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Linear Systems

Image processing operations can be modeled by utilizing linear
systems theory. A linear system obeys the principle of superposition:

Homogeneity (scalar rule): an increase in strength of the input,
increases the output/response for the same amount.
Additivity: if the input consists of two signals, the output/response
is equal to the sum of the individual responses.
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Linear systems

Additional properties:
Shift-invariance: If a system is given two impulses with a time
delay, the response remains the same except for time difference.
Signals can be represented as sums of impulses of different
strenghts (image intensities), shifted in time (image space).
If we know how system responds to an impulse, we know how it
reacts to combination of impulses: impulse-response function.
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Notation

Assume f and f ′ are 2D images, then f L
=⇒ f ′ = L(f ),

where L is an operator that ”converts” the input f into the output f ′.

Linear operator L satisfies
Homogeneity: L(α f (x ,y)) = αL(f (x ,y)); α ∈ R
Additivity: L(f (x ,y) + g(x ,y)) = L(f (x ,y)) + L(g(x ,y)); x ,y ∈ R

Given
g→ L → L(g)

f → L → L(f )

we have
(αf + βg)→ L → αL(f ) + βL(g)
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Linear Shift Invariant Systems

L is called shift-invariant, if and only if a shift (translation) of the input
causes the same shift of the output:

f (x ,y)→ L → L(f (x ,y))

f (x−x0,y −y0)→ L → L(f (x−x0,y −y0))

Alternative formulation: L commutes with a shift operator S

→ L → S → same as → S → L →

L

L

(f)S

S

L(f)

S

f

same!
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Linear filtering in image processing

Using digital linear filters to modify pixel values based on some pixel
neighborhoods. Linear means linear combination of neighbors.

Linear methods simplest.
Can combine linear methods in any order to achieve same result.
May be easier to invert.

Useful to:
Integrate information over larger regions.
Blur images to get rid of noise.
Detect changes (edge detection).
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Linear image filtering

Estimate an output image by modifying pixels in the input image
using a function of a local pixel neighborhood.
The neighborhood and the corresponding linear weights per pixel
is called a convolution kernel.

9 5 3
4 5 1
1 1 7

some function
=⇒ 9

9 5 3
4 5 1
1 1 7

*
0 -1 0
-1 4 -1
0 -1 0

= 9
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Convolution

Convolution is a tool to build linear shift invariant (LSI) filters.
Mathematically, a convolution is defined as the integral over space
of one function at α, times another function at x−α.

f(x)∗g(x) =
∫

α∈Rn
f(α)g(x−α)dα = g(x)∗ f(x) =

∫
α∈Rn

g(α)f(x−α)dα

Convolution operation is commutative!
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Convolutions as weighted sums

Way of considering convolution: weighted sum of shifted copies of one
function, with weights given by the function value of the second
function at the shift vector.
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Theorem 1

Every shift invariant linear operator can be written as a convolution

L(f) = g∗ f

Continuous case

L(f(x)) =
∫

α∈Rn
g(α)f(x−α)dα

Discrete case
L(f(x)) = ∑

α∈Rn
g(α)f(x−α)
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Convolution (discrete case)

The convolution of an image f (x ,y) with a kernel h(x ,y ) is

g(x ,y) = h(x ,y)∗ f (x ,y) =
M

∑
m=−M

N

∑
n=−N

h(m,n) f (x−m,y −n)

Convolution kernel h(x ,y) represented as a matrix and is also
called:

impulse response,
point spread function,
filter kernel,
filter mask,
template...
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Convolution (filtering)

Frame mask over image - multiply mask values by image values
and sum up the results - a sliding dot product.

For mathematical correctness: From the definition, the kernel first
has to be flipped x-wise and y -wise. People are sloppy though.
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Convolution: 1D example

If
F1 = [1 2 3 4 5]

F2 = [1 2 1 2 1]

G1 = [−1 2 −1]

G2 = [1 2 3]

then
F1 ∗G1 = [−1 0 0 0 0 6 −5]

F2 ∗G1 = [−1 0 2 −2 2 0 −1]

F1 ∗G2 = [1 4 10 16 22 22 15]

F2 ∗G2 = [1 4 8 10 8 8 3]

Note1: outside the windows, values are assumed to be zero.
Note2: normally you assume x = 0 at center of filter kernel.
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Convolution: 1D example

F1 = [1 2 3 4 5]

G2 = [1 2 3]

1 2 3 4 5
* 1 2 3

3 6 9 12 15
2 4 6 8 10

+ 1 2 3 4 5
1 4 10 16 22 22 15

An easier way of doing it! Almost like regular multiplication.
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Convolution: 2D example

Convolution of two images: since the squares have the same
image and size, their convolution creates a gradient with the
brightest spot in the center.
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Sampling

Our signals (images) are not in a continuous domain, but in a discrete.
A continuous function f (x ,y) (an image) can be sampled using a
discrete grid of sampling points.
The image is sampled at points (j∆x ,k∆y), with j = 1, ...,M and
k = 1, ...,N, where is (M,N) is the size of the image in pixels.
Here ∆x and ∆y are called the sampling interval.
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Sampling
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Sampling

Dirac (continuous domain) and Kronecker (discrete) delta functions.
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Sampling

The ’sifting property’ of the dirac function provides a value of the
function f (x ,y) at point (a,b)∫

∞

−∞

∫
∞

−∞

f (x ,y)δ(x−a,y −b)dxdy = f (a,b)

The sifting property can be used to describe the sampling process
of a continuous function f (x ,y).
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Sampling

The ideal sampling s(x ,y) in the regular grid can be represented
using a collection of Dirac functions δ.

s(x ,y) =
M

∑
j=1

N

∑
k=1

δ(x− j∆x ,y −k∆y)
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Sampling

The sampled image fs(x ,y) is the product of the continuous image
f (x ,y) and the sampling function s(x ,y).

fs(x ,y) = f (x ,y)s(x ,y) = f (x ,y)
M

∑
j=1

N

∑
k=1

δ(x− j∆x ,y −k∆y) =

=
M

∑
j=1

N

∑
k=1

f (j∆x ,k∆y)δ(x− j∆x ,y −k∆y)

Note: Sampling is not a convolution, but a product f (x ,y)s(x ,y).

