
SF1624 Algebra och geometri
Lösningsf̈orslag till tentamen 2011-06-09

DEL A

(1) Betrakta ekvationssystemet






x − y − 4z = 2
2x + 3y + z = 2
3x + 2y − 3z = c

därc är en konstant ochx, y ochz är de tre obekanta.
(a) Visa att det inte finns någon lösning till ekvationssystemet omc = 2. (2)
(b) Bestäm det värde på konstantenc som gör att systemet har minst en lösning och

ange lösningsmängden i detta fall. (2)

Lösning. (a) Totalmatrisen till ekvationssystemet är




1 −1 −4 2
2 3 1 2
3 2 −3 c



 .

När vi utför Gausselimination på matrisen får vi i de första stegen:




1 −1 −4 2
2 3 1 2
3 2 −3 c



 ∼





r1

r2 − 2r1

r3 − 3r1



 ∼





1 −1 −4 2
0 5 9 −2
0 5 9 c − 6



 ∼





r1

r2

r3 − r2









1 −1 −4 2
0 5 9 −2
0 0 0 c − 4



 .

Det är nu klart att ekvationssystemet inte har någon lösning omc 6= 4, och speciellt
har ekvationssystemet ingen lösning medc = 2.

(b) Av beräkningarna ovan har vi att ett nödvändigt krav på konstantenc är c = 4. När
vi sätter inc = 4 och fullföljer Gausseliminationen får vi





1 −1 −4 2
0 5 9 −2
0 0 0 0



 ∼





r1 + 1

5
r2

1

5
r2

r3



 ∼





1 0 11

5

8

5

0 1 9

5
−2

5

0 0 0 0



 .
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Detta ger attz = t, där t är en reell parameter, och atty = −2

5
− 9

5
t och attx =

8

5
+ 11

5
t. Lösningsmängden kan beskrivas som

(x, y, z) =

(

8

5
+ 11t,−2

5
− 9t, 5t

)

, t ∈ R.

�

Svar:
(b) Systemet har lösningar bara omc = 4 och då kan dessa skrivas som(x, y, z) =

(

8

5
+ 11t,−2

5
− 9t, 5t

)

för en reell parametert.
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(2) (a) Definiera vad det betyder att tre vektoreru, v ochw i R
4 är linjärt oberoende. (1)

(b) Avgör om följande tre vektorer iR4 är linjärt oberoende:

u = (1,−1, 1,−1), v = (1, 2,−2,−1) och w = (1,−4, 4,−1).

(2)
(c) Bestäm en bas till det underrum (delrum) iR

4 som spänns upp av de tre ovanstående
vektorernau, v ochw. (1)

Lösning. (a) De tre vektorernau, v och w sägs varalinj ärt oberoendeom den enda
lösningen till

x1 · u + x2 · v + x3 · w = 0

är (x1, x2, x3) = (0, 0, 0). Om det däremot finns en lösning där inte alla de tre talen
x1, x2 ochx3 är noll, så sägsu, v ochw varalinj ärt beroende.

(b) Nu ska avgöras om

x1 · (1,−1, 1,−1) + x2 · (1, 2,−2,−1) + x3 · (1,−4, 4,−1) = (0, 0, 0, 0)

har några andra lösningar än(x1, x2, x3) = (0, 0, 0).
Detta är ett linjärt ekvationssystem, ix1, x2 ochx3, med totalmatrisen









1 1 1 0
−1 2 −4 0

1 −2 4 0
−1 −1 −1 0









,

och med hjälp av Gauss-Jordans metod får vi








1 1 1 0
−1 2 −4 0

1 −2 4 0
−1 −1 −1 0









∼









r1

r2 + r1

r3 − r1

r4 + r1









∼









1 1 1 0
0 3 −3 0
0 −3 3 0
0 0 0 0









∼









r1

1

3
r2

r3 + r2

r4









∼









1 1 1 0
0 1 −1 0
0 0 0 0
0 0 0 0









∼









r1 − r2

r2

r3

r4









∼









1 0 2 0
0 1 −1 0
0 0 0 0
0 0 0 0









.

