most image analysis done using grey-level images?

Readings

- Gonzalez and Woods: Chapter 3.2 3.3
- Szeliski: Chapters 3.1, 3.3.3-3.3.4