Mårten Björkman (CVAP) Linear Operators and Fourier Transform November 13, 2013 21 / 40



Sampling

Sources of error during sampling:
Intensity quantization (not enough intensity resolution).
Spatial aliasing (not enough spatial resolution).
Temporal aliasing (not enough temporal resolution).

Sampling Theorem answers (more later):
How many samples are required to describe the given signal
without loss of information?
What signal can be reconstructed given the current sampling rate?
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Aliasing and anti-aliasing

Artifacts produced by under-sampling or poor reconstruction.
Fine structures disappear and distort coarser structure.
Spatial and temporal aliasing.
Anti-aliasing: sample at higher rate or prefiltering.
Tools: Fourier transform, convolution and sampling theory.
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Example: Aliasing
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Example: Aliasing

Low pass filtering (blurring) important!
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Signal decomposition

In 1807 Jean Baptiste Fourier showed that any periodic signal
could be represented by a series/sum of sine waves with
appropriate amplitude, frequency and phase.
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The Fourier transform

The Fourier transform is an equation to calculate the frequency,
amplitude and phase of each sine wave needed to make up any
given signal.
The Fourier transform converts a signal (image) between its
spatial and frequency domain representations.
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The Fourier transform

The output of the transformation represents the image in the
Fourier or frequency space.
In the Fourier space image, each point represents a particular
frequency contained in the original spatial domain image.
The Fourier Transform is used in a wide range of applications,
such as image analysis, image filtering, image reconstruction and
image compression
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Images and spatial frequency

The spatial frequency of an image refers to the rate at which the
pixel intensities change.
The easiest way to determine the frequency composition of
signals is to inspect that signal in the frequency domain.
The frequency domain shows the magnitude of different frequency
components.
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Change of basis functions

An image can be viewed as a spatial array of gray level values,
but can also thought of as a spatially varying function.
Decompose the image into a set of orthogonal basis functions.
When basis functions are combined (linearly) the original function
will be reconstructed.
Spatial domain: basis consists of shifted Dirac functions.
Fourier domain: basis consists of complex exponential functions.
The Fourier transform is “just” a change of basis functions.
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Change of basis functions

Assume you have a vector
1
2
3
4

 = 1


1
0
0
0

+ 2


0
1
0
0

+ 3


0
0
1
0

+ 4


0
0
0
1


This may be expressed with another basis (e.g. Haar wavelet).

1
2
3
4

 = 2.5


1
1
1
1

−1


1
1
−1
−1

−0.5


1
−1

0
0

−0.5


0
0
1
−1


The only condition is that the basis vector are orthogonal.
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Fourier transform

F (f(x)) =
∫

x∈Rn
f(x)e−iωT xdx = f̂(ω)

F −1(̂f(ω)) =
1

(2π)n

∫
ω∈Rn

f̂(ω)eiωT xdω

eiωT x = cosω
T x + i sinω

T x

Terminology:
Frequency spectrum : f̂(ω) = Re(ω) + i Im(ω) =| f̂(ω) | eiφ(ω)

Fourier spectrum: | f̂(ω) |=
√

Re2(ω) + Im2(ω)

Power spectrum: | f̂(ω) |2

Phase angle: φ(ω) = arg f̂(ω) = tan−1 Im(ω)
Re(ω)
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Terminology

Angular frequency ω = (ω1 ω2)T

ω1 = angular frequency in x direction
ω2 = angular frequency in y direction

Frequency
f =

ω

2π

Wavelength

λ =
2π

‖ω‖
=

2π√
ω2

1 + ω2
2
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Basis functions - complex exponential functions

eω(x) = eiωT x = ei(ω1x1+ω2x2) = cosω
T x + i sinω

T x (Euler’s formula)

Re(eω(x)) = cos(ω
T x) and Im(eω(x)) = sin(ω

T x), eω : R2→ C
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Magnitude and Phase

The Fourier coefficients f̂(ω1,ω2) are complex numbers, but it is
not obvious what the real and imaginary parts represent.
Another way to represent the data is with phase and magnitude.
Magnitude:

|̂f(ω1,ω2)|=
√

Re2(ω1,ω2) + Im2(ω1,ω2)

Phase:
φ(ω1,ω2) = tan−1 Im(ω1,ω2)

Re(ω1,ω2)
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Example
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Example
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2D example

An image of a spot (left) and the Fourier Transform (right).

The origin of the Fourier Transform is in the center of the image.
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Summary of good questions

What properties does a linear system have?
What does shift-invarience mean in terms of image filtering?
How can a Dirac function be used to model sampling?
How do you define a convolution?
Why are convolutions important in linear filtering?
How do you define a 2D Fourier transform?
If you apply a Fourier transform to an image, what do you get?
What information does the phase contain? What about the
magnitude?
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Readings

Gonzalez and Woods: Chapter 4
Szeliski: Chapters 3.2 and 3.4
Introduction to Lab 2
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