Den fullständiga lösningen till detta system erhålls genom att sätta denfria variabeln
x3 till ett godtyckligt talt och sedan uttrycka de bådabundnavariablernax1 ochx2

(trappstegsvariablerna’) i t. Detta ger att(x1, x2, x3) = (−2t, t, t) = t · (−2, 1, 1).
Med exempelvist = 1 blir (x1, x2, x3) = (−2, 1, 1), vilket betyder att−2 · u + 1 ·
v + 1 · w = 0 och slutsatsen blir attu, v ochw är linjärt beroende.

(c) En godtycklig vektory i det underrumM som spänns upp avu, v ochw kan skrivas
på formeny = x1 · u + x2 · v + x3 · w, för några talx1, x2 och x3, dvs som en
linjärkombination avu, v ochw.
Men eftersom, enligt (b)-uppgiften,w = −2 · u + 1 · v, så får vi att

y = (x1 − 2x3) · u + (x2 + x3) · v,
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dvs en linjärkombination av enbartu ochv. Det innebär attu ochv spänner upp det
aktuella underrummetM .
Dessutom äru ochv linjärt oberoende, eftersom två vektorer som inte är parallella,
och där ingen av dem är nollvektorn, är linjärt oberoende
Vi har alltsåu ochv dels spänner uppM , dels är linjärt oberoende. Därmed utgör
de en bas till det aktuella underrummetM .

�

Svar:
(b) De tre vektorerna är linjärt beroende.
(c) De två vektorernau ochv utgör en bas förV .
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(3) Betrakta den symmetriska matrisen

A =





−2 −8 2
−8 4 −10

2 −10 7



 .

(a) Visa att vektorernau = (1,−2, 2) och v = (−2, 1, 2) är egenvektorer tillA och
ange motsvarande egenvärden. (2)

(b) Eftersom matrisen är symmetrisk kommer ocksåu× v att vara en egenvektor. Kon-
trollera detta och använd det för att hitta en basbytesmatris P sådan attP−1AP är
en diagonalmatris. (2)

Lösning. (a) Vi har

Au =





−2 −8 2
−8 4 −10

2 −10 7









1
−2

2



 =





18
−36

36



 = 18u

och

Av =





−2 −8 2
−8 4 −10

2 −10 7









−2
1
2



 =





0
0
0



 = 0 · v

såu ochv är egenvektorer med egenvärdena18 respektive0.
(b) Vi beräknar kryssprodukten

u× v = (1,−2, 2) × (−2, 1, 2)
= (−2 · 2 − 2 · 1, 2 · (−2) − 1 · 2, 1 · 1 − (−2) · (−2)) = (−6,−6,−3).

För att kontrollera att detta är en egenvektor kan vi dela med den gemensamma
faktorn−3 och får medw = (2, 2, 1) att

Aw =





−2 −8 2
−8 4 −10

2 −10 7









2
2
1



 =





−18
−18
−9



 = (−9) · w.

vilket verifierar attu × v är en egenvektor med egenvärde−9. Vi har nu tre egen-
vektorer med olika egenvärden och dessa bildar därmed en bas förR3 och använder
vi dem som kolonner i basbytesmatrisen

P =





1 −2 2
−2 1 2

2 2 1





så vet vi att vi ska få

P−1AP =





18 0 0
0 0 0
0 0 −9





utan att behöva utföra invertering och matrismultiplikationer.
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�

Svar:
(a) u är en genevektor med egenvärde18 ochv är en egenvektor med egenvärde0.
(b) En basbytesmatris som diagonaliserarA ges av

P =





1 −2 2
−2 1 2

2 2 1




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DEL B

(4) Två plan i rummet sägs skära varandra under rät vinkel om deras normalvektorer är
ortogonala mot varandra. Bestäm en ekvation för det plan iR

3 som innehåller linjen
(x, y, z) = (2, 1, 0)+ t · (1, 3, 1) och som skär planet med ekvation2x+ z− 3 = 0 under
rät vinkel. (4)

Lösning.Vi ansätter ekvationenax + by + cz = d för vårt sökta plan, där vi alltså ska
bestämma konstanternaa, b, c ochd. En normalvektor till detta plan är vektorn(a, b, c).

Denna normalvektor(a, b, c) måste dels vara ortogonal mot normalvektorn(2, 0, 1) till
det plan som vårt sökta plan enligt uppgiften skär under rät vinkel, dels vara ortogonal
mot riktningsvektorn(1, 3, 1) till den linje som vårt plan enligt uppgiften innehåller.En
normalvektor(a, b, c) till vårt sökta plan kan därför bestämmas med hjälp avkrysspro-
dukt:

(a, b, c) = (2, 0, 1) × (1, 3, 1) = (0 · 1 − 1 · 3, 1 · 1 − 2 · 1, 2 · 3 − 0 · 1) = (−3,−1, 6).

Det återstår att bestämma konstantend svarande mot denna normalvektor. Eftersom
vi enligt uppgiften vet att vårt sökta plan innehåller punkten(2, 1, 0) (som ligger på den
givna linjen), så får vi attd = −3 · 2 − 1 · 1 + 6 · 0 = −7.

En ekvation för vårt plan är alltså

−3x − y + 6z = −7.

�

Svar: En ekvation för det sökta planet ges av−3x − y + 6z = −7.
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(5) Man vill använda minsta-kvadratmetoden för att uppskatta parametrarna i en modell där
en storhetz beror på storheternax och y enligt z = f(x, y) = ax + by + c. Efter nio
mätningar har man följande tabell av mätvärden:

x 0 0 0 1 1 1 2 2 2
y 0 1 2 0 1 2 0 1 2
z −5 −3 1 −4 −2 1 −1 1 4

Tre olika ingenjörer har angripit problemet och kommit fram till tre olika lösningar. In-
genjör A säger att det bästa valet är(a, b, c) = (3, 3,−7), Ingenjör B talar för(a, b, c) =
(2, 3,−6) och Ingenjör C för(2, 2,−5).
(a) Vilken av ingenjörerna har lyckats bäst i minsta-kvadratmening? (2)
(b) Har någon av dem räknat fram den korrekta minsta-kvadratlösningen? (2)

Lösning. (a) Vi ställer upp problemet som ett överbestämt linjärt ekvationssystem i de
tre obekanta,a, b ochc.



















































c = −5
b + c = −3

2b + c = 1
a + c = −4
a + b + c = −2
a + 2b + c = 1

2a + c = −1
2a + b + c = 1
2a + 2b + c = 4

Om vi sätter in de tre ingenjörerenas resultat i vänsterledet får vi vektorerna(−7,−4,−1,−4,−1, 2
(−6,−3, 0,−4,−1, 2,−2, 1, 5) respektive(−5,−3,−1,−3,−1, 1,−1, 1, 3).
Skillnadsvektorerna mellan vänsterled och högerled blir (2, 1, 2, 0,−1,−1, 0,−1,−1),
(1, 0, 1, 0,−1,−1, 1, 0, 0) respektive(0, 0, 2,−1,−1, 0, 0, 0, 1). I minsta-kvadratmetoden
handlar det om att minimera längden av denna skillnadvektor, som för de tre in-
genjörerna blir

√
13,

√
5 och

√
7. Alltså är det IngenjörB som kommit närmast.

(b) Den minsta-kvadratlösningen ges av de värden på parametrarna som ger kortaste
skillnadsvektor mellan vänsterled och högerled. Detta händer när denna vektor är
ortogonal mot kolonnrummet till koefficientmatrisen, vilket framgår avnormalekva-
tionenATAx = ATb. I vårt fall får vi

ATA =





15 9 9
9 15 9
9 9 9



 och ATAb =





3
8

−8





Eftersom Ingenjör B gav bäst parametrar enligt del (a) räcker det att kolla dessa
värden. När vi sätter in desssa parametrar i vänsterledet i normalekvationen får vi





15 9 9
9 15 9
9 9 9









2
3

−6



 =





3
9

−9



 6=





3
8

−8




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Alltså är det ingen som har fått en lösning till normalekvationen.
�

Svar:
(a) Ingenjör B kom närmast.
(b) Ingen av dem hade den korrekta minsta-kvadratlösningen.
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(6) Vi har attB = {f1, f2} är en bas för ett underrumV i R
5. Vi har två vektorerg1 ochg2 i

V som tillsammans medf1 ochf2 uppfyller relationerna
{

f1 + 2g1 = 3g2,
2f2 − 4g1 = f1.

(a) Visa attB′ = {g1, g2} också bildar en bas förV . (2)
(b) Bestäm koordinaterna till vektorn2f1 − 5f2 i basenB′ = {g1, g2}. (2)

Lösning. (a) Av de givna relationerna har vi attf1 = −2g1 + 3g2 och att

f2 = 2g1 +
1

2
f1 = 2g1 +

1

2
(−2g1 + 3g2) = g1 +

3

2
g2.

Vi har attB = {f1, f2} är en bas för vektorrummetV . Detta betyder att varje vektor
i V kan skrivas som en linjärkombination avf1 och f2. Av relationerna ovan kanf1
och f2 skrivas som en linjärkombination avg1 ochg2. Detta betyder att det linjära
höljet

Span(g1, g2) = V.

Vi har att dimensionen tillV är två, vilket medför attg1 ochg2 måste vara linjärt
oberoende. Med andra ord är{g1, g2} en bas förV .

(b) Från relationerna ovan har vi att

2f1 − 5f2 = 2(−2g1 + 3g2) − 5(g1 +
3

2
g2) = −9g1 −

3

2
g2.

Detta betyder att koordinatmatrisen till2f1 − 5f2 i basen{g1, g2} är
[

−9
−3

2

]

.

�

Svar:
(b) Koordinaterna för vektorn2f1 −5f2 är (−9,−3/2) med avseende på basen{g1, g2}.
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DEL C

(7) Låt V vara det tvådimensionella delrum avR
4 som utgör lösningsmängden till det ho-

mogena linjära ekvationssystemet
{

x1 + x2 + x3 + x4 = 0,
x1 − x2 + x3 + x4 = 0.

Den ortogonala projektionenT : R
4 −→ V är en linjär avbildning och kan beskrivas med

hjälp av en matris om vi väljer en bas för domänenR
4 och en bas för målrummetV . För

R
4 är det naturligt att välja standardbasen, men det går också att välja andra baser.

(a) Bestäm en ortogonal basB för V (2)
(b) Bestäm matrisen för avbildningenT med avseende på någon vald bas förR

4 och
basenB för V . (2)

Lösning. (a) DelrummetV är tydligen nollrummet till matrisen

A =

[

1 1 1 1
1 −1 1 1

]

.

Vi ska bestämma en ortogonal bas till detta nollrum och startar därför med att
bestämma en bas (som kanske inte är ortogonal). Med hjälpav några elementära
radoperationer (Gauss-Jordan) överförs den givna matrisenA till reducerade trapp-
stegsform:

A =

[

1 1 1 1
1 −1 1 1

]

−→
[

1 0 1 1
0 1 0 0

]

= R.

MatrisenR är på reducerad trappstegsform med två trappstegsettor.
Nollrummet till en matris påverkas inte av elementära radoperationer, så nollrum-
men till A och R är desamma. Den fullständiga lösningen till systemetRx = 0

erhålls genom att sätta de fria variablernax3 och x4 till s respektivet, och sedan
uttrycka de bundna variablernax1 ochx2 i parametrarnas ocht. Detta ger att
(x1, x2, x3, x4) = (−s − t, 0, s, t) = s · (−1, 0, 1, 0) + t · (−1, 0, 0, 1).
Ur detta följer att de båda vektorerna(−1, 0, 1, 0) och(−1, 0, 0, 1) utgör en bas för
nollrummet till matrisenR, och därmed även för nollrummet till matrisenA, och
därmed även för delrummetV .
Med Gram-Schmidts metod erhålls sedan att en ortogonal basB = {v1,v2} till V
ges avv1 = (−1, 0, 1, 0) och

v2 = (−1, 0, 0, 1) − 1

2
· (−1, 0, 1, 0) = (−1

2
, 0,−1

2
, 1).

(b) Antag att vi som bas förR4 väljer standardbasen{e1, e2, e3, e4}, där t exe2 =
(0, 1, 0, 0), medan vi som bas förV väljer basenB = {v1,v2} från (a)-uppgiften.
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Matrisen för avbildningenT (ortogonala projektionen påV ) svarande mot dessa
baser är en2×4-matris varsj:te kolonn är[T (ej)]B, dvs kordinaterna i basenB för
den ortogonala projektionen av basvektornej påV .
Eftersom basvektorernav1 ochv2 är ortogonala så ges ortogonala projektionen av
ej påV av vektorn

(

v1 · ej

v1 · v1

)

· v1 +

(

v2 · ej

v2 · v2

)

· v2,

vars koordinater i basenB är v1·ej

v1·v1

resp v2·ej

v2·v2

.
Vår sökta matris är alltså









v1 · e1

v1 · v1

v1 · e2

v1 · v1

v1 · e3

v1 · v1

v1 · e4

v1 · v1

v2 · e1

v2 · v2

v2 · e2

v2 · v2

v2 · e3

v2 · v2

v2 · e4

v2 · v2









=











−1

2
0

1

2
0

−1

3
0 −1

3

2

3











=
1

6

[

−3 0 3 0
−2 0 −2 4

]

.

�

Svar:
(a) En ortogonal bas förV ges exempelvis avv1 = (−1, 0, 1, 0) ochv2 = (−1/2, 0,−1/2, 1).
(b) Matrisen för avbildningenT blir

1

6

[

−3 0 3 0
−2 0 −2 4

]

om man väljer standardbasen iR
4 och basenB i V .
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(8) LåtS = {(x, y, z)|x2 + y2 + z2 = 1} vara enhetssfären i det tredimensionlla rummetR
3.

En storcirkelpåS är skärningen mellanS och ett plan genom origo iR3. Låt P vara en
given punkt på sfärenS.
(a) Låt Q vara en annan punkt på sfären. Visa att det alltid finns minst en storcirkel

genomP ochQ. (2)
(b) Bestäm de punkter,Q, på sfären sådana att det finns enunikstorcirkel genomP och

Q. (2)

Lösning. (a) Det finns alltid ett plan som innehåller tre punktP , Q och origo. Detta kan
vi se på följande sätt. Ett plan genom origo ges som nollställemängden tillax+ by +
cz = 0, för något trippela, b ochc - inte all lika med noll. LåtP = (p1, p2, p3) och
Q = (q1, q2, q3) vara två punkt på sfären. Ett plan genom punkternaP ochQ och
origo skall satisfiera följande ekvationssystem

{

ap1 + bp2 + cp3 = 0
aq1 + bq2 + cq3 = 0

Detta är ett homogent ekvationssystem i tre okändaa, b ochc. Då ekvationssystemet
består av enbart två ekvationer kommer det finnas icke-triviala lösningar till ekva-
tionssystemet. Varje så dan icke-trivial lösning bestämmer en ekvation för ett plan
som kommer innehålla punkternaP , Q och origo. Skärningen av ett sådant plan med
sfären ger en storcirkel genomP ochQ.

(b) Tre punkter origoO, P ochQ spänner upp ett unikt plan i om och endast omOP
och OQ är linjär oberoende. Dessa två vektorerOP och OQ är linjärt oberoende
om och endast om de inte ligger på samma linje genom origoO. Två punkterP och
Q på enhetssfären ligger på samma linje genom origo om och endast om antingen
P = Q eller om punkterna är antipodalaQ = −P . Detta betyder att om punkten
P = (p1, p2, p3) är given. Då finns det ett unikt plan genomP ochQ och origo, om
och endast omQ 6= P ochQ 6= (p1,−p2,−p3). Och enbart i dessa fall vill det finnas
en unik storcirkel genomP ochQ.

�
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(9) Om vi har en triangel med hörn i punkternaA, B och C i R
3 är det intressant inom

datorgrafik att avgöra om en ljusstråle från origo,O, till en punkt P passerar utanför
triangeln, eller fångas upp av triangeln.
(a) Om triangeln inte ligger i ett plan genom origo kan vi bytabas till {u,v,w}, där

u = OA, v = OB ochw = OC. När vi uttrycker vektornOP i denna bas kan vi se
på koordinaterna ifall linjen genomO ochP går genom triangeln. Hur? (1)

(b) Vi kan också se på dessa koordinater omP ligger på samma sida om triangeln som
O, i vilket fall strålen ändå når tillP utan att träffa triangeln. Hur? (1)

(c) Illustrera metoden ovan genom att utföra räkningarnaför triangeln med hörn iA =
(5, 5, 0), B = (5, 0, 5) ochC = (0, 5, 5) och de tre punkternaP1 = (3, 5, 3), P2 =
(3, 6, 2) ochP3 = (2, 4, 3). (2)

Lösning. (a) När vi byter bas kommer triangeln i det nya koordinatsystemet att ha hörn
i punkterna(1, 0, 0), (0, 1, 0) och(0, 0, 1). Triangeln är alltså skärningen mellan pla-
netx+ y + z = 1 och den positiva oktanten. Att en stråle från origo till enpunkt går
genom triangeln svarar därför precis mot att alla koordinater är positiva.

(b) För att se om strålen kommer fram eller inte ser vi om dennår fram i det nya syste-
met, vilket innebär att summan av koordinaterna är minst ett i och med att triangeln
ligger i planetx + y + z = 1.

(c) När vi har punkternaA = (5, 5, 0), B = (5, 0, 5) ochC = (0, 5, 5) får vi basbytes-
matris från den nya basen till standardbasen som

P =





5 5 0
5 0 5
0 5 5





och för att få reda på de nya koordinaterna för punkternaP1, P2 ochP3 behöver vi
multiplicera dessa koordinatvektorer med inversenP . Vi kan också lösa det genom
Gausselimination på totalmatrisen med de tre koordinatvektorerna som högerled.





5 5 0 3 3 2
5 0 5 5 6 4
0 5 5 3 2 3



 ∼





r1

r2 − r1

r3



 ∼





5 5 0 3 3 2
0 −5 5 2 3 2
0 5 5 3 2 3



 ∼





r1 + r2

−r2

r2 + r3





∼





5 0 5 5 6 4
0 5 −5 −2 −3 −2
0 0 10 5 5 5



 ∼





2r1 − r3

2r2 + r3

r3



 ∼





10 0 0 5 7 3
0 10 0 1 −1 1
0 0 10 5 5 5





Alltså blir de nya koordinaterna för punkterna(1/2, 1/10, 1/2), (7/10,−1/10, 1/2)
och (3/10, 1/10, 1/2). I det första och sista fallet är alla koordinater positiva och
strålen går genom triangeln, medan den i det andra fallet går utanför. Summan av
koordinaterna är11/10, 11/10 och9/10. Alltså når strålen inte fram i det sista fallet.